# The tropical bifurcation set of polynomial maps on a plane 

Boulos El Hilany

GKŁW Workshop in Singularity Theory 2022 dedicated to the memory of Stanisław Łojasiewicz

December 19, 2022


## The bifurcation set for polynomial automorphisms

```
Definition
The bifurcation set, B(f), of a dominant polynomial map f: \mathbb{C}}->\mp@subsup{\mathbb{C}}{}{n}\mathrm{ is the set of all
y\in\mathbb{C}
```


## The bifurcation set for polynomial automorphisms

## Definition <br> The bifurcation set, $B(f)$, of a dominant polynomial map $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is the set of all $y \in \mathbb{C}^{n}$ satisfying $\left|f^{-1}(y)\right| \neq$ topological degree of $f$.

The bifurcation set is useful for understanding the topology of maps, e.g.

- the Jacobian conjecture, and
- the classification of topological types of maps with a given degree.


## The bifurcation set for polynomial automorphisms

## Definition

The bifurcation set, $B(f)$, of a dominant polynomial map $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is the set of all $y \in \mathbb{C}^{n}$ satisfying $\left|f^{-1}(y)\right| \neq$ topological degree of $f$.

The bifurcation set is useful for understanding the topology of maps, e.g.

- the Jacobian conjecture, and
- the classification of topological types of maps with a given degree.

Maps $F: X \rightarrow Y$ model phenomena from real-life problems.
e.g. $B(F)$ represents the region of all inputs $y \in Y$ critical to the problem.

## The bifurcation set for polynomial automorphisms

## Definition

The bifurcation set, $B(f)$, of a dominant polynomial map $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is the set of all $y \in \mathbb{C}^{n}$ satisfying $\left|f^{-1}(y)\right| \neq$ topological degree of $f$.

The bifurcation set is useful for understanding the topology of maps, e.g.

- the Jacobian conjecture, and
- the classification of topological types of maps with a given degree.

Maps $F: X \rightarrow Y$ model phenomena from real-life problems.
e.g. $B(F)$ represents the region of all inputs $y \in Y$ critical to the problem.

## Algebraic Vision

## The bifurcation set for polynomial automorphisms

## Definition

The bifurcation set, $B(f)$, of a dominant polynomial map $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is the set of all $y \in \mathbb{C}^{n}$ satisfying $\left|f^{-1}(y)\right| \neq$ topological degree of $f$.

The bifurcation set is useful for understanding the topology of maps, e.g.

- the Jacobian conjecture, and
- the classification of topological types of maps with a given degree.

Maps $F: X \rightarrow Y$ model phenomena from real-life problems.
e.g. $B(F)$ represents the region of all inputs $y \in Y$ critical to the problem.


## The bifurcation set for polynomial automorphisms

## Definition

The bifurcation set, $B(f)$, of a dominant polynomial map $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is the set of all $y \in \mathbb{C}^{n}$ satisfying $\left|f^{-1}(y)\right| \neq$ topological degree of $f$.

The bifurcation set is useful for understanding the topology of maps, e.g.

- the Jacobian conjecture, and
- the classification of topological types of maps with a given degree.

Maps $F: X \rightarrow Y$ model phenomena from real-life problems.
e.g. $B(F)$ represents the region of all inputs $y \in Y$ critical to the problem.

Robotics



Image Credits: (1) Gallet, Lubbes, Schicho, Vršek. ArXiv:1810.05559 (2) stackoverflow.com (3) loopandbreak.com

## Known results and open problems

$f:=\left(f_{1}, \ldots, f_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ - dominant polynomial map, then $B(f)=D(f) \cup S(f) ;$

- $D(f)$ - discriminant, i.e. $f(\{$ critical points $\})$, and
- $S(f)$ - non-properness set of $f$, i.e.

$$
\left\{w \in \mathbb{C}^{n} \mid \exists\left\{z_{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{C}^{n},\left\|z_{k}\right\| \rightarrow \infty \quad \text { and } \quad f\left(z_{k}\right) \rightarrow w\right\}
$$

## Known results and open problems

$f:=\left(f_{1}, \ldots, f_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ - dominant polynomial map, then $B(f)=D(f) \cup S(f) ;$

- $D(f)$ - discriminant, i.e. $f(\{$ critical points $\})$, and
- $S(f)$ - non-properness set of $f$, i.e.

$$
\left\{w \in \mathbb{C}^{n} \mid \exists\left\{z_{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{C}^{n},\left\|z_{k}\right\| \rightarrow \infty \quad \text { and } \quad f\left(z_{k}\right) \rightarrow w\right\}
$$

Computing the equations $\mathrm{D}_{f}$ and $\mathrm{S}_{f}$ for $B(f)$ :

- To obtain $D_{f}$, we compute

$$
\left\langle f_{1}-w_{1}, \ldots, f_{n}-w_{n}, \operatorname{det}\left(\operatorname{Jac}_{z} f\right)\right\rangle \cap \mathbb{C}\left[w_{1}, \ldots, w_{n}\right]
$$

## Known results and open problems

$f:=\left(f_{1}, \ldots, f_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ - dominant polynomial map, then $B(f)=D(f) \cup S(f) ;$

- $D(f)$ - discriminant, i.e. $f(\{$ critical points $\})$, and
- $S(f)$ - non-properness set of $f$, i.e.

$$
\left\{w \in \mathbb{C}^{n} \mid \exists\left\{z_{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{C}^{n},\left\|z_{k}\right\| \rightarrow \infty \quad \text { and } \quad f\left(z_{k}\right) \rightarrow w\right\}
$$

Computing the equations $\mathrm{D}_{f}$ and $\mathrm{S}_{f}$ for $B(f)$ :

- To obtain $D_{f}$, we compute

$$
\left\langle f_{1}-w_{1}, \ldots, f_{n}-w_{n}, \operatorname{det}\left(\operatorname{Jac}_{z} f\right)\right\rangle \cap \mathbb{C}\left[w_{1}, \ldots, w_{n}\right]
$$

- [Jelonek - 93] To obtain $S_{f}$, we compute

$$
\left.\left\langle f_{1}-w_{1}, \ldots, f_{n}-w_{n}\right)\right\rangle \cap \mathbb{C}\left[z_{i}, w_{1}, \ldots, w_{n}\right], \text { for } i=1, \ldots, n
$$

## Known results and open problems

$f:=\left(f_{1}, \ldots, f_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ - dominant polynomial map, then $B(f)=D(f) \cup S(f) ;$

- $D(f)$ - discriminant, i.e. $f(\{$ critical points $\})$, and
- $S(f)$ - non-properness set of $f$, i.e.

