The tropical bifurcation set of polynomial maps on a plane

Boulos El Hilany

GKŁW Workshop in Singularity Theory 2022 dedicated to the memory of Stanisław Łojasiewicz

December 19, 2022

Definition

The **bifurcation set**, B(f), of a dominant polynomial map $f : \mathbb{C}^n \to \mathbb{C}^n$ is the set of all $y \in \mathbb{C}^n$ satisfying $|f^{-1}(y)| \neq$ **topological degree of** f.

Definition

The **bifurcation set**, B(f), of a dominant polynomial map $f : \mathbb{C}^n \to \mathbb{C}^n$ is the set of all $y \in \mathbb{C}^n$ satisfying $|f^{-1}(y)| \neq$ **topological degree of** f.

The bifurcation set is useful for understanding the topology of maps , e.g.

- the Jacobian conjecture, and
- the classification of topological types of maps with a given degree.

Definition

The **bifurcation set**, B(f), of a dominant polynomial map $f : \mathbb{C}^n \to \mathbb{C}^n$ is the set of all $y \in \mathbb{C}^n$ satisfying $|f^{-1}(y)| \neq$ **topological degree of** f.

The bifurcation set is useful for understanding the topology of maps , e.g.

- the Jacobian conjecture, and
- the classification of topological types of maps with a given degree.

Maps $F : X \rightarrow Y$ model phenomena from real-life problems.

e.g. B(F) represents the region of all inputs $y \in Y$ critical to the problem.

Definition

The **bifurcation set**, B(f), of a dominant polynomial map $f : \mathbb{C}^n \to \mathbb{C}^n$ is the set of all $y \in \mathbb{C}^n$ satisfying $|f^{-1}(y)| \neq$ **topological degree of** f.

The bifurcation set is useful for understanding the topology of maps , e.g.

- the Jacobian conjecture, and
- the classification of topological types of maps with a given degree.

Maps $F : X \rightarrow Y$ model phenomena from real-life problems.

e.g. B(F) represents the region of all inputs $y \in Y$ critical to the problem.

Algebraic Vision

Definition

The **bifurcation set**, B(f), of a dominant polynomial map $f : \mathbb{C}^n \to \mathbb{C}^n$ is the set of all $y \in \mathbb{C}^n$ satisfying $|f^{-1}(y)| \neq$ **topological degree of** f.

The bifurcation set is useful for understanding the topology of maps , e.g.

- the Jacobian conjecture, and
- the classification of topological types of maps with a given degree.

Maps $F : X \rightarrow Y$ model phenomena from real-life problems.

e.g. B(F) represents the region of all inputs $y \in Y$ critical to the problem.

Definition

The **bifurcation set**, B(f), of a dominant polynomial map $f : \mathbb{C}^n \to \mathbb{C}^n$ is the set of all $y \in \mathbb{C}^n$ satisfying $|f^{-1}(y)| \neq$ **topological degree of** f.

The bifurcation set is useful for understanding the topology of maps , e.g.

- the Jacobian conjecture, and
- the classification of topological types of maps with a given degree.

Maps $F : X \rightarrow Y$ model phenomena from real-life problems.

e.g. B(F) represents the region of all inputs $y \in Y$ critical to the problem.

Image Credits: (1) Gallet, Lubbes, Schicho, Vršek. ArXiv:1810.05559 (2) stackoverflow.com (3) loopandbreak.com

 $f := (f_1, \ldots, f_n) : \mathbb{C}^n \to \mathbb{C}^n$ – dominant polynomial map, then $B(f) = D(f) \cup S(f)$;

- D(f) discriminant, i.e. $f(\{critical points\})$, and
- S(f) non-properness set of f, i.e.

 $\left\{ \mathbf{w} \in \mathbb{C}^n \mid \exists \{z_k\}_{k \in \mathbb{N}} \subset \mathbb{C}^n, \ \|z_k\| \to \infty \text{ and } f(z_k) \to \mathbf{w} \right\}$

 $f := (f_1, \ldots, f_n) : \mathbb{C}^n \to \mathbb{C}^n$ – dominant polynomial map, then $B(f) = D(f) \cup S(f)$;

- D(f) discriminant, i.e. $f(\{critical points\})$, and
- S(f) non-properness set of f, i.e.

 $\{\mathbf{w} \in \mathbb{C}^n \mid \exists \{z_k\}_{k \in \mathbb{N}} \subset \mathbb{C}^n, \|z_k\| \to \infty \text{ and } f(z_k) \to \mathbf{w}\}$

Computing the equations D_f and S_f for B(f):

- To obtain D_f , we compute

 $\langle f_1 - W_1, \ldots, f_n - W_n, \det(\operatorname{Jac}_Z f) \rangle \cap \mathbb{C}[W_1, \ldots, W_n]$

 $f := (f_1, \ldots, f_n) : \mathbb{C}^n \to \mathbb{C}^n$ – dominant polynomial map, then $B(f) = D(f) \cup S(f)$;

- D(f) discriminant, i.e. f({critical points}), and
- S(f) non-properness set of f, i.e.

$$\left\{ \mathbf{w} \in \mathbb{C}^n \mid \exists \{ z_k \}_{k \in \mathbb{N}} \subset \mathbb{C}^n, \ \| z_k \| \to \infty \quad \text{and} \quad f(z_k) \to \mathbf{w} \right\}$$

Computing the equations D_f and S_f for B(f):

- To obtain D_f , we compute

$$\langle f_1 - w_1, \ldots, f_n - w_n, \det(\operatorname{Jac}_Z f) \rangle \cap \mathbb{C}[w_1, \ldots, w_n]$$

