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Introduction

Motivating question. Given an algebraic (or complex-analytic)
variety X , can we find a sequence of blowings-up σ : X ′ → X
such that σ preserves the normal crossings locus of X , and
X ′ has only normal crossings singularities?

Normal crossings at a point a: X can be defined by a
monomial equation

xj1 · · · xjk = 0

in local coordinates (x1, . . . , xn) at a.
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Answer depends on the meaning of local coordinates; e.g.,

regular coordinates (or regular system of parameters)
simple normal crossings snc
(locally, irreducible components smooth, transverse)

local analytic (or étale or formal) coordinates (after finite
field extension)
normal crossings nc

Examples

y2 = x2 + x3 nc, not snc

y2 + x2 = 0 nc, snc iff
√
−1 ∈ K

Answer is yes for snc [B-Milman 1997], Szabo, Kollár, . . .
no for nc, in general.
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Example. Whitney umbrella z2 − wx2 = 0.

nc(2) along nonzero w-axis
pinch point pp at 0
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There is no proper birational morphism that eliminates pp
without modifying nc points.

Theorem [BM 2012]. Suppose dim X = 2. Then there is a
smooth blowing-up sequence σ : X ′ → X preserving X nc,
such that X ′ has only nc and pp singularities.
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Remark. Whitney’s umbrella has smooth normalization:
Set w = v2. Then z2 − wx2 splits as (z − vx)(z + vx).

Conjecture A. For any algebraic (or complex-analytic) variety
X , there is a finite composite of admissible smooth blowings-up
σ : X ′ → X , preserving X nc, such that X ′ has smooth
normalization.

Admissible means, in particular, centres normal crossings with
the exceptional divisor.

More concretely:

Conjecture B. . . . such that X ′ has only minimal singularities
from an explicit finite list (with smooth normalization).

Theorem. The conjectures are true for dim X ≤ 4.
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For example, proof for dim X = 2

We consider a hypersurface in 3 variables.

Then nc(3) points are isolated, and the nc(2)-locus has
codimension 2.

We can blow up in the complement of nc(3) without modifying
nc(2), until the maximum value of the desingularization
invariant inv is inv(nc(2)). Then the locus inv = inv(nc(2)) is a
smooth curve C.

At any point of C, we can choose local coordinates in which

X : z2 + wkx2 = 0

(w an exceptional divisor; X is nc(2) on {z = x = 0, w 6= 0}.)
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By finitely many blowings-up with centre {z = w = 0},
we transform X to either

z2 + x2 = 0 nc(2)

or z2 + wx2 = 0 pp

Note that z2 + wkx2 splits as a polynomial in w1/2, x , z .

The proofs of our main results are combinations of methods
from resolution of singularities and splitting techniques. The
latter will be the main focus of the second part of the talk.
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Circulant singularities
Circulant matrix

Ck (X0,X1, . . . ,Xk−1) :=


X0 X1 · · · Xk−1

Xk−1 X0 · · · Xk−2
...

...
. . .

...
X1 X2 · · · X0


Eigenvectors

V` = (1, ε`, ε2`, . . . , ε(k−1)`), ` = 0, . . . , k − 1 ,

where ε = e 2πi/k ;

corresponding eigenvalues

Y` = X0 + ε`X1 + · · ·+ ε(k−1)`Xk−1
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Set ∆k := det Ck .

Circulant singularity cp(k ) is defined by

∆k (x0, w1/kx1, . . . , w (k−1)/kxk−1)

=
k−1∏
`=0

(
x0 + ε`w1/kx1 + · · ·+ ε(k−1)`w (k−1)/kxk−1

)
;

an irreducible polynomial in w , x0, . . . , xk−1.

cp(k ) is a limit of k -fold normal crossings nc(k ) singularities in
k + 1 variables.

cp(k ) has smooth normalization: splits on substituting w = vk .
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For example,

cp(1) = smooth

cp(2) = pp : ∆2(z, w1/2x) = z2 − wx2

cp(3) : ∆3(z, w1/3y , w2/3x) = z3 + wy3 + w2x3 − 3wxyz

Minimal singularities: products of circulant singularities and
their singular neighbours.

Example. 4 variables (dim X = 3) [B-Lairez-Milman, 2012].

Neighbours of cp(3):

nc(2), nc(3),

∆3(z, w1/3y , w2/3)
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Minimal singularities: cp(3) and its neighbours, together with

nc(4), cp(2), smooth× cp(2): y(z2 − wx2) = 0.
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5 variables (dim X = 4)

Neighbours of cp(4), ∆4(x0, w1/4x1, w2/4x2, w3/4x3) = 0 :

nc(k), k = 2,3,4, together with

(1) ∆4
(
z, w1/4x1, w2/4x2, w3/4)

(2) ∆4
(
z, w1/4x1, w2/4, w3/4x3

)
(2′) ∆4

(
z, w1/4x1, w2/4, w3/4x2x3

)
, x2 exceptional

(3) ∆4
(
z, w1/4x1, w2/4, w3/4)

Minimal singularities include the following limits of nc(4):

cp(4), smooth× cp(3), cp(2)× cp(2),

smooth× smooth× cp(2) = nc(2)× cp(2) .
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Approach to the main problems

We can assume that , X is a hypersurface, because nc are
hypersurface singularities, and the desingularization algorithm
blows up points of highest embedding dimension.

More precise version of Conjecture B

Given k , there is a finite composite of admissible smooth
blowings-up σ : X ′ → X , preserving nc of order up to k ,
such that X ′ has only minimal singularities.
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Inductive strategy

• Blow up following the desingularization algorithm until
inv ≤ inv(nc(k).