$$
\left\{w \in \mathbb{C}^{n} \mid \exists\left\{z_{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{C}^{n},\left\|z_{k}\right\| \rightarrow \infty \quad \text { and } \quad f\left(z_{k}\right) \rightarrow w\right\}
$$

Computing the equations $\mathrm{D}_{f}$ and $\mathrm{S}_{f}$ for $B(f)$ :

- To obtain $\mathrm{D}_{f}$, we compute

$$
\left\langle f_{1}-w_{1}, \ldots, f_{n}-w_{n}, \operatorname{det}\left(\operatorname{Jac}_{z} f\right)\right\rangle \cap \mathbb{C}\left[w_{1}, \ldots, w_{n}\right]
$$

- [Jelonek - 93] To obtain $S_{f}$, we compute

$$
\left.\left\langle f_{1}-w_{1}, \ldots, f_{n}-w_{n}\right)\right\rangle \cap \mathbb{C}\left[z_{i}, w_{1}, \ldots, w_{n}\right], \text { for } i=1, \ldots, n .
$$

- Bit-complexity for computing $D_{f}$ and $S_{f}$ is at least $\mathcal{O}\left(2^{n} n^{3 n-2} d^{n^{2}+2 n-2}\right)$


## Known results and open problems

$f:=\left(f_{1}, \ldots, f_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ - dominant polynomial map, then $B(f)=D(f) \cup S(f) ;$

- $D(f)$ - discriminant, i.e. $f(\{$ critical points $\})$, and
- $S(f)$ - non-properness set of $f$, i.e.

$$
\left\{w \in \mathbb{C}^{n} \mid \exists\left\{z_{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{C}^{n},\left\|z_{k}\right\| \rightarrow \infty \quad \text { and } \quad f\left(z_{k}\right) \rightarrow w\right\}
$$

Computing the equations $\mathrm{D}_{f}$ and $\mathrm{S}_{f}$ for $B(f)$ :

- To obtain $\mathrm{D}_{f}$, we compute

$$
\left\langle f_{1}-w_{1}, \ldots, f_{n}-w_{n}, \operatorname{det}\left(\operatorname{Jac}_{z} f\right)\right\rangle \cap \mathbb{C}\left[w_{1}, \ldots, w_{n}\right]
$$

- [Jelonek - 93] To obtain $S_{f}$, we compute

$$
\left.\left\langle f_{1}-w_{1}, \ldots, f_{n}-w_{n}\right)\right\rangle \cap \mathbb{C}\left[z_{i}, w_{1}, \ldots, w_{n}\right], \text { for } i=1, \ldots, n .
$$

- Bit-complexity for computing $\mathrm{D}_{f}$ and $\mathrm{S}_{f}$ is at least $\mathcal{O}\left(2^{n} n^{3 n-2} d^{n^{2}+2 n-2}\right)$


## Problem

How to determine the invariants (e.g. prime decomposition, singularities, homology, etc.) of $B(f)$ without computing its ideal?

## Polyhedral invariants (an example)

$P \quad$ - bivariate polynomial $\sum_{a \in \mathbb{N}^{n}} c_{a} z^{a} ; \quad z^{a}:=z_{1} a_{1} \cdots z_{n}{ }^{a_{n}}$. supp $P$ - support of $P$, i.e. $\left\{a \in \mathbb{N}^{n} \mid c_{a} \neq 0\right\}$ NP $(P)$ - Newton polytope of $P$, i.e. convex hull in $\mathbb{R}^{n}$ of supp $P$.

## Polyhedral invariants (an example)

$$
\begin{aligned}
& P \quad \text { - bivariate polynomial } \sum_{a \in \mathbb{N}^{n}} c_{a} z^{a} ; \quad z^{a}:=z_{1}^{a_{1}} \cdots z_{n}^{a_{n}} . \\
& \text { supp } P \text { - support of } P \text {, i.e. }\left\{a \in \mathbb{N}^{n} \mid c_{a} \neq 0\right\} \\
& N P(P) \text { - Newton polytope of } P, \quad \text { i.e. convex hull in } \mathbb{R}^{n} \text { of supp } P \text {. }
\end{aligned}
$$

Claim: Under some genericity assumptions, some invariants of polynomial maps depend only on the supports of the polynomials.

## Polyhedral invariants (an example)

$P \quad$ - bivariate polynomial $\sum_{a \in \mathbb{N}^{n}} c_{a} z^{a} ; \quad z^{a}:=z_{1} a_{1} \cdots z_{n} a^{a_{n}}$.
supp $P$ - support of $P$, i.e. $\left\{a \in \mathbb{N}^{n} \mid c_{a} \neq 0\right\}$
$\mathrm{NP}(P)$ - Newton polytope of $P$, i.e. convex hull in $\mathbb{R}^{n}$ of supp $P$.
Claim: Under some genericity assumptions, some invariants of polynomial maps depend only on the supports of the polynomials.

## Example

For generic $\ell \in \mathbb{C}^{4}$, the below map $F_{\ell}: \mathbb{C}_{u, v}^{2} \rightarrow \mathbb{C}_{r, s}^{2}$ satisfies

$$
(u, v) \mapsto\left(\ell_{1} \cdot u v^{2}, \ell_{2} \cdot u v+\ell_{3} \cdot u^{3}+\ell_{4} \cdot v^{2}\right)
$$

## Polyhedral invariants (an example)

$P \quad$ - bivariate polynomial $\sum_{a \in \mathbb{N}^{n}} c_{a} z^{a} ; \quad z^{a}:=z_{1} a_{1} \cdots z_{n}{ }^{a_{n}}$.
supp $P$ - support of $P$, i.e. $\left\{a \in \mathbb{N}^{n} \mid c_{a} \neq 0\right\}$
NP $(P)$ - Newton polytope of $P$, i.e. convex hull in $\mathbb{R}^{n}$ of supp $P$.
Claim: Under some genericity assumptions, some invariants of polynomial maps depend only on the supports of the polynomials.

## Example

For generic $\ell \in \mathbb{C}^{4}$, the below map $F_{\ell}: \mathbb{C}_{u, v}^{2} \rightarrow \mathbb{C}_{r, s}^{2}$ satisfies

$$
(u, v) \mapsto\left(\ell_{1} \cdot u v^{2}, \ell_{2} \cdot u v+\ell_{3} \cdot u^{3}+\ell_{4} \cdot v^{2}\right)
$$

top. $\operatorname{deg}\left(F_{\ell}\right)=8, D\left(F_{\ell}\right)$ is a rational curve with exactly one cusp and two nodes The Newton polytopes of $\mathrm{C}_{F_{\ell}}$ and of $\mathrm{D}_{F_{\ell}}$ are independent of $\ell$.

