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Introduction 7/41

The idea of the �ojasiewicz inequality - to compare the value
of an analytic function f at a point x to the distance of x to
the zero-set V (f )

Locally

|f (x)|�C (dist(x,V (f )))α
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Remark 1. The inequality does not hold in C∞ class.

Remark 2. There are many variants of the �ojasiewicz
inequality: local, global, gradient etc.

Remark 3. The �ojasiewicz inequality in many variants was
studied by many mathematicians: B. Lichtin, T. C. Kuo, B.
Teissier, M. Lejeune-Jalabert, J. Risler, J. Bochnak, H.H.
Vui, J. Kollar, A. Pªoski, J. Ch¡dzy«ski, P. Tworzewski, S.
Spodzieja, M. Oka, K. Kurdyka,. . .

Remark 4. We consider the following variant of the
�ojasiewicz inequality.
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� f : (Cn, 0)-> (C, 0) � a holomorphic function defined in a
neighborhood of 0 B---Cn satisfying f (0)=0,

� f possesses an isolated critical point at 0, ie., ∇f (0)=0,
∇f (z)=/ 0 for z<<1.

In this situation we shall say that f defines (or is) an isolated
singularity.

In this case the maping

∇f =( ∂f
∂z1

, . . . ., ∂f
∂zn): (Cn, 0)-> (Cn, 0)

is a finite mapping.
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We will consider also a slight general setting:

Let F =(F1, . . . ,Fm): (Cn, 0)-> (Cm, 0), m�n, be a holomorphic
mapping in a neighborhood of 0 B---Cn possessing an isolated
zero at 0 B---Cn.

In the sequel F denotes a finite mapping and f � an isolated
singularity.

Remark. Any fact concerning a finite mapping
F holdsalso for thegradientmapping∇f =( ∂f

∂z1
, . . . ., ∂f

∂zn).
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The �ojasiewicz exponent of a finite mapping 11/41

Let θ >0. Consider the inequality

C|z|θ �|F(z)|,

where C>0 is a certain constant and |z|<<1.

The optimal θ in the above inequality (that is the smallest
one) is called the �ojasiewicz exponent and denoted by �(F).

Example. Let F := (z2
3+ z1

2, z1 z2
2). Then �(F) = 7

2 >ordF =2.

For a singularity f we define its �ojasiewicz exponent ª(f ) as

ª(f ) :=�(∇f ).
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How to compute the exponent? General methods 12/41

� There exist effective methods of computation of � (eg.
using P�OSKI's characteristic polynomial or Groebner
bases) but they are computationally expensive.

� In the 2-dimensional case there exists another useful way.

Namely, for F = (F1,F2) we have

�(F)=maxφB---V (F1.F2)
ordF Jφ

ordφ ,

so it is enough to find (finitely many!) parametrizations
φ: (C, 0)-> (C2, 0) of the curve F1 .F2=0 (Ch¡dzy«ski &
Krasi«ski '88).
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Example. Let, again, F :=(z1
2+z2

3,z1z2
2). Then V (F1 .F2)={(t3,

-t2), (0, t), (t, 0)} so �(F)=max {7
2 , 3

1 , 2
1}= 7

2 .
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� The above result does not extend to dimension n�3:

Let F(z1, z2, z3) := (z1
2, z2

3, z3
3- z1 z2). Then V (F1,F2)= {(0,

0, t)}, V (F2,F3) = {(t, 0, 0)}, V (F1,F3)= {(0, t, 0)}. Hence,
maxφ B---< i<j V (Fi,Fj)

ordF Jφ
ordφ =max {3

1 , 2
1 , 3

1}=3, while �(F)= 18
5

.

Example (Pªoski '88)

� A certain positive result of this kind: for F = (F1, . . . ,Fm):
(Cn,0)-> (Cm,0) we have (Ch¡dzy«ski & Krasi«ski '98)

�(F)=maxφ B---V (F1.F2.. . ..Fm)
ordF Jφ

ordφ .

(This result is not very useful in practice because one
must test infinitely many parametrizations φ.)
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CONJECTURE I � ª( f ) on �coordinate polar curves �

Focusing on isolated singularities, we pose

Let f : (Cn, 0)-> (C, 0) be an isolated singularity. Then

ª(f ) =maxφ B---< i=1
n V ( ∂f

∂z1
, . . . , ∂f

∂zi

� , . . . , ∂f
∂zn

)(ord∇f Jφ
ordφ ).