- [Jelonek – 93] To obtain S_f, we compute

$$\langle f_1 - w_1, \ldots, f_n - w_n \rangle \rangle \cap \mathbb{C}[z_i, w_1, \ldots, w_n], \text{ for } i = 1, \ldots, n.$$

 $f := (f_1, \ldots, f_n) : \mathbb{C}^n \to \mathbb{C}^n$ – dominant polynomial map, then $B(f) = D(f) \cup S(f)$;

- D(f) discriminant, i.e. $f(\{critical points\})$, and
- S(f) non-properness set of f, i.e.

$$\left\{ \mathbf{w} \in \mathbb{C}^n \mid \exists \{z_k\}_{k \in \mathbb{N}} \subset \mathbb{C}^n, \ \|z_k\| \to \infty \quad \text{and} \quad f(z_k) \to \mathbf{w} \right\}$$

Computing the equations D_f and S_f for B(f):

- To obtain D_f , we compute

$$\langle f_1 - w_1, \ldots, f_n - w_n, \det(\operatorname{Jac}_{\mathbb{Z}} f) \rangle \cap \mathbb{C}[w_1, \ldots, w_n]$$

- [Jelonek – 93] To obtain S_f, we compute

 $\langle f_1 - w_1, \ldots, f_n - w_n \rangle \rangle \cap \mathbb{C}[z_i, w_1, \ldots, w_n], \text{ for } i = 1, \ldots, n.$

- Bit-complexity for computing D_f and S_f is at least $O(2^n n^{3n-2} d^{n^2+2n-2})$

 $f := (f_1, \ldots, f_n) : \mathbb{C}^n \to \mathbb{C}^n$ – dominant polynomial map, then $B(f) = D(f) \cup S(f)$;

- D(f) discriminant, i.e. f({critical points}), and
- S(f) non-properness set of f, i.e.

$$\left\{ \mathbf{w} \in \mathbb{C}^n \mid \exists \{ z_k \}_{k \in \mathbb{N}} \subset \mathbb{C}^n, \ \| z_k \| \to \infty \quad \text{and} \quad f(z_k) \to \mathbf{w} \right\}$$

Computing the equations D_f and S_f for B(f):

- To obtain D_f , we compute

$$\langle f_1 - w_1, \ldots, f_n - w_n, \det(\operatorname{Jac}_Z f) \rangle \cap \mathbb{C}[w_1, \ldots, w_n]$$

- [Jelonek – 93] To obtain S_f, we compute

 $\langle f_1 - w_1, \ldots, f_n - w_n \rangle \rangle \cap \mathbb{C}[z_i, w_1, \ldots, w_n], \text{ for } i = 1, \ldots, n.$

- Bit-complexity for computing D_f and S_f is at least $O(2^n n^{3n-2} d^{n^2+2n-2})$

Problem

How to determine the invariants (e.g. prime decomposition, singularities, homology, etc.) of B(f) without computing its ideal?

Boulos El Hilany TU Braunschweig

 $\begin{array}{ll} P & -\text{ bivariate polynomial } \sum_{a \in \mathbb{N}^n} c_a z^a; \quad z^a := z_1^{a_1} \cdots z_n^{a_n}.\\ \text{supp } P - \text{ support of } P, \quad \text{i.e. } \{a \in \mathbb{N}^n | \ c_a \neq 0\}\\ \mathsf{NP}(P) - \text{ Newton polytope of } P, \quad \text{i.e. convex hull in } \mathbb{R}^n \text{ of supp } P. \end{array}$

P - bivariate polynomial $\sum_{a \in \mathbb{N}^n} c_a z^a$; $z^a := z_1^{a_1} \cdots z_n^{a_n}$. supp P - support of P, i.e. $\{a \in \mathbb{N}^n | c_a \neq 0\}$ NP(P) - Newton polytope of P, i.e. convex hull in \mathbb{R}^n of supp P.

Claim: Under some genericity assumptions, some invariants of polynomial maps depend only on the supports of the polynomials.

P - bivariate polynomial $\sum_{a \in \mathbb{N}^n} c_a z^a$; $z^a := z_1^{a_1} \cdots z_n^{a_n}$. supp P - support of P, i.e. $\{a \in \mathbb{N}^n | c_a \neq 0\}$ NP(P) - Newton polytope of P, i.e. convex hull in \mathbb{R}^n of supp P.

Claim: Under some genericity assumptions, some invariants of polynomial maps depend only on the supports of the polynomials.

Example

For generic $\ell \in \mathbb{C}^4$, the below map $F_{\ell} : \mathbb{C}^2_{u,v} \to \mathbb{C}^2_{r,s}$ satisfies

$$(u, v) \mapsto (\ell_1 \cdot uv^2, \ell_2 \cdot uv + \ell_3 \cdot u^3 + \ell_4 \cdot v^2)$$

 $\begin{array}{ll} P & -\text{ bivariate polynomial } \sum_{a \in \mathbb{N}^n} c_a z^a; \quad z^a := z_1^{a_1} \cdots z_n^{a_n}.\\ \text{supp } P - \text{ support of } P, \quad \text{i.e. } \{a \in \mathbb{N}^n | \ c_a \neq 0\}\\ \text{NP}(P) - \text{Newton polytope of } P, \quad \text{i.e. convex hull in } \mathbb{R}^n \text{ of supp } P. \end{array}$

Claim: Under some genericity assumptions, some invariants of polynomial maps depend only on the supports of the polynomials.

Example

For generic $\ell \in \mathbb{C}^4$, the below map $F_{\ell} : \mathbb{C}^2_{u,v} \to \mathbb{C}^2_{r,s}$ satisfies

$$(u, v) \mapsto (\ell_1 \cdot uv^2, \ell_2 \cdot uv + \ell_3 \cdot u^3 + \ell_4 \cdot v^2)$$

- top. deg(F_{ℓ}) = 8, $D(F_{\ell})$ is a rational curve with exactly one cusp and two nodes
- The Newton polytopes of $C_{F_{\ell}}$ and of $D_{F_{\ell}}$ are independent of ℓ .

P - bivariate polynomial $\sum_{a \in \mathbb{N}^n} c_a z^a$; $z^a := z_1^{a_1} \cdots z_n^{a_n}$. supp P - support of P, i.e. $\{a \in \mathbb{N}^n | c_a \neq 0\}$ NP(P) - Newton polytope of P, i.e. convex hull in \mathbb{R}^n of supp P.

Claim: Under some genericity assumptions, some invariants of polynomial maps depend only on the supports of the polynomials.

Example

For generic $\ell \in \mathbb{C}^4$, the below map $F_{\ell} : \mathbb{C}^2_{u,v} \to \mathbb{C}^2_{r,s}$ satisfies

$$(u, v) \mapsto (\ell_1 \cdot uv^2, \ell_2 \cdot uv + \ell_3 \cdot u^3 + \ell_4 \cdot v^2)$$

- top. deg(F_{ℓ}) = 8, $D(F_{\ell})$ is a rational curve with exactly one cusp and two nodes

- The Newton polytopes of $C_{F_{\ell}}$ and of $D_{F_{\ell}}$ are independent of ℓ .

Indeed, for some $\varphi_1, \ldots \varphi_8 \in \mathbb{Z}[\ell_1, \ldots, \ell_4]$, we get:

$$\mathsf{C}_{\mathsf{F}_{\ell}} = -6\ell_4 \cdot u^3 v - \ell_2 \cdot uv^2 + 2\ell_3 \cdot v^3,$$

 $\mathsf{D}_{F_\ell} = \varphi_1 \cdot r^3 s^3 + \varphi_2 \cdot r^5 + \varphi_3 \cdot s^8 + \varphi_4 \cdot r^2 s^5 + \varphi_5 \cdot r^4 s^2 + \varphi_6 \cdot r^3 s^4 + \varphi_7 \cdot r^5 s + \varphi_8.$

- A pair of finite subsets $A_1, A_2 \subset \mathbb{N}^2 \setminus \{(0,0)\}.$
- \mathbb{C}^A space of all polynomial maps $f: \mathbb{C}^2 \to \mathbb{C}^2$, $A_1 = \text{supp } f_1$ and $A_2 = \text{supp } f_2$.

- A pair of finite subsets $A_1, A_2 \subset \mathbb{N}^2 \setminus \{(0,0)\}.$
- \mathbb{C}^A space of all polynomial maps $f: \mathbb{C}^2 \to \mathbb{C}^2$, $A_1 = \text{supp } f_1$ and $A_2 = \text{supp } f_2$.
- $f \in \mathbb{C}^A$ generic, then A determines:

- A pair of finite subsets $A_1, A_2 \subset \mathbb{N}^2 \setminus \{(0,0)\}.$
- \mathbb{C}^A space of all polynomial maps $f: \mathbb{C}^2 \to \mathbb{C}^2$, $A_1 = \text{supp } f_1$ and $A_2 = \text{supp } f_2$.
- $f \in \mathbb{C}^A$ generic, then A determines:
 - Newton polytopes of C_f, D_f, and of S_f,

- A pair of finite subsets $A_1, A_2 \subset \mathbb{N}^2 \setminus \{(0,0)\}.$
- \mathbb{C}^A space of all polynomial maps $f: \mathbb{C}^2 \to \mathbb{C}^2$, $A_1 = \text{supp } f_1$ and $A_2 = \text{supp } f_2$.
- $f \in \mathbb{C}^A$ generic, then A determines:
 - Newton polytopes of C_f, D_f, and of S_f,
 - the topological type of f (Corollary of [Sabbah 84])

- A pair of finite subsets $A_1, A_2 \subset \mathbb{N}^2 \setminus \{(0,0)\}.$
- \mathbb{C}^A space of all polynomial maps $f: \mathbb{C}^2 \to \mathbb{C}^2$, $A_1 = \text{supp } f_1$ and $A_2 = \text{supp } f_2$.
- $f \in \mathbb{C}^A$ generic, then A determines:
 - Newton polytopes of C_f, D_f, and of S_f,
 - the topological type of f (Corollary of [Sabbah 84]) Since $\mathbb{C}^A \hookrightarrow \Omega(d_1, d_2)$, where

$$\Omega(d_1, d_2) := \left\{ f: \mathbb{C}^2 \to \mathbb{C}^2 \mid \deg f_1 = d_1, \ \deg f_2 = d_2 \right\}.$$

- A pair of finite subsets $A_1, A_2 \subset \mathbb{N}^2 \setminus \{(0,0)\}$.
- \mathbb{C}^A space of all polynomial maps $f: \mathbb{C}^2 \to \mathbb{C}^2$, $A_1 = \text{supp } f_1$ and $A_2 = \text{supp } f_2$.
- $f \in \mathbb{C}^A$ generic, then A determines:
 - Newton polytopes of C_f, D_f, and of S_f,
 - the topological type of f (Corollary of [Sabbah 84]) Since $\mathbb{C}^A \hookrightarrow \Omega(d_1, d_2)$, where

$$\Omega(\mathit{d}_1, \mathit{d}_2) := \left\{ \mathit{f}: \mathbb{C}^2 \to \mathbb{C}^2 \mid \deg \mathit{f}_1 = \mathit{d}_1, \ \deg \mathit{f}_2 = \mathit{d}_2 \right\}.$$

Theorem (Farnik, Jelonek, Ruas - 2019)

 $f \in \Omega(d_1, d_2)$ – generic. Then, Sing(D(f)) has only simple cusps and nodes,

- A pair of finite subsets $A_1, A_2 \subset \mathbb{N}^2 \setminus \{(0,0)\}$.
- \mathbb{C}^A space of all polynomial maps $f: \mathbb{C}^2 \to \mathbb{C}^2$, $A_1 = \text{supp } f_1$ and $A_2 = \text{supp } f_2$.
- $f \in \mathbb{C}^A$ generic, then A determines:
 - Newton polytopes of C_f, D_f, and of S_f,
 - the topological type of f (Corollary of [Sabbah 84]) Since $\mathbb{C}^A \hookrightarrow \Omega(d_1, d_2)$, where

$$\Omega(d_1, d_2) := \left\{ f: \mathbb{C}^2 \to \mathbb{C}^2 \mid \deg f_1 = d_1, \ \deg f_2 = d_2 \right\}.$$

Theorem (Farnik, Jelonek, Ruas – 2019)

 $f \in \Omega(d_1, d_2)$ – generic. Then, Sing(D(f)) has only simple cusps and nodes, and

 $|\operatorname{Sing}(D(f))| = |\operatorname{NP}(\mathsf{D}_f)|^\circ - |\operatorname{NP}(\mathsf{C}_f)|^\circ,$

 $|\Delta|^\circ$ – number of integer points in the relative interior of a polytope $\Delta \subset \mathbb{R}^2$

- A pair of finite subsets $A_1, A_2 \subset \mathbb{N}^2 \setminus \{(0,0)\}$.
- \mathbb{C}^A space of all polynomial maps $f: \mathbb{C}^2 \to \mathbb{C}^2$, $A_1 = \text{supp } f_1$ and $A_2 = \text{supp } f_2$.
- $f \in \mathbb{C}^A$ generic, then A determines:
 - Newton polytopes of C_f, D_f, and of S_f,
 - the topological type of f (Corollary of [Sabbah 84]) Since $\mathbb{C}^A \hookrightarrow \Omega(d_1, d_2)$, where

$$\Omega(d_1, d_2) := \left\{ f: \mathbb{C}^2 \to \mathbb{C}^2 \mid \deg f_1 = d_1, \ \deg f_2 = d_2 \right\}.$$

Theorem (Farnik, Jelonek, Ruas – 2019)

 $f \in \Omega(d_1, d_2)$ – generic. Then, Sing(D(f)) has only simple cusps and nodes, and

 $|\operatorname{Sing}(D(f))| = |\operatorname{NP}(\mathsf{D}_f)|^\circ - |\operatorname{NP}(\mathsf{C}_f)|^\circ,$

 $|\Delta|^\circ$ – number of integer points in the relative interior of a polytope $\Delta \subset \mathbb{R}^2$

Conjecture

Theorem above holds* for a generic $\mathbf{f} \in \mathbb{C}^A$ if A is "nice" enough.

Boulos El Hilany TU Braunschweig

- \mathbb{K} - field of generalized complex Puiseux series $\alpha(t) := c_0 t^{k_0} + c_1 t^{k_1} + \cdots$, with $k_0 < k_1 < \cdots \in \mathbb{R}$, and $c_0, c_1, \ldots \in \mathbb{C}$.

- \mathbb{K} field of generalized complex Puiseux series $\alpha(t) := c_0 t^{k_0} + c_1 t^{k_1} + \cdots$, with $k_0 < k_1 < \cdots \in \mathbb{R}$, and $c_0, c_1, \ldots \in \mathbb{C}$.
- val function $\mathbb{K} \to \mathbb{R} \cup \{-\infty\}$, $0 \neq \alpha(t) \mapsto -k_0$.

- \mathbb{K} field of generalized complex Puiseux series $\alpha(t) := c_0 t^{k_0} + c_1 t^{k_1} + \cdots$, with $k_0 < k_1 < \cdots \in \mathbb{R}$, and $c_0, c_1, \ldots \in \mathbb{C}$.
- val function $\mathbb{K} \to \mathbb{R} \cup \{-\infty\}, 0 \neq \alpha(t) \mapsto -k_0$.
- Trop : $\mathbb{K}^2 \to (\mathbb{R} \cup \{-\infty\})^2, z \mapsto (\mathsf{val}(z_1), \mathsf{val}(z_2))$

- \mathbb{K} field of generalized complex Puiseux series $\alpha(t) := c_0 t^{k_0} + c_1 t^{k_1} + \cdots$, with $k_0 < k_1 < \cdots \in \mathbb{R}$, and $c_0, c_1, \ldots \in \mathbb{C}$.
- val function $\mathbb{K} \to \mathbb{R} \cup \{-\infty\}, 0 \neq \alpha(t) \mapsto -k_0$.
- Trop : $\mathbb{K}^2 \to (\mathbb{R} \cup \{-\infty\})^2$, $z \mapsto (\operatorname{val}(z_1), \operatorname{val}(z_2))$
- Trop($\mathbb{V}(P)$) the tropicalization of $\mathbb{V}(P)$:
- is a rational piecewise-affine complex in \mathbb{R}^2 [Biery, Groves 1984], and
- determines the dual fan $\mathcal{F}(NP(P))$ [Kapranov–2000]

 $P := 1 + 12t^{12} - 5t^2 \cdot z_1 + (7 \cdot t^{-2} + t^{-1}) \cdot z_2 + 2t^7 \cdot z_1^2$

- \mathbb{K} field of generalized complex Puiseux series $\alpha(t) := c_0 t^{k_0} + c_1 t^{k_1} + \cdots$, with $k_0 < k_1 < \cdots \in \mathbb{R}$, and $c_0, c_1, \ldots \in \mathbb{C}$.
- val function $\mathbb{K} \to \mathbb{R} \cup \{-\infty\}, 0 \neq \alpha(t) \mapsto -k_0$.
- Trop : $\mathbb{K}^2 \to (\mathbb{R} \cup \{-\infty\})^2$, $z \mapsto (\operatorname{val}(z_1), \operatorname{val}(z_2))$
- Trop($\mathbb{V}(P)$) the tropicalization of $\mathbb{V}(P)$:
- is a rational piecewise-affine complex in \mathbb{R}^2 [Biery, Groves 1984], and
- determines the dual fan $\mathcal{F}(NP(P))$ [Kapranov–2000]

 $P := 1 + 12t^{12} - 5t^2 \cdot z_1 + (7 \cdot t^{-2} + t^{-1}) \cdot z_2 + 2t^7 \cdot z_1^2$

Strategy for Newton polytope of $X_f \in \{D_f, S_f\}$:

- \mathbb{K} field of generalized complex Puiseux series $\alpha(t) := c_0 t^{k_0} + c_1 t^{k_1} + \cdots$, with $k_0 < k_1 < \cdots \in \mathbb{R}$, and $c_0, c_1, \ldots \in \mathbb{C}$.
- val function $\mathbb{K} \to \mathbb{R} \cup \{-\infty\}, 0 \neq \alpha(t) \mapsto -k_0$.
- Trop : $\mathbb{K}^2 \to (\mathbb{R} \cup \{-\infty\})^2$, $z \mapsto (\mathsf{val}(z_1), \mathsf{val}(z_2))$
- Trop($\mathbb{V}(P)$) the tropicalization of $\mathbb{V}(P)$:
- is a rational piecewise-affine complex in \mathbb{R}^2 [Biery, Groves 1984], and
- determines the dual fan $\mathcal{F}(NP(P))$ [Kapranov-2000]

 $P := 1 + 12t^{12} - 5t^2 \cdot z_1 + (7 \cdot t^{-2} + t^{-1}) \cdot z_2 + 2t^7 \cdot z_1^2$

Strategy for Newton polytope of $X_f \in \{D_f, S_f\}$:

- 1. Generic maps $f \in \mathbb{C}^A$ and $g \in \mathbb{K}^A$ satisfy $\Delta := NP(X_f) = NP(X_g)$,
- 2. compute $\operatorname{Trop}(\mathbb{V}(X_f)) \to \mathcal{F}(\Delta) \to \Delta$

- For any $P: \mathbb{K}^2 \to \mathbb{K}, z \mapsto \sum_{a \in A} c_a z^a$

- For any $P : \mathbb{K}^2 \to \mathbb{K}, z \mapsto \sum_{a \in A} c_a z^a$, we define the tropical polynomial $\mathcal{T}(P) : \mathbb{R}^2 \to \mathbb{R},$ $x \mapsto \max_{a \in A} (\langle x, a \rangle + \operatorname{val} c_a).$

- For any $P : \mathbb{K}^2 \to \mathbb{K}, z \mapsto \sum_{a \in A} c_a z^a$, we define the tropical polynomial $\mathcal{T}(P) : \mathbb{R}^2 \to \mathbb{R}, \qquad x \mapsto \max_{a \in A} (\langle x, a \rangle + \operatorname{val} c_a).$

- For any $y \in \mathbb{R} \cup \{-\infty\}$, define the virtual preimage

- For any $P : \mathbb{K}^2 \to \mathbb{K}, z \mapsto \sum_{a \in A} c_a z^a$, we define the tropical polynomial $\mathcal{T}(P) : \mathbb{R}^2 \to \mathbb{R}, \qquad x \mapsto \max_{a \in A} (\langle x, a \rangle + \operatorname{val} c_a).$
- For any *y* ∈ ℝ ∪ {−∞}, define the virtual preimage
 V_y(T(P)) points *x* ∈ ℝ² where the below maximum is reached twice

- For any $P : \mathbb{K}^2 \to \mathbb{K}, z \mapsto \sum_{a \in A} c_a z^a$, we define the tropical polynomial $\mathcal{T}(P) : \mathbb{R}^2 \to \mathbb{R}, \qquad x \mapsto \max_{a \in A} (\langle x, a \rangle + \operatorname{val} c_a).$
- For any *y* ∈ ℝ ∪ {−∞}, define the virtual preimage
 V_y(T(P)) points *x* ∈ ℝ² where the below maximum is reached twice

Theorem (Kapranov's correspondence)

Let $P \in \mathbb{K}[z_1, z_2]$, P(0, 0) = 0, $w \in \mathbb{K}$ and define y := val(w). Then, it holds

$$\operatorname{Trop}\left(P^{-1}(\boldsymbol{w})\cap(\mathbb{K}^*)^2\right)=\mathcal{V}_{\boldsymbol{y}}(\mathcal{T}(P)).$$

Boulos El Hilany TU Braunschweig

Let $f_1, f_2 \in \mathbb{K}[z_1, z_2]$, and let $X_1 := \text{Trop } f_1, X_2 := \text{Trop } f_2$ their tropical curves.

Let $f_1, f_2 \in \mathbb{K}[z_1, z_2]$, and let $X_1 := \text{Trop } f_1, X_2 := \text{Trop } f_2$ their tropical curves.

Definition (Stable intersections)

A point $p \in X_1 \cap X_2 \subset \mathbb{R}^2$ is stable if it is locally preserved under perturbations.

Let $f_1, f_2 \in \mathbb{K}[z_1, z_2]$, and let $X_1 := \text{Trop } f_1, X_2 := \text{Trop } f_2$ their tropical curves.

Definition (Stable intersections)

A point $p \in X_1 \cap X_2 \subset \mathbb{R}^2$ is stable if it is locally preserved under perturbations.

Let $f_1, f_2 \in \mathbb{K}[z_1, z_2]$, and let $X_1 := \text{Trop } f_1, X_2 := \text{Trop } f_2$ their tropical curves.

Definition (Stable intersections)

A point $p \in X_1 \cap X_2 \subset \mathbb{R}^2$ is stable if it is locally preserved under perturbations.

Definition (Degenerate intersections)

An *un*stable intersection component *C* in $X_1 \cap X_2 \subset \mathbb{R}^2$ is degenerate if *C* satisfies one of the following conditions:

- is bounded,
- contains a half-line with direction (a, b) such that $a \cdot b < 0$, or
- contains a horizontal/vertical half-line with some extra properties.

Tropical bifurcation set of a tropical polynomial map $F := (F_1, F_2) : \mathbb{R}^2 \to \mathbb{R}^2$,

Tropical bifurcation set of a tropical polynomial map $F := (F_1, F_2) : \mathbb{R}^2 \to \mathbb{R}^2$,

$$TB(F) := \left\{ (y_1, y_2) \in \mathbb{R}^2 \mid \mathcal{V}_{y_1}(F_1) \cap \mathcal{V}_{y_2}(F_2) \text{ has a degenerate component in } \mathbb{R}^2 \right\}$$

Tropical bifurcation set of a tropical polynomial map $F := (F_1, F_2) : \mathbb{R}^2 \to \mathbb{R}^2$,

$$TB(F) := \left\{ (y_1, y_2) \in \mathbb{R}^2 \mid \mathcal{V}_{y_1}(F_1) \cap \mathcal{V}_{y_2}(F_2) \text{ has a degenerate component in } \mathbb{R}^2 \right\}$$

Theorem (EH - 22)

Let A_1 and A_2 be finite subsets of $\mathbb{N}^2 \setminus \{(0,0)\}$ and let $f := (f_1, f_2) : \mathbb{K}^2 \to (\mathbb{K}^*)^2$ be a general polynomial map with $A_i = \text{supp } f_i$ and $F := (\mathcal{T}(f_1), \mathcal{T}(f_2))$. Then, it holds Trop(B(f)) = TB(F).

Tropical bifurcation set of a tropical polynomial map $F := (F_1, F_2) : \mathbb{R}^2 \to \mathbb{R}^2$,

$$TB(F) := \left\{ (y_1, y_2) \in \mathbb{R}^2 \mid \mathcal{V}_{y_1}(F_1) \cap \mathcal{V}_{y_2}(F_2) \text{ has a degenerate component in } \mathbb{R}^2 \right\}$$

Theorem (EH - 22)

Let A_1 and A_2 be finite subsets of $\mathbb{N}^2 \setminus \{(0,0)\}$ and let $f := (f_1, f_2) : \mathbb{K}^2 \to (\mathbb{K}^*)^2$ be a general polynomial map with $A_i = \text{supp } f_i$ and $F := (\mathcal{T}(f_1), \mathcal{T}(f_2))$. Then, it holds Trop(B(f)) = TB(F).

Example

Consider the polynomial map $(u, v) \rightarrow (v + t uv, u + v + uv)$. Its bifurcation set is $t^2 s^2 - 2t r s - 4t r + r^2 + 2t s + 2r + 1 \in \mathbb{K}[r, s]$, and *F* is expressed as

$$(x_1, x_2) \rightarrow (\max(x_2, x_1 + x_2 - 1), \max(x_1, x_2, x_1 + x_2))$$

Tropical bifurcation set of a tropical polynomial map $F := (F_1, F_2) : \mathbb{R}^2 \to \mathbb{R}^2$,

$$TB(F) := \left\{ (y_1, y_2) \in \mathbb{R}^2 \mid \mathcal{V}_{y_1}(F_1) \cap \mathcal{V}_{y_2}(F_2) \text{ has a degenerate component in } \mathbb{R}^2 \right\}$$

Theorem (EH - 22)

Let A_1 and A_2 be finite subsets of $\mathbb{N}^2 \setminus \{(0,0)\}$ and let $f := (f_1, f_2) : \mathbb{K}^2 \to (\mathbb{K}^*)^2$ be a general polynomial map with $A_i = \text{supp } f_i$ and $F := (\mathcal{T}(f_1), \mathcal{T}(f_2))$. Then, it holds Trop(B(f)) = TB(F).

Example

Consider the polynomial map $(u, v) \rightarrow (v + t uv, u + v + uv)$. Its bifurcation set is $t^2 s^2 - 2t r s - 4t r + r^2 + 2t s + 2r + 1 \in \mathbb{K}[r, s]$, and F is expressed as $(x_1, x_2) \rightarrow (\max(x_2, x_1 + x_2 - 1), \max(x_1, x_2, x_1 + x_2))$.

A recipe for the tropical bifurcation set

A tropical polynomial map $F : \mathbb{R}^2 \to \mathbb{R}^2$ induces a polyhedral subdivision Ξ of \mathbb{R}^2 :

- Elements in Ξ are relative interiors of polyhedra.
- $F_{|\xi}$ is an affine map at each $\xi \in \Xi$.
- $F_{|\xi} = F_{|\xi'} \Rightarrow \xi = \xi'$ or $\overline{\xi}$ is a face of $\overline{\xi'}$.

A recipe for the tropical bifurcation set

A tropical polynomial map $F : \mathbb{R}^2 \to \mathbb{R}^2$ induces a polyhedral subdivision Ξ of \mathbb{R}^2 :

- Elements in Ξ are relative interiors of polyhedra.
- $F_{|\xi}$ is an affine map at each $\xi \in \Xi$.
- $F_{|\xi} = F_{|\xi'} \Rightarrow \xi = \xi'$ or $\overline{\xi}$ is a face of $\overline{\xi'}$.

Theorem (EH - 22)

The domains of linearity of a tropical polynomial map $F : \mathbb{R}^2 \to \mathbb{R}^2$ determine effectively the tropical bifurcation set of *F*.

Computing the Newton polytope of the discriminant

 $A := (A_1, A_2)$ – pair of finite subsets in \mathbb{N}^2

Fact

There exists a polytope $\triangle \subset \mathbb{R}^2$, such that for any generic polynomial map $f := (f_1, f_2) : \mathbb{C}^2 \to (\mathbb{C}^*)^2$ in \mathbb{C}^A , it holds

 $NP(D_f) = \Delta.$

Computing the Newton polytope of the discriminant

 $A := (A_1, A_2)$ – pair of finite subsets in \mathbb{N}^2

Fact

There exists a polytope $\triangle \subset \mathbb{R}^2$, such that for any generic polynomial map $f := (f_1, f_2) : \mathbb{C}^2 \to (\mathbb{C}^*)^2$ in \mathbb{C}^A , it holds

$$NP(D_f) = \Delta.$$

Task

Compute Δ , up to translation, without using elimination.

Computing the Newton polytope of the discriminant

 $A := (A_1, A_2)$ – pair of finite subsets in \mathbb{N}^2

Fact

There exists a polytope $\Delta \subset \mathbb{R}^2$, such that for any generic polynomial map $f := (f_1, f_2) : \mathbb{C}^2 \to (\mathbb{C}^*)^2$ in \mathbb{C}^A , it holds

$$NP(D_f) = \Delta.$$

Task

Compute Δ , up to translation, without using elimination.

Example

Consider the polynomial map $(u, v) \rightarrow (v + v^2 + uv + uv^2 + u^2v^2, 2v + 3u^2v + 4u^2v^2)$, for which A_1 , A_2 and \triangle are illustrated below.

Task

Given a pair $A := (A_1, A_2)$ of subsets in \mathbb{N}^2 and a generic map $f := (f_1, f_2) : \mathbb{C}^2 \to (\mathbb{C}^*)^2$ in \mathbb{C}^A , compute $\Delta := \mathsf{NP}(\mathsf{D}_f)$.

e1

Task

Given a pair $A := (A_1, A_2)$ of subsets in \mathbb{N}^2 and a generic map $f := (f_1, f_2) : \mathbb{C}^2 \to (\mathbb{C}^*)^2$ in \mathbb{C}^A , compute $\Delta := \mathsf{NP}(\mathsf{D}_f)$.

1. Compute the set TD(F) for any "generic" $F : \mathbb{R}^2 \to \mathbb{R}^2$ such that supp F = A.

Task

Given a pair $A := (A_1, A_2)$ of subsets in \mathbb{N}^2 and a generic map $f := (f_1, f_2) : \mathbb{C}^2 \to (\mathbb{C}^*)^2$ in \mathbb{C}^A , compute $\Delta := \mathsf{NP}(\mathsf{D}_f)$.

- 1. Compute the set TD(F) for any "generic" $F : \mathbb{R}^2 \to \mathbb{R}^2$ such that supp F = A. 2. We obtain the primitive vectors $\overrightarrow{e_1}, \ldots, \overrightarrow{e_6}$ directing the respective edges.

Task

Given a pair $A := (A_1, A_2)$ of subsets in \mathbb{N}^2 and a generic map $f := (f_1, f_2) : \mathbb{C}^2 \to (\mathbb{C}^*)^2$ in \mathbb{C}^A , compute $\Delta := \mathsf{NP}(\mathsf{D}_f)$.

- 1. Compute the set TD(F) for any "generic" $F : \mathbb{R}^2 \to \mathbb{R}^2$ such that supp F = A. 2. We obtain the primitive vectors $\overrightarrow{e_1}, \ldots, \overrightarrow{e_6}$ directing the respective edges.
- 3. It is left to compute the lengths ℓ_1, \ldots, ℓ_6 of the corresponding edges.

Boulos El Hilany TU Braunschweig

The tropical bifurcation set

- $C - \text{Trop}(\alpha \lambda^a + \beta \lambda^b) \subset \mathbb{R}^2$ intersecting TD(F) transversally, and only at the unbounded edges of TD(F), dual to $\{e_i\}_{i \in I}$ for some $I \subset \{1, \ldots, 6\}$.