## Polyhedral invariants (an example)

$P \quad$ - bivariate polynomial $\sum_{a \in \mathbb{N}^{n}} c_{a} z^{a} ; \quad z^{a}:=z_{1} a_{1} \cdots z_{n}{ }^{a_{n}}$.
supp $P$ - support of $P$, i.e. $\left\{a \in \mathbb{N}^{n} \mid c_{a} \neq 0\right\}$
$\mathrm{NP}(P)$ - Newton polytope of $P$, i.e. convex hull in $\mathbb{R}^{n}$ of supp $P$.
Claim: Under some genericity assumptions, some invariants of polynomial maps depend only on the supports of the polynomials.

## Example

For generic $\ell \in \mathbb{C}^{4}$, the below map $F_{\ell}: \mathbb{C}_{u, v}^{2} \rightarrow \mathbb{C}_{r, s}^{2}$ satisfies

$$
(u, v) \mapsto\left(\ell_{1} \cdot u v^{2}, \ell_{2} \cdot u v+\ell_{3} \cdot u^{3}+\ell_{4} \cdot v^{2}\right)
$$

top. $\operatorname{deg}\left(F_{\ell}\right)=8, D\left(F_{\ell}\right)$ is a rational curve with exactly one cusp and two nodes
The Newton polytopes of $\mathrm{C}_{F_{\ell}}$ and of $\mathrm{D}_{F_{\ell}}$ are independent of $\ell$.
Indeed, for some $\varphi_{1}, \ldots \varphi_{8} \in \mathbb{Z}\left[\ell_{1}, \ldots, \ell_{4}\right]$, we get:

$$
\begin{gathered}
\mathrm{C}_{F_{\ell}}=-6 \ell_{4} \cdot u^{3} v-\ell_{2} \cdot u v^{2}+2 \ell_{3} \cdot v^{3} \\
\mathrm{D}_{F_{\ell}}=\varphi_{1} \cdot r^{3} s^{3}+\varphi_{2} \cdot r^{5}+\varphi_{3} \cdot s^{8}+\varphi_{4} \cdot r^{2} s^{5}+\varphi_{5} \cdot r^{4} s^{2}+\varphi_{6} \cdot r^{3} s^{4}+\varphi_{7} \cdot r^{5} s+\varphi_{8}
\end{gathered}
$$

## Polyhedral invariants of polynomial maps

- $A$ - pair of finite subsets $A_{1}, A_{2} \subset \mathbb{N}^{2} \backslash\{(0,0)\}$.
- $\mathbb{C}^{A}$ - space of all polynomial maps $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, A_{1}=\operatorname{supp} f_{1}$ and $A_{2}=\operatorname{supp} f_{2}$.


## Polyhedral invariants of polynomial maps

- A - pair of finite subsets $A_{1}, A_{2} \subset \mathbb{N}^{2} \backslash\{(0,0)\}$.
- $\mathbb{C}^{A}$ - space of all polynomial maps $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, A_{1}=\operatorname{supp} f_{1}$ and $A_{2}=\operatorname{supp} f_{2}$. $f \in \mathbb{C}^{A}$ - generic, then $A$ determines:


## Polyhedral invariants of polynomial maps

- A - pair of finite subsets $A_{1}, A_{2} \subset \mathbb{N}^{2} \backslash\{(0,0)\}$.
- $\mathbb{C}^{A}$ - space of all polynomial maps $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, A_{1}=\operatorname{supp} f_{1}$ and $A_{2}=\operatorname{supp} f_{2}$.
$f \in \mathbb{C}^{A}$ - generic, then $A$ determines:
- Newton polytopes of $\mathrm{C}_{f}, \mathrm{D}_{f}$, and of $\mathrm{S}_{f}$,


## Polyhedral invariants of polynomial maps

- A - pair of finite subsets $A_{1}, A_{2} \subset \mathbb{N}^{2} \backslash\{(0,0)\}$.
- $\mathbb{C}^{A}$ - space of all polynomial maps $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, A_{1}=\operatorname{supp} f_{1}$ and $A_{2}=\operatorname{supp} f_{2}$.
$f \in \mathbb{C}^{A}$ - generic, then $A$ determines:
- Newton polytopes of $\mathrm{C}_{f}, \mathrm{D}_{f}$, and of $\mathrm{S}_{f}$,
- the topological type of $f$ (Corollary of [Sabbah 84])


## Polyhedral invariants of polynomial maps

- A - pair of finite subsets $A_{1}, A_{2} \subset \mathbb{N}^{2} \backslash\{(0,0)\}$.
- $\mathbb{C}^{A}$ - space of all polynomial maps $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, A_{1}=\operatorname{supp} f_{1}$ and $A_{2}=\operatorname{supp} f_{2}$.
$f \in \mathbb{C}^{A}$ - generic, then $A$ determines:
- Newton polytopes of $\mathrm{C}_{f}, \mathrm{D}_{f}$, and of $\mathrm{S}_{f}$,
- the topological type of $f$ (Corollary of [Sabbah 84])

Since $\mathbb{C}^{A} \hookrightarrow \Omega\left(d_{1}, d_{2}\right)$, where

$$
\Omega\left(d_{1}, d_{2}\right):=\left\{f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \mid \operatorname{deg} f_{1}=d_{1}, \operatorname{deg} f_{2}=d_{2}\right\} .
$$

## Polyhedral invariants of polynomial maps

- A - pair of finite subsets $A_{1}, A_{2} \subset \mathbb{N}^{2} \backslash\{(0,0)\}$.
- $\mathbb{C}^{A}$ - space of all polynomial maps $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, A_{1}=\operatorname{supp} f_{1}$ and $A_{2}=\operatorname{supp} f_{2}$.
$f \in \mathbb{C}^{A}$ - generic, then $A$ determines:
- Newton polytopes of $\mathrm{C}_{f}, \mathrm{D}_{f}$, and of $\mathrm{S}_{f}$,
- the topological type of $f$ (Corollary of [Sabbah 84])

Since $\mathbb{C}^{A} \hookrightarrow \Omega\left(d_{1}, d_{2}\right)$, where

$$
\Omega\left(d_{1}, d_{2}\right):=\left\{f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \mid \operatorname{deg} f_{1}=d_{1}, \operatorname{deg} f_{2}=d_{2}\right\} .
$$

## Theorem (Farnik, Jelonek, Ruas - 2019)

$f \in \Omega\left(d_{1}, d_{2}\right)$ - generic. Then, Sing $(D(f))$ has only simple cusps and nodes,

## Polyhedral invariants of polynomial maps

- A - pair of finite subsets $A_{1}, A_{2} \subset \mathbb{N}^{2} \backslash\{(0,0)\}$.
- $\mathbb{C}^{A}$ - space of all polynomial maps $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, A_{1}=\operatorname{supp} f_{1}$ and $A_{2}=\operatorname{supp} f_{2}$.
$f \in \mathbb{C}^{A}$ - generic, then $A$ determines:
- Newton polytopes of $\mathrm{C}_{f}, \mathrm{D}_{f}$, and of $\mathrm{S}_{f}$,
- the topological type of $f$ (Corollary of [Sabbah 84])

Since $\mathbb{C}^{A} \hookrightarrow \Omega\left(d_{1}, d_{2}\right)$, where

$$
\Omega\left(d_{1}, d_{2}\right):=\left\{f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \mid \operatorname{deg} f_{1}=d_{1}, \operatorname{deg} f_{2}=d_{2}\right\}
$$

## Theorem (Farnik, Jelonek, Ruas - 2019)

$f \in \Omega\left(d_{1}, d_{2}\right)$ - generic. Then, $\operatorname{Sing}(D(f))$ has only simple cusps and nodes, and

$$
|\operatorname{Sing}(D(f))|=\left|N P\left(D_{f}\right)\right|^{\circ}-\left|N P\left(C_{f}\right)\right|^{\circ},
$$

$|\Delta|^{\circ}$ - number of integer points in the relative interior of a polytope $\Delta \subset \mathbb{R}^{2}$

## Polyhedral invariants of polynomial maps

- A - pair of finite subsets $A_{1}, A_{2} \subset \mathbb{N}^{2} \backslash\{(0,0)\}$.
- $\mathbb{C}^{A}$ - space of all polynomial maps $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, A_{1}=\operatorname{supp} f_{1}$ and $A_{2}=\operatorname{supp} f_{2}$.
$f \in \mathbb{C}^{A}$ - generic, then $A$ determines:
- Newton polytopes of $\mathrm{C}_{f}, \mathrm{D}_{f}$, and of $\mathrm{S}_{f}$,
- the topological type of $f$ (Corollary of [Sabbah 84])

Since $\mathbb{C}^{A} \hookrightarrow \Omega\left(d_{1}, d_{2}\right)$, where

$$
\Omega\left(d_{1}, d_{2}\right):=\left\{f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \mid \operatorname{deg} f_{1}=d_{1}, \operatorname{deg} f_{2}=d_{2}\right\} .
$$

## Theorem (Farnik, Jelonek, Ruas - 2019)

$f \in \Omega\left(d_{1}, d_{2}\right)$ - generic. Then, Sing $(D(f))$ has only simple cusps and nodes, and

$$
|\operatorname{Sing}(D(f))|=\left|N P\left(D_{f}\right)\right|^{\circ}-\left|N P\left(C_{f}\right)\right|^{\circ},
$$

$|\Delta|^{\circ}$ - number of integer points in the relative interior of a polytope $\Delta \subset \mathbb{R}^{2}$

## Conjecture

Theorem above holds* for a generic $f \in \mathbb{C}^{A}$ if $A$ is "nice" enough.

## A direction for computing the Newton polytope

- $\mathbb{K}$ - field of generalized complex Puiseux series $\alpha(t):=c_{0} t^{k_{0}}+c_{1} t^{k_{1}}+\cdots$, with $k_{0}<k_{1}<\cdots \in \mathbb{R}$, and $c_{0}, c_{1}, \ldots \in \mathbb{C}$.


## A direction for computing the Newton polytope

- $\mathbb{K}$ - field of generalized complex Puiseux series $\alpha(t):=c_{0} t^{k_{0}}+c_{1} t^{k_{1}}+\cdots$, with $k_{0}<k_{1}<\cdots \in \mathbb{R}$, and $c_{0}, c_{1}, \ldots \in \mathbb{C}$.
- val - function $\mathbb{K} \rightarrow \mathbb{R} \cup\{-\infty\}, 0 \neq \alpha(t) \mapsto-k_{0}$.


## A direction for computing the Newton polytope

- $\mathbb{K}$ - field of generalized complex Puiseux series $\alpha(t):=c_{0} t^{k_{0}}+c_{1} t^{k_{1}}+\cdots$, with $k_{0}<k_{1}<\cdots \in \mathbb{R}$, and $c_{0}, c_{1}, \ldots \in \mathbb{C}$.
- val - function $\mathbb{K} \rightarrow \mathbb{R} \cup\{-\infty\}, 0 \neq \alpha(t) \mapsto-k_{0}$.
- Trop : $\mathbb{K}^{2} \rightarrow(\mathbb{R} \cup\{-\infty\})^{2}, z \mapsto\left(\operatorname{val}\left(z_{1}\right), \operatorname{val}\left(z_{2}\right)\right)$


## A direction for computing the Newton polytope

- $\mathbb{K}$ - field of generalized complex Puiseux series $\alpha(t):=c_{0} t^{k_{0}}+c_{1} t^{k_{1}}+\cdots$, with $k_{0}<k_{1}<\cdots \in \mathbb{R}$, and $c_{0}, c_{1}, \ldots \in \mathbb{C}$.
- val - function $\mathbb{K} \rightarrow \mathbb{R} \cup\{-\infty\}, 0 \neq \alpha(t) \mapsto-k_{0}$.
- Trop : $\mathbb{K}^{2} \rightarrow(\mathbb{R} \cup\{-\infty\})^{2}, z \mapsto\left(\operatorname{val}\left(z_{1}\right), \operatorname{val}\left(z_{2}\right)\right)$
- Trop $(\mathbb{V}(P))$ - the tropicalization of $\mathbb{V}(P)$ :
- is a rational piecewise-affine complex in $\mathbb{R}^{2}$ [Biery, Groves - 1984], and
- determines the dual fan $\mathcal{F}(\mathrm{NP}(P))$ [Kapranov-2000]

$$
P:=1+12 t^{12}-5 t^{2} \cdot z_{1}+\left(7 \cdot t^{-2}+t^{-1}\right) \cdot z_{2}+2 t^{7} \cdot z_{1}{ }^{2}
$$


$\operatorname{Trop}(\mathbb{V}(P))$

$\mathcal{F}(N P(P))$

$N P(P)$

## A direction for computing the Newton polytope

- $\mathbb{K}$ - field of generalized complex Puiseux series $\alpha(t):=c_{0} t^{k_{0}}+c_{1} t^{k_{1}}+\cdots$, with $k_{0}<k_{1}<\cdots \in \mathbb{R}$, and $c_{0}, c_{1}, \ldots \in \mathbb{C}$.
- val - function $\mathbb{K} \rightarrow \mathbb{R} \cup\{-\infty\}, 0 \neq \alpha(t) \mapsto-k_{0}$.
- Trop : $\mathbb{K}^{2} \rightarrow(\mathbb{R} \cup\{-\infty\})^{2}, z \mapsto\left(\operatorname{val}\left(z_{1}\right), \operatorname{val}\left(z_{2}\right)\right)$
- $\operatorname{Trop}(\mathbb{V}(P))$ - the tropicalization of $\mathbb{V}(P)$ :
- is a rational piecewise-affine complex in $\mathbb{R}^{2}$ [Biery, Groves - 1984], and
- determines the dual fan $\mathcal{F}(\mathrm{NP}(P))$ [Kapranov-2000]

$$
P:=1+12 t^{12}-5 t^{2} \cdot z_{1}+\left(7 \cdot t^{-2}+t^{-1}\right) \cdot z_{2}+2 t^{7} \cdot z_{1}{ }^{2}
$$


$\operatorname{Trop}(\mathbb{V}(P))$

$\mathcal{F}(N P(P))$

$N P(P)$

Strategy for Newton polytope of $X_{f} \in\left\{D_{f}, \mathrm{~S}_{f}\right\}$ :

## A direction for computing the Newton polytope

- $\mathbb{K}$ - field of generalized complex Puiseux series $\alpha(t):=c_{0} t^{k_{0}}+c_{1} t^{k_{1}}+\cdots$, with $k_{0}<k_{1}<\cdots \in \mathbb{R}$, and $c_{0}, c_{1}, \ldots \in \mathbb{C}$.
- val - function $\mathbb{K} \rightarrow \mathbb{R} \cup\{-\infty\}, 0 \neq \alpha(t) \mapsto-k_{0}$.
- Trop: $\mathbb{K}^{2} \rightarrow(\mathbb{R} \cup\{-\infty\})^{2}, z \mapsto\left(\operatorname{val}\left(z_{1}\right), \operatorname{val}\left(z_{2}\right)\right)$
- $\operatorname{Trop}(\mathbb{V}(P))$ - the tropicalization of $\mathbb{V}(P)$ :
- is a rational piecewise-affine complex in $\mathbb{R}^{2}$ [Biery, Groves - 1984], and
- determines the dual fan $\mathcal{F}(\mathrm{NP}(P))$ [Kapranov-2000]

$$
P:=1+12 t^{12}-5 t^{2} \cdot z_{1}+\left(7 \cdot t^{-2}+t^{-1}\right) \cdot z_{2}+2 t^{7} \cdot z_{1}{ }^{2}
$$


$\operatorname{Trop}(\mathbb{V}(P))$

$\mathcal{F}(\mathrm{NP}(P))$

$N P(P)$

Strategy for Newton polytope of $\mathrm{X}_{f} \in\left\{\mathrm{D}_{f}, \mathrm{~S}_{f}\right\}$ :

1. Generic maps $f \in \mathbb{C}^{A}$ and $g \in \mathbb{K}^{A}$ satisfy $\Delta:=\operatorname{NP}\left(X_{f}\right)=\operatorname{NP}\left(X_{g}\right)$,
2. compute $\operatorname{Trop}\left(\mathbb{V}\left(\mathrm{X}_{f}\right)\right) \rightarrow \mathcal{F}(\Delta) \rightarrow \Delta$

## A bit of tropical geometry

- For any $P: \mathbb{K}^{2} \rightarrow \mathbb{K}, z \mapsto \sum_{a \in A} c_{a} z^{a}$


## A bit of tropical geometry

- For any $P: \mathbb{K}^{2} \rightarrow \mathbb{K}, z \mapsto \sum_{a \in A} c_{a} z^{a}$, we define the tropical polynomial $\mathcal{T}(P): \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
x \mapsto \max _{a \in A}\left(\langle x, a\rangle+\text { val } c_{a}\right) .
$$

## A bit of tropical geometry

- For any $P: \mathbb{K}^{2} \rightarrow \mathbb{K}, z \mapsto \sum_{a \in A} c_{a} z^{a}$, we define the tropical polynomial $\mathcal{T}(P): \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
x \mapsto \max _{a \in A}\left(\langle x, a\rangle+\text { val } c_{a}\right) .
$$

- For any $y \in \mathbb{R} \cup\{-\infty\}$, define the virtual preimage


## A bit of tropical geometry

- For any $P: \mathbb{K}^{2} \rightarrow \mathbb{K}, z \mapsto \sum_{a \in A} c_{a} z^{a}$, we define the tropical polynomial $\mathcal{T}(P): \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
x \mapsto \max _{a \in A}\left(\langle x, a\rangle+\text { val } c_{a}\right) .
$$

- For any $y \in \mathbb{R} \cup\{-\infty\}$, define the virtual preimage $\mathcal{V}_{y}(\mathcal{T}(P))$ - points $x \in \mathbb{R}^{2}$ where the below maximum is reached twice

$$
\max _{a \in A}\left(y,\langle x, a\rangle+\operatorname{val} c_{a}\right)
$$


$\mathcal{V}_{-\infty}(\mathcal{T}(P))$

$\mathcal{V}_{-1}(\mathcal{T}(P))$

## A bit of tropical geometry

- For any $P: \mathbb{K}^{2} \rightarrow \mathbb{K}, z \mapsto \sum_{a \in A} c_{a} z^{a}$, we define the tropical polynomial $\mathcal{T}(P): \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
x \mapsto \max _{a \in A}\left(\langle x, a\rangle+\text { val } c_{a}\right) .
$$

- For any $y \in \mathbb{R} \cup\{-\infty\}$, define the virtual preimage $\mathcal{V}_{y}(\mathcal{T}(P))$ - points $x \in \mathbb{R}^{2}$ where the below maximum is reached twice

$$
\max _{a \in A}\left(y,\langle x, a\rangle+\operatorname{val} c_{a}\right)
$$


$\mathcal{V}_{-\infty}(\mathcal{T}(P))$

$\mathcal{V}_{-1}(\mathcal{T}(P))$

## Theorem (Kapranov's correspondence)

Let $P \in \mathbb{K}\left[z_{1}, z_{2}\right], P(0,0)=0, w \in \mathbb{K}$ and define $y:=\operatorname{val}(w)$. Then, it holds

$$
\operatorname{Trop}\left(P^{-1}(w) \cap\left(\mathbb{K}^{*}\right)^{2}\right)=\mathcal{V}_{y}(\mathcal{T}(P))
$$

## (non-)Degenerate intersections

Let $f_{1}, f_{2} \in \mathbb{K}\left[z_{1}, z_{2}\right]$, and let $X_{1}:=\operatorname{Trop} f_{1}, X_{2}:=\operatorname{Trop} f_{2}$ their tropical curves.