CONJECTURE I

� We are not aware of any counterexample to this.

� Below, we will give many examples in its favor. A fast one:

Example. For f (x,y,z):=x2z+yz2+y3z+(2 y+3)x2y4 we have
ª(f )=6 and this exponent is achieved on the parametrization
φ(t) := (-t3 . 1-6 t4 +4 t6� ,-t2,-3 . t8 +2 . t10) B---V ( ∂f

∂x ,
∂f
∂z).
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(Semi-)Quasihomogeneous functions 16/41

Let f :(Cn,0)->(C,0) be a holomorphic function. We shall say:
� f is quasihomogeneous of type (d; l1, . . . , ln), shortly: f B---

QH(d; l1, . . . , ln), if d, l1, . . . , ln B---Q>0, l1/d, . . . , ln/d B--- (0,1/2]
and for all monomials za=z1

a1 . . . . .zn
an appearing in f with

a non-zero coefficient we have a1 l1+ . . . +an ln=d

The numbers l1, . . . , ln are weights. The number d is the
weighted degree of the polynomial f .
� f is semiquasihomogeneous of type (d; l1, . . . , ln), shortly:

f B---SQH(d; l1, . . . , ln), if f = fd+ fd+1+ . . .., where fi B---QH(i;
l1, . . . , ln) and fd is an isolated singularity

Let f :=(xz+y5)+x3. Then f B---SQH(1; 1
2 , 1

5 , 1
2).

Example



The formula for ª(f ) for SQH functions 17/41

The following theorem holds (Krasi«ski, Oleksik & Pªoski '09
for n�3; Brzostowski '14 and Abderrahmane '15 for general
n):

Let f B---QH(1; l1, . . . , ln) be an isolated singularity.

Put lmin :=min {l1, . . . , ln}. Then

ª(f )= 1
lmin

-1.

Theorem

� The above theorem holds also for SQH functions.

� ª(f ) is achieved on coordinate polar curves, confirming
I CONJECTURE in this case.
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CONJECTURE II � ª(f ) as an invariant 18/41

ª(f ) is a topological invariant of a singularity
CONJECTURE II

Precisely:

If f and gare two singularities (isolated) ℛ-topologically
equivalent i.e. g= f J�, where �: (Cn, 0)-> (Cn, 0) is a home-
omorphism, then ª(f )= ª(g).
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CONJECTURE II � ª(f ) as an invariant 19/41

An intuitive reason to believe this: ª is connected with the
topology of the singularity; for, the number ⌊ª(f )⌋+1 is the
degree of C0-ℛ-determinacy of the germ f in 𝒪n
(Chang & Lu '73, Teissier '77, Bochnak & Kucharz '79).

Thus, if ord(f - g)>⌊ª(f )⌋+1, then g is ℛ-topologically equiv-
alent to f ; moreover, for such f and g we have ª(f )= ª(g) by
Pªoski's lemma so the conjecture holds in this important case.



CONJECTURE II � ª(f ) as an invariant 19/41

An intuitive reason to believe this: ª is connected with the
topology of the singularity; for, the number ⌊ª(f )⌋+1 is the
degree of C0-ℛ-determinacy of the germ f in 𝒪n
(Chang & Lu '73, Teissier '77, Bochnak & Kucharz '79).

Thus, if ord(f - g)>⌊ª(f )⌋+1, then g is ℛ-topologically equiv-
alent to f ; moreover, for such f and g we have ª(f )= ª(g) by
Pªoski's lemma so the conjecture holds in this important case.
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Results confirming this conjecture:

� dimension 2 (Teissier '77); in this case, one can provide
a formula for ª(f ) in terms of so-called characteristic
sequences of the branches of the curve {f =0} and their
intersection multiplicities (Pªoski '01)

� SQH singularities of 3 variables
(Krasi«ski, Oleksik & Pªoski '09)

� If f , g: (Cn, 0)-> (C, 0) are two isolated hypersurface sin-
gularities that are ℛ-ℒ-bi-Lipschitz equivalent, that
is g=.J f J�, where �: (Cn, 0)-> (Cn, 0),.: (C, 0)-> (C, 0)
are bi-Lipschitz homeomorphisms, then ª(f ) = ª(g)
(Bivià-Ausina & Fukui '17).
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CONJECTURE II' � a weaker version 21/41

A weaker form of CONJECTURE II is:

(Teissier '77) If (fs) is a topologically trivial (holomorphic)
deformation of a singularity f0, then ª(fs)= ª(f0) for small
s B---C.