- $C \text{Trop}(\alpha \lambda^a + \beta \lambda^b) \subset \mathbb{R}^2$ intersecting TD(F) transversally, and only at the unbounded edges of TD(F), dual to $\{e_i\}_{i \in I}$ for some $I \subset \{1, \ldots, 6\}$.
- MV(P, Q) Mixed volume of two polytopes $P, Q \subset \mathbb{R}^2$

- $C \text{Trop}(\alpha \lambda^a + \beta \lambda^b) \subset \mathbb{R}^2$ intersecting TD(F) transversally, and only at the unbounded edges of TD(F), dual to $\{e_i\}_{i \in I}$ for some $I \subset \{1, \ldots, 6\}$.
- MV(P, Q) Mixed volume of two polytopes $P, Q \subset \mathbb{R}^2$

Claim

If the coefficients $\alpha, \beta \in \mathbb{K}$ are chosen to be generic enough, then it holds

$$\sum_{i \in I} \left| \det(a - b, \overrightarrow{\theta}_i) \right| \cdot \ell_i = \left| D(f) \cap \{ \alpha \lambda^a + \beta \lambda^b = 0 \} \right| = MV(\mathcal{N}(J_f), \mathcal{N}(\alpha f^a + \beta f^b))$$

- $C \text{Trop}(\alpha \lambda^a + \beta \lambda^b) \subset \mathbb{R}^2$ intersecting TD(F) transversally, and only at the unbounded edges of TD(F), dual to $\{e_i\}_{i \in I}$ for some $I \subset \{1, \ldots, 6\}$.
- MV(P, Q) Mixed volume of two polytopes $P, Q \subset \mathbb{R}^2$

Claim

If the coefficients $\alpha, \beta \in \mathbb{K}$ are chosen to be generic enough, then it holds

$$\sum_{i \in I} \left| \det(a - b, \overrightarrow{\theta}_i) \right| \cdot \ell_i = \left| D(f) \cap \{ \alpha \lambda^a + \beta \lambda^b = 0 \} \right| = MV(\mathcal{N}(J_f), \mathcal{N}(\alpha f^a + \beta f^b))$$

Proof:

- Left equality: BKK bound for $D(f) \cap X$
- **Right equality:** BKK bound for $C(f) \cap f^{-1}(X)$

Claim There exists $I \subset \{1, ..., 6\}$ and a binomial curve $Val(\{\alpha \lambda^{a} + \beta \lambda^{b}\}) \cap \mathbb{R}^{2}$ satisfying $\sum_{i \in I} \left| det(a - b, \overrightarrow{e}_{i}) \right| \cdot \ell_{i} = MV(\mathcal{N}(J_{f}), \mathcal{N}(\alpha f^{a} + \beta f^{b}))$

Claim There exists $I \subset \{1, ..., 6\}$ and a binomial curve $\operatorname{Val}(\{\alpha \lambda^a + \beta \lambda^b\}) \cap \mathbb{R}^2$ satisfying $\sum_{i \in I} \left| \det(a - b, \overrightarrow{e}_i) \right| \cdot \ell_i = MV(\mathcal{N}(J_i), \mathcal{N}(\alpha t^a + \beta t^b))$

We take enough binomial curves C as above to obtain the 6 equalities below

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 0 & 0 \\ 5 & 3 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} \ell_1 \\ \ell_2 \\ \ell_3 \\ \ell_5 \\ \ell_6 \end{pmatrix} = \begin{pmatrix} 22 \\ 16 \\ 24 \\ 7 \\ 22 \\ 16 \end{pmatrix} \Rightarrow (\ell_1, \ell_2, \ell_3, \ell_4, \ell_5, \ell_6) = (1, 6, 1, 6, 2, 6)$$

Algorithm: [EH, K. Rose - 2022]

Input: two subsets $A_1, A_2 \subset \mathbb{N}^2 \setminus \{(0,0)\}$

Output: A polytope $\Delta := \mathsf{NP}(\mathsf{D}_f) \subset \mathbb{R}^2$ for any generic $f \in \mathbb{C}^A$.

- **1.** Consider the tropical map $F := \mathcal{T}(f) : \mathbb{R}^2 \to \mathbb{R}^2$,
- **2.** compute $TD(F) \subset \mathbb{R}^2$ and thus $\mathcal{F}(\Delta)$,
- compute the edge lengths of △

Algorithm: [EH, K. Rose – 2022]

Input: two subsets $A_1, A_2 \subset \mathbb{N}^2 \setminus \{(0,0)\}$

Output: A polytope $\Delta := \mathsf{NP}(\mathsf{D}_f) \subset \mathbb{R}^2$ for any generic $f \in \mathbb{C}^A$.

- **1.** Consider the tropical map $F := \mathcal{T}(f) : \mathbb{R}^2 \to \mathbb{R}^2$,
- **2.** compute $TD(F) \subset \mathbb{R}^2$ and thus $\mathcal{F}(\Delta)$,
- 3. compute the edge lengths of \triangle

OSCAR SYMBOLIC TOOLS

Algorithm: [EH, K. Rose - 2022]

Input: two subsets $A_1, A_2 \subset \mathbb{N}^2 \setminus \{(0,0)\}$

Output: A polytope $\Delta := \mathsf{NP}(\mathsf{D}_f) \subset \mathbb{R}^2$ for any generic $f \in \mathbb{C}^A$.

- **1.** Consider the tropical map $F := \mathcal{T}(f) : \mathbb{R}^2 \to \mathbb{R}^2$,
- **2.** compute $TD(F) \subset \mathbb{R}^2$ and thus $\mathcal{F}(\Delta)$,
- compute the edge lengths of △

OSCAR

Algorithm: [EH, K. Rose - 2022]

Input: two subsets $A_1, A_2 \subset \mathbb{N}^2 \setminus \{(0,0)\}$

Output: A polytope $\Delta := \mathsf{NP}(\mathsf{D}_f) \subset \mathbb{R}^2$ for any generic $f \in \mathbb{C}^A$.

- **1.** Consider the tropical map $F := \mathcal{T}(f) : \mathbb{R}^2 \to \mathbb{R}^2$,
- **2.** compute $TD(F) \subset \mathbb{R}^2$ and thus $\mathcal{F}(\Delta)$,
- compute the edge lengths of △

OSCAR

SYMBOLIC TOOLS