## (non-)Degenerate intersections

Let $f_{1}, f_{2} \in \mathbb{K}\left[z_{1}, z_{2}\right]$, and let $X_{1}:=\operatorname{Trop} f_{1}, X_{2}:=\operatorname{Trop} f_{2}$ their tropical curves.
Definition (Stable intersections)
A point $p \in X_{1} \cap X_{2} \subset \mathbb{R}^{2}$ is stable if it is locally preserved under perturbations.

## (non-)Degenerate intersections

Let $f_{1}, f_{2} \in \mathbb{K}\left[z_{1}, z_{2}\right]$, and let $X_{1}:=\operatorname{Trop} f_{1}, X_{2}:=\operatorname{Trop} f_{2}$ their tropical curves.
Definition (Stable intersections)
A point $p \in X_{1} \cap X_{2} \subset \mathbb{R}^{2}$ is stable if it is locally preserved under perturbations.


Stable


Unstable

## (non-)Degenerate intersections

Let $f_{1}, f_{2} \in \mathbb{K}\left[z_{1}, z_{2}\right]$, and let $X_{1}:=\operatorname{Trop} f_{1}, X_{2}:=\operatorname{Trop} f_{2}$ their tropical curves.

## Definition (Stable intersections)

A point $p \in X_{1} \cap X_{2} \subset \mathbb{R}^{2}$ is stable if it is locally preserved under perturbations.


Stable


Unstable

## Definition (Degenerate intersections)

An unstable intersection component $C$ in $X_{1} \cap X_{2} \subset \mathbb{R}^{2}$ is degenerate if $C$ satisfies one of the following conditions:

- is bounded,
- contains a half-line with direction $(a, b)$ such that $a \cdot b<0$, or
- contains a horizontal/vertical half-line with some extra properties.


## A correspondence theorem

Tropical bifurcation set of a tropical polynomial map $F:=\left(F_{1}, F_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

## A correspondence theorem

Tropical bifurcation set of a tropical polynomial map $F:=\left(F_{1}, F_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
T B(F):=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} \mid \mathcal{V}_{y_{1}}\left(F_{1}\right) \cap \mathcal{V}_{y_{2}}\left(F_{2}\right) \text { has a degenerate component in } \mathbb{R}^{2}\right\}
$$

## A correspondence theorem

Tropical bifurcation set of a tropical polynomial map $F:=\left(F_{1}, F_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
T B(F):=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} \mid \mathcal{V}_{y_{1}}\left(F_{1}\right) \cap \mathcal{V}_{y_{2}}\left(F_{2}\right) \text { has a degenerate component in } \mathbb{R}^{2}\right\}
$$

## Theorem (EH - 22)

Let $A_{1}$ and $A_{2}$ be finite subsets of $\mathbb{N}^{2} \backslash\{(0,0)\}$ and let $f:=\left(f_{1}, f_{2}\right): \mathbb{K}^{2} \rightarrow\left(\mathbb{K}^{*}\right)^{2}$ be a general polynomial map with $A_{i}=\operatorname{supp} f_{i}$ and $F:=\left(\mathcal{T}\left(f_{1}\right), \mathcal{T}\left(f_{2}\right)\right)$. Then, it holds $\operatorname{Trop}(B(f))=T B(F)$.

## A correspondence theorem

Tropical bifurcation set of a tropical polynomial map $F:=\left(F_{1}, F_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
T B(F):=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} \mid \mathcal{V}_{y_{1}}\left(F_{1}\right) \cap \mathcal{V}_{y_{2}}\left(F_{2}\right) \text { has a degenerate component in } \mathbb{R}^{2}\right\}
$$

## Theorem (EH - 22)

Let $A_{1}$ and $A_{2}$ be finite subsets of $\mathbb{N}^{2} \backslash\{(0,0)\}$ and let $f:=\left(f_{1}, f_{2}\right): \mathbb{K}^{2} \rightarrow\left(\mathbb{K}^{*}\right)^{2}$ be a general polynomial map with $A_{i}=\operatorname{supp} f_{i}$ and $F:=\left(\mathcal{T}\left(f_{1}\right), \mathcal{T}\left(f_{2}\right)\right)$. Then, it holds $\operatorname{Trop}(B(f))=T B(F)$.

## Example

Consider the polynomial map $(u, v) \rightarrow(v+t u v, u+v+u v)$. Its bifurcation set is $t^{2} s^{2}-2 t r s-4 t r+r^{2}+2 t s+2 r+1 \in \mathbb{K}[r, s]$, and $F$ is expressed as

$$
\left(x_{1}, x_{2}\right) \rightarrow\left(\max \left(x_{2}, x_{1}+x_{2}-1\right), \max \left(x_{1}, x_{2}, x_{1}+x_{2}\right)\right) .
$$


$A_{1}$

$\operatorname{Trop}(B(f))$


## A correspondence theorem

Tropical bifurcation set of a tropical polynomial map $F:=\left(F_{1}, F_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
T B(F):=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} \mid \mathcal{V}_{y_{1}}\left(F_{1}\right) \cap \mathcal{V}_{y_{2}}\left(F_{2}\right) \text { has a degenerate component in } \mathbb{R}^{2}\right\}
$$

## Theorem (EH - 22)

Let $A_{1}$ and $A_{2}$ be finite subsets of $\mathbb{N}^{2} \backslash\{(0,0)\}$ and let $f:=\left(f_{1}, f_{2}\right): \mathbb{K}^{2} \rightarrow\left(\mathbb{K}^{*}\right)^{2}$ be a general polynomial map with $A_{i}=\operatorname{supp} f_{i}$ and $F:=\left(\mathcal{T}\left(f_{1}\right), \mathcal{T}\left(f_{2}\right)\right)$. Then, it holds $\operatorname{Trop}(B(f))=T B(F)$.