CONJECTURE II'

In this direction, we have, for a μ-constant deformation (fs)
of the germ f0:

� ª(fs)�ª(f0) (Teissier '77, Pªoski '10); this is so-called �lower
semicontinuity� of the �ojasiewicz exponent,

� ª(fs)=ª(f0) for an SQH function f0 (S. Brzostowski. '14).
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� If for a holomorphic family {fs(z)} of isolated hypersurface
singularities we assume a somewhat stronger triviality
than the topological one, namely that it satisfies Teissier's
condition (c), then ª(fs) = ª(f0) (Teissier '77).

Here, condition (c) means that for the family {fs} we have:

∂fs(z)
∂s

B--- (z1, . . . , zn) . (∇z fs(z)),

where, as before, the bar � � designates integral closure of an
ideal (in the ring 𝒪n+1 ~-C{s, z1, . . . , zn}). Relaxing the above
requirement on {fs} to ∂fs(z)

∂s B---∇z fs(z) we get a condition equiv-
alent to μ-constancy of the family (cf. Greuel '86).
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One can also ask: and what about families of mappings with
constant intersection multiplicity? There is the following
answer (Pªoski '10 for full intersections; Rodak, Ró»ycki
& Spodzieja '16 in general):

If (Fs) is a deformation of a map-germ F : (Cn, 0)-> (Cm, 0)
having constant intersection multiplicity for small s, then
�(Fs)��(F0).

Theorem
In general, however, the above inequality may be strict:

Example. (Mc Neal & Némethi '05) Let Fs(z1, z2) := (s z1+
z1
2 + z2

2, z1
2- z2

5): (C2, 0)-> (C2, 0). Then �(Fs) =
s=/ 0

4>2=�(F0),
although e(Fs)= e(F0).
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CONJECTURE III� the non-degenerate case 24/41

One of the most important numerical invariant of an isolated
singularity is its Milnor number μ(f ). It is a topological
invariant of f .

(Kushnirenko '76) gave an effective formula for μ(f ) in
terms of the Newton polyhedron (diagram) of f in the case
f is non-degenerate.

Arnold claimed that any �interesting invariant� of an iso-
lated singularity can be read off its Newton polyhedron in
non-degenerate case.

The �ojasiewicz exponent is �an interesting invariant� of
an isolated singularity although we don't know if it is a topo-
logical invariant.
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CONJECTURE III� the non-degenerate case 25/41

We pose

The �ojasiewicz exponent can be read off the Newton dia-
gram for singularities non-degenerate in the sense of Kush-
nirenko.

CONJECTURE III

� This is true in dimension 2 (Lenarcik '98).

� There exist some partial results in this direction for n�3
(Abderrahmane '06, Fukui '91, Oka '18).

� The solution to CONJECTURE III must in particular involve
an accurate definition of an �exceptional�=irrelevant face
of a Newton diagram.



CONJECTURE III� the non-degenerate case 25/41

We pose

The �ojasiewicz exponent can be read off the Newton dia-
gram for singularities non-degenerate in the sense of Kush-
nirenko.

CONJECTURE III

� This is true in dimension 2 (Lenarcik '98).

� There exist some partial results in this direction for n�3
(Abderrahmane '06, Fukui '91, Oka '18).

� The solution to CONJECTURE III must in particular involve
an accurate definition of an �exceptional�=irrelevant face
of a Newton diagram.



CONJECTURE III� the non-degenerate case 25/41

We pose

The �ojasiewicz exponent can be read off the Newton dia-
gram for singularities non-degenerate in the sense of Kush-
nirenko.

CONJECTURE III

� This is true in dimension 2 (Lenarcik '98).

� There exist some partial results in this direction for n�3
(Abderrahmane '06, Fukui '91, Oka '18).

� The solution to CONJECTURE III must in particular involve
an accurate definition of an �exceptional�=irrelevant face
of a Newton diagram.



CONJECTURE III� the non-degenerate case 25/41

We pose

The �ojasiewicz exponent can be read off the Newton dia-
gram for singularities non-degenerate in the sense of Kush-
nirenko.

CONJECTURE III

� This is true in dimension 2 (Lenarcik '98).

� There exist some partial results in this direction for n�3
(Abderrahmