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Regularity in analysis and geometry

Topic:
Central question in geometry & PDEs:

Regularity of equations that describe the world around us.

Approach:
Many problems in geometry & analysis can be thought of

as questions about gradient flows on∞-dimensional spaces.
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Mean curvature flow

A surface evolves in time
by each point moving normal ~n to the surface with speed H:

xt = −H~n .

Convex points move inward
– concave points move out.
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Mathematics of surface tension

Mean curvature flow is a nonlinear heat equation.

It is the (negative) gradient flow for area
on the infinite dimensional space of surfaces:

The flow makes the area shrink as fast as possible.

Mean curvature flow goes back more than 100 years
in mathematics & material science.
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Example: Evolution of Grayson’s dumbbell

Initial dumbbell, shrinking neck, & neck pinch singularity.

Cusps retract & each piece becomes round.
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Level Set Method from applied mathematics

Tracking moving front = Level Set Method.

Idea: Represent evolving front as level sets of a function:

Which PDE does the function satisfy?
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Level Set Method

The Level Set Method allows for:

Singularities & topological changes.
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Arrival time

Monotone front: Flow that moves inward.

Arrival time function u: u−1(t) are the fronts.

u(x) the time when the front arrives at x .

u defined on domain that initial front bounds.
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Arrival time equation

Evolving curves are level sets of u:

−1 = |∇u|div
∇u
|∇u|

.

Degenerate elliptic equation.
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Spheres & cylinders

Arrival time functions on R3:

For spheres becoming extinct at the origin at time 0:

−1
2

(
x2

1 + x2
2 + x2

3

)

For cylinders becoming extinct in the line x2 = x3 = 0 at time 0:

−
(

x2
2 + x2

3

)
.
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Existence & regularity

Evans-Spruck, Chen-Giga-Goto:
Viscosity solutions exist & are Lipschitz.

Fundamental question:
How smooth are solutions?

Examples of Ilmanen: NOT C2 in general;
cf. Huisken, Kohn-Serfaty, Sesum.
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Weak solutions in PDEs: Viscosity

A continuous function u : Rn → R has ∆ u ≥ 0 at x = 0
in the viscosity sense if

∃ a smooth barrier function v with

v(0) = u(0),
u ≥ v ,
∆ v ≥ 0 at x = 0.

Maximum principle holds for such u.

E.g., u(x) = |x | has ∆ |x | ≥ 0 at x = 0.
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Optimal regularity & geometry

Thm (CM): The arrival time is twice differentiable everywhere.

Not always C2!

Being C2 has geometric meaning:
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Optimal regularity & geometry

Thm (CM): The arrival time is C2 iff the entire evolving front
becomes singular at the same time & then extinct.

C2 only if it is like a marriage ring or sphere,

dumbbell NOT C2.
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Differentiability & uniqueness

A function is differentiable if it looks like
the same linear function on all sufficiently small scales.

Derivatives as unique limit of rescalings.
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Koch curve – uniqueness fails

Koch curve is a fractal; it is an iterative limit of broken lines.
Step

k=1

k=2

k=3

k=4

k=∞

k=0 ‘initiator’

‘generator’

When each broken line is almost flat:

On each scale the curve looks roughly like a line.

Yet under larger magnifications looks like a different line.
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Rescaling of arrival time functions

The flow & u are both smooth away from critical points,
i.e., away from points where ∇u = 0.

If 0 is critical point define rescalings

vλ(x) = λ−2 u(λ x) .

vλ satisfies same equation.

Homogeneous quadratic polynomials are preserved.

Two examples: cylinders & spheres:
Both have quadratic polynomials as arrival time.
For both vλ is independent of λ.
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Rescaling & regularity

Twice differentiable means:
There is a 2nd order Taylor expansion.

Thus must show that vλ(x) has a limit as λ→ 0.

A priori – no reason to expect any limit!

– Even for a subsequence.
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Rescaling of the flow

Huisken-Ilmanen-White get geometric blowups
– but depend on choice of subsequence.

For the flow:
Blowups = dilation-invariant solutions called shrinkers.

Most blowups are non-compact.

Might be like Koch?

For Koch: One sequence of rescalings gives one blowup,
another gives a different blowup.
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Uniqueness

Are limits unique?

Or, do different subsequences give different limits?
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Uniqueness

Thm (CM): Uniqueness of blowups for all monotone flows.

Questions of uniqueness
have long been recognized in geometry

as fundamental.

Fundamental work of Allard-Almgren, Simon
on uniqueness questions for minimal varieties.
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Uniqueness & twice differentiabilty

Thm (CM): Uniqueness of blowups implies:

u looks like the same quadratic polynomial at all small scales.

This gives the 2nd order Taylor expansion
& twice differentiability.
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Dynamics

Uniqueness can be understood dynamically for rescaled flow.

Rescaled flow = magnifying continuously along the flow.

Uniqueness⇔ solution of rescaled flow with a limit point
has a unique limit.

This contrasts with wandering points in dynamics:
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Finite dimensional model problem

Function f : Rn → R, negative gradient flow line

xt = −∇f (x(t))

has sequence ti →∞ with x(ti)→ x∞.

Do we get uniqueness limt→∞ x(t) = x∞?
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Model problem

Model: xt = −∇f (x(t)), sequence ti →∞ with x(ti)→ x∞.

Uniqueness would follow from finite length∫ ∞
0
|∇f |(x(t)) <∞ .

We don’t necessarily have this. We have f (x(t))→ f (x∞) and∫ ∞
0
|∇f |2(x(t)) <∞ .
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Łojasiewicz’s theorem

If f : Rn → R is analytic and x(ti)→ x∞, then length is finite and

lim
t→∞

x(t) = x∞ .

x∞ is a critical point for f .

Even in R2, it is easy to construct smooth (but not analytic!)
functions where uniqueness fails.
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Goat tracks
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Proof of Łojasiewicz’s theorem:

Uses the Gradient Łojasiewicz inequality (1962–1963):

Analytic f : There is a nbhd and constants β ∈ (0,1) and C so

|f (x)− f (x∞)|β ≤ C |∇x f | .
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Our main tools: Łojasiewicz type inequalities

Our main tools for proving uniqueness:

Two∞ dimensional Łojasiewicz type inequalities
on non-compact spaces.
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∞ dimensional inequalities

Approaching uniqueness in∞ dimensional
by using Łojasiewicz’ original inequalities
was pioneered by Leon Simon in 1983.

Simon used reduction to finite dimensions
and then appealed to Łojasiewicz.

Crucial for Simon’s approach that blowup is compact.

Schulze used Simon’s approach
to prove uniqueness for compact shrinkers.
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Key difficulties - new ideas

The functional that plays the role of the analytical function
in Łojasiewicz thm:

Gaussian surface area:

F (Σ) =

∫
Σ

e−
|x|2

4 .

F defined on∞ dimensional space of hypersurfaces Σ.

The uniqueness for cylinders had been open for decades.
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Key difficulties - new ideas

The key difficulty is that singularities are non-compact

- entirely new techniques were needed.

The parallel to the Łojasiewicz inequalities is a vague guiding principle

- nothing from the Łojasiewicz inequalities can be used.

Instead, we discovered The Shrinker Principle:

- information travels out from a compact set.
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