## Example

Consider the polynomial map $(u, v) \rightarrow(v+t u v, u+v+u v)$. Its bifurcation set is $t^{2} s^{2}-2 t r s-4 t r+r^{2}+2 t s+2 r+1 \in \mathbb{K}[r, s]$, and $F$ is expressed as

$$
\left(x_{1}, x_{2}\right) \rightarrow\left(\max \left(x_{2}, x_{1}+x_{2}-1\right), \max \left(x_{1}, x_{2}, x_{1}+x_{2}\right)\right) .
$$



## A recipe for the tropical bifurcation set

A tropical polynomial map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ induces a polyhedral subdivision $\equiv$ of $\mathbb{R}^{2}$ :

- Elements in 三 are relative interiors of polyhedra.
- $F_{\mid \xi}$ is an affine map at each $\xi \in \equiv$.
- $F_{\mid \xi}=F_{\mid \xi^{\prime}} \Rightarrow \xi=\xi^{\prime}$ or $\bar{\xi}$ is a face of $\overline{\xi^{\prime}}$.



## A recipe for the tropical bifurcation set

A tropical polynomial map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ induces a polyhedral subdivision $\equiv$ of $\mathbb{R}^{2}$ :

- Elements in 三 are relative interiors of polyhedra.
- $F_{\mid \xi}$ is an affine map at each $\xi \in \equiv$.
- $F_{\mid \xi}=F_{\mid \xi^{\prime}} \Rightarrow \xi=\xi^{\prime}$ or $\bar{\xi}$ is a face of $\overline{\xi^{\prime}}$.



## Theorem (EH - 22)

The domains of linearity of a tropical polynomial map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ determine effectively the tropical bifurcation set of $F$.


## Computing the Newton polytope of the discriminant

$A:=\left(A_{1}, A_{2}\right)$ - pair of finite subsets in $\mathbb{N}^{2}$

## Fact

There exists a polytope $\Delta \subset \mathbb{R}^{2}$, such that for any generic polynomial map $f:=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow\left(\mathbb{C}^{*}\right)^{2}$ in $\mathbb{C}^{A}$, it holds

$$
N P\left(D_{f}\right)=\Delta
$$

## Computing the Newton polytope of the discriminant

$A:=\left(A_{1}, A_{2}\right)$ - pair of finite subsets in $\mathbb{N}^{2}$

## Fact

There exists a polytope $\Delta \subset \mathbb{R}^{2}$, such that for any generic polynomial map $f:=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow\left(\mathbb{C}^{*}\right)^{2}$ in $\mathbb{C}^{A}$, it holds

$$
N P\left(D_{f}\right)=\Delta .
$$

## Task

Compute $\Delta$, up to translation, without using elimination.

## Computing the Newton polytope of the discriminant

$A:=\left(A_{1}, A_{2}\right)-$ pair of finite subsets in $\mathbb{N}^{2}$

## Fact

There exists a polytope $\Delta \subset \mathbb{R}^{2}$, such that for any generic polynomial map $f:=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow\left(\mathbb{C}^{*}\right)^{2}$ in $\mathbb{C}^{A}$, it holds

$$
N P\left(D_{f}\right)=\Delta
$$

## Task

Compute $\Delta$, up to translation, without using elimination.

## Example

Consider the polynomial map $(u, v) \rightarrow\left(v+v^{2}+u v+u v^{2}+u^{2} v^{2}, 2 v+3 u^{2} v+4 u^{2} v^{2}\right)$, for which $A_{1}, A_{2}$ and $\Delta$ are illustrated below.


## The Newton polytope of the discriminant


-
$A_{1}$

-
$A_{2}$


## Task

Given a pair $A:=\left(A_{1}, A_{2}\right)$ of subsets in $\mathbb{N}^{2}$ and a generic map
$f:=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow\left(\mathbb{C}^{*}\right)^{2}$ in $\mathbb{C}^{A}$, compute $\Delta:=\operatorname{NP}\left(\mathrm{D}_{f}\right)$.

## The Newton polytope of the discriminant


-
$A_{1}$

-
$A_{2}$

$\Delta$

## Task

Given a pair $A:=\left(A_{1}, A_{2}\right)$ of subsets in $\mathbb{N}^{2}$ and a generic map
$f:=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow\left(\mathbb{C}^{*}\right)^{2}$ in $\mathbb{C}^{A}$, compute $\Delta:=\mathrm{NP}\left(\mathrm{D}_{f}\right)$.


1. Compute the set $T D(F)$ for any "generic" $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that supp $F=A$.

## The Newton polytope of the discriminant


-
$A_{1}$

-
$A_{2}$

$\Delta$

## Task

Given a pair $A:=\left(A_{1}, A_{2}\right)$ of subsets in $\mathbb{N}^{2}$ and a generic map
$f:=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow\left(\mathbb{C}^{*}\right)^{2}$ in $\mathbb{C}^{A}$, compute $\Delta:=\mathrm{NP}\left(\mathrm{D}_{f}\right)$.


1. Compute the set $T D(F)$ for any "generic" $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that supp $F=A$.
2. We obtain the primitive vectors $\overrightarrow{e_{1}}, \ldots, \overrightarrow{e_{6}}$ directing the respective edges.

## The Newton polytope of the discriminant


-
$A_{1}$


。
$A_{2}$

$\Delta$

## Task

Given a pair $A:=\left(A_{1}, A_{2}\right)$ of subsets in $\mathbb{N}^{2}$ and a generic map
$f:=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow\left(\mathbb{C}^{*}\right)^{2}$ in $\mathbb{C}^{A}$, compute $\Delta:=\mathrm{NP}\left(\mathrm{D}_{f}\right)$.


1. Compute the set $T D(F)$ for any "generic" $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that supp $F=A$.
2. We obtain the primitive vectors $\overrightarrow{e_{1}}, \ldots, \overrightarrow{e_{6}}$ directing the respective edges.
3. It is left to compute the lengths $\ell_{1}, \ldots, \ell_{6}$ of the corresponding edges.

## The Newton polytope of the discriminant



- $C-\operatorname{Trop}\left(\alpha \lambda^{a}+\beta \lambda^{b}\right) \subset \mathbb{R}^{2}$ intersecting $T D(F)$ transversally, and only at the unbounded edges of $T D(F)$, dual to $\left\{e_{i}\right\}_{i \in I}$ for some $I \subset\{1, \ldots, 6\}$.


## The Newton polytope of the discriminant




- $C$ - $\operatorname{Trop}\left(\alpha \lambda^{a}+\beta \lambda^{b}\right) \subset \mathbb{R}^{2}$ intersecting $T D(F)$ transversally, and only at the unbounded edges of $T D(F)$, dual to $\left\{e_{i}\right\}_{i \in I}$ for some $I \subset\{1, \ldots, 6\}$.
- $M V(P, Q)$ - Mixed volume of two polytopes $P, Q \subset \mathbb{R}^{2}$


## The Newton polytope of the discriminant



- $C-\operatorname{Trop}\left(\alpha \lambda^{a}+\beta \lambda^{b}\right) \subset \mathbb{R}^{2}$ intersecting $T D(F)$ transversally, and only at the unbounded edges of $T D(F)$, dual to $\left\{e_{i}\right\}_{i \in I}$ for some $I \subset\{1, \ldots, 6\}$.
- $M V(P, Q)$ - Mixed volume of two polytopes $P, Q \subset \mathbb{R}^{2}$


## Claim

If the coefficients $\alpha, \beta \in \mathbb{K}$ are chosen to be generic enough, then it holds

$$
\sum_{i \in 1}\left|\operatorname{det}\left(a-b, \vec{e}_{i}\right)\right| \cdot \ell_{i}=\left|D(f) \cap\left\{\alpha \lambda^{a}+\beta \lambda^{b}=0\right\}\right|=M V\left(\mathcal{N}\left(\mathcal{J}_{f}\right), \mathcal{N}\left(\alpha f^{a}+\beta f^{b}\right)\right)
$$

## The Newton polytope of the discriminant



- $C-\operatorname{Trop}\left(\alpha \lambda^{a}+\beta \lambda^{b}\right) \subset \mathbb{R}^{2}$ intersecting $T D(F)$ transversally, and only at the unbounded edges of $T D(F)$, dual to $\left\{e_{i}\right\}_{i \in I}$ for some $I \subset\{1, \ldots, 6\}$.
- $M V(P, Q)$ - Mixed volume of two polytopes $P, Q \subset \mathbb{R}^{2}$


## Claim

If the coefficients $\alpha, \beta \in \mathbb{K}$ are chosen to be generic enough, then it holds

$$
\sum_{i \in 1}\left|\operatorname{det}\left(a-b, \vec{e}_{i}\right)\right| \cdot \ell_{i}=\left|D(f) \cap\left\{\alpha \lambda^{a}+\beta \lambda^{b}=0\right\}\right|=M V\left(\mathcal{N}\left(\mathcal{J}_{f}\right), \mathcal{N}\left(\alpha f^{a}+\beta f^{b}\right)\right)
$$

## Proof:

- Left equality: BKK bound for $D(f) \cap X$
- Right equality: BKK bound for $C(f) \cap f^{-1}(X)$


## The Newton polytope of the discriminant



Claim
There exists $I \subset\{1, \ldots, 6\}$ and a binomial curve $\operatorname{Val}\left(\left\{\alpha \lambda^{a}+\beta \lambda^{b}\right\}\right) \cap \mathbb{R}^{2}$ satisfying

$$
\sum_{i \in 1}\left|\operatorname{det}\left(a-b, \vec{e}_{i}\right)\right| \cdot \ell_{i}=M V\left(\mathcal{N}\left(J_{f}\right), \mathcal{N}\left(\alpha f^{a}+\beta f^{b}\right)\right)
$$

## The Newton polytope of the discriminant



Claim
There exists $I \subset\{1, \ldots, 6\}$ and a binomial curve $\operatorname{Val}\left(\left\{\alpha \lambda^{a}+\beta \lambda^{b}\right\}\right) \cap \mathbb{R}^{2}$ satisfying

$$
\sum_{i \in I}\left|\operatorname{det}\left(a-b, \vec{e}_{i}\right)\right| \cdot \ell_{i}=M V\left(\mathcal{N}\left(J_{f}\right), \mathcal{N}\left(\alpha f^{a}+\beta f^{b}\right)\right)
$$

We take enough binomial curves $C$ as above to obtain the 6 equalities below

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 & 0 \\
5 & 3 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 & 3 \\
0 & 0 & 0 & 1 & 2 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
\ell_{1} \\
\ell_{2} \\
\ell_{3} \\
\ell_{4} \\
\ell_{5} \\
\ell_{6}
\end{array}\right)=\left(\begin{array}{c}
22 \\
16 \\
24 \\
7 \\
22 \\
16
\end{array}\right) \Rightarrow\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}, \ell_{5}, \ell_{6}\right)=(1,6,1,6,2,6)
$$

## Implementation

Algorithm: [EH, K. Rose - 2022]
Input: two subsets $A_{1}, A_{2} \subset \mathbb{N}^{2} \backslash\{(0,0)\}$
Output: A polytope $\Delta:=\mathrm{NP}\left(\mathrm{D}_{f}\right) \subset \mathbb{R}^{2}$ for any generic $f \in \mathbb{C}^{A}$.

1. Consider the tropical map $F:=\mathcal{T}(f): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,
2. compute $T D(F) \subset \mathbb{R}^{2}$ and thus $\mathcal{F}(\Delta)$,
3. compute the edge lengths of $\Delta$

## Implementation

Algorithm: [EH, K. Rose - 2022]
Input: two subsets $A_{1}, A_{2} \subset \mathbb{N}^{2} \backslash\{(0,0)\}$
Output: A polytope $\Delta:=\mathrm{NP}\left(\mathrm{D}_{f}\right) \subset \mathbb{R}^{2}$ for any generic $f \in \mathbb{C}^{A}$.

1. Consider the tropical map $F:=\mathcal{T}(f): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,
2. compute $T D(F) \subset \mathbb{R}^{2}$ and thus $\mathcal{F}(\Delta)$,
3. compute the edge lengths of $\Delta$

## Implementation

Algorithm: [EH, K. Rose - 2022]
Input: two subsets $A_{1}, A_{2} \subset \mathbb{N}^{2} \backslash\{(0,0)\}$
Output: A polytope $\Delta:=\mathrm{NP}\left(\mathrm{D}_{f}\right) \subset \mathbb{R}^{2}$ for any generic $f \in \mathbb{C}^{A}$.

1. Consider the tropical map $F:=\mathcal{T}(f): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,
()SCAT

SYMBOLIC TOOLS
2. compute $T D(F) \subset \mathbb{R}^{2}$ and thus $\mathcal{F}(\Delta)$,
3. compute the edge lengths of $\Delta$


## Implementation

Algorithm: [EH, K. Rose - 2022]
Input: two subsets $A_{1}, A_{2} \subset \mathbb{N}^{2} \backslash\{(0,0)\}$
Output: A polytope $\Delta:=\mathrm{NP}\left(\mathrm{D}_{f}\right) \subset \mathbb{R}^{2}$ for any generic $f \in \mathbb{C}^{A}$.

1. Consider the tropical map $F:=\mathcal{T}(f): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

## ()SCAT

SYMBOLIC TOOLS
2. compute $T D(F) \subset \mathbb{R}^{2}$ and thus $\mathcal{F}(\Delta)$,
3. compute the edge lengths of $\Delta$