• Modify non-nc points of

Sk := {inv = inv(nc(k))}

to get minimal singularities in Σk = Sk ∪ Dk ,
where Dk ⊂ E is a distinguished nc divisor,
and only nc in U\Σk , for some neighbourhood U of Σk .

• Apply the inductive hypothesis in the complement of Σk ;
the centres of blowing up extend to global admissible
centres.
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Modification of a stratum Sk at a non-nc point

At a limit of nc(k ), we can reduce to the case that

X : f (w1, . . . ,wr , u1, . . . ,uq, x1, . . . , xk−1, z) = 0 ,

where

(1) f (w ,u, x , z) = zk + a1(w ,u, x)zk−1 + · · ·+ ak (w ,u, x) ;

(2) The nc(k )-locus is {x = z = 0 , w1 · · ·wr 6= 0}, where
w represents the exceptional divisor; in particular, f is
generically nc(k ) on {x = z = 0} ;

(3) inv = inv(nc(k )) on {x = z = 0} .
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We are interested in the splitting of f as

f (w ,u, x , z) =
k∏

j=1

(z − bj(w ,u, x)) .

Notation.

C(w) (or C((w)) ) field of fractions of C[w ] (or C[[w ]] ) .

C(w), C((w)) algebraic closures.

C(w): subfield of C((w)) of elements algebraic over C[w ] .

In a single variable w , C((w)) = formal Laurent series with
finitely many negative exponents, and

C((w)) =
⋃
p∈N

C((w1/p)) (Newton-Puiseux theorem)
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Basic example
f (w , x , z) = z2 + (w3 + x)x2 .

f is nc(2) on {z = x = 0, w 6= 0}.

f does not split over C[[w , x ]], but

f (v2, x , z) = z2 + v6
(

1 +
x
v6

)
x2 ,

so f (w , x , z) splits over C(w1/2)[[x ]] .

Note. f (v2, x , z) is not nc as an element of C[[v , x , z]],

but is nc in C(v)[[x , z]] .

Blow up 0: The nc locus lifts to the w-chart, given by the
substitution (w ,wx ,wz), and the strict transform f ′ of f is

f ′(w , x , z) := w−2f (w ,wx ,wz) = z2 + w(w2 + x)x2 .
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After 2 more blowings-up of 0, we get

f ′(w , x , z) = z2 + w3(1 + x)x2 ,

so f ′(w , x , z) splits over C[[w1/2, x ]] .

After an additional cleaning blow-up, centre z = w = 0, we get
a pinch point.
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Recall that, in general. we can begin with the assumption that

f (w ,u, x , z) = zk + a1(w ,u, x)zk−1 + · · ·+ ak (w ,u, x) ,

where f is nc(k ) on {x = z = 0, w1 · · ·wr 6= 0}, and w
represents the exceptional divisor,

and we are interested in the splitting of f as

f (w ,u, x , z) =
k∏

j=1

(z − bj(w ,u, x)) .
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Then:

(1) From the generic splitting condition, it follows that there is
a unique splitting in C(w)[[u, x ]][z], and each

bj(w ,u, x) ∈ C(w)[[u, x ]]

belongs to the ideal generated by x1, . . . , xk−1 .

(2) It follows that f splits over L[[u, x ]], where L is a finite
normal extension of C(w) in C(w), using the fundamental
theorem of Galois theory.

For example, if there is a single w variable, then f splits over
C(w1/p)[[u, x ]], for some p, by the Newton-Puiseux theorem,

and we can take p = k , if f is irreducible.
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Theorem 1

(Case q = 0, r = 1: limits of nc(k ) in k + 1 variables.)

Assume that

f (w , x1, . . . , xk−1, z) = zk + a1(w , x)zk−1 + · · ·+ ak (w , x)

is nc(k ) on {z = x = 0, w 6= 0}. Then, after a finite number
of blowings-up of 0, f splits over C[[w1/p, x ]], for some p.

Proof uses (1) above and a multivariate Newton-Puiseux
theorem of Soto-Vicente (2011).
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Splitting question

Assume that

f (w1, . . . ,wr , u1, . . . ,uq, x1, . . . , xk−1, z)

is nc(k ) on {x = z = 0, w1 · · ·wr 6= 0} (with the additional
hypothesis inv(0) = inv(nc(k )), if needed).

Is it true that, after finitely many blowings-up with centres

{z = x = wj1 = · · · = wjs = 0},

f splits over C[[w1/p
1 , . . . ,w1/p

r , u, x ]], for some p ?

Theorem 2. True for k ≤ 3 (with the additional hypothesis
on inv).
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Theorem 3. Circulant normal form
Assume that f satisfies the hypotheses of Thm 1 or 2, and that

inv(0) = inv(nc(k )) .

Then there is a finite sequence of admissible blowings-up
preserving the nc(k ) locus, after which the only singularities
that can occur as limits of nc(k ) points, are products of
circulant singularities;

i.e., singularities of the form

p∏
i=1

∆ki

(
yi0, w1/ki yi1, . . . , w (ki−1)/ki yi,ki−1

)
= 0 ,

in suitable étale coordinates
(
w , (yi`)`=0,...,ki−1, i=1,...p

)
, where

k1 + · · · kp = k .
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Summary remark

Following the inductive strategy, Theorems 1–3 can be used
together with desingularization techniques to prove Conjectures
A and B for dim X ≤ 4.

We believe a proof in the general case might be achieved by
generalizing the methods used, with the exception of the
splitting question, which seems to be the main challenge.

Thank you for your attention!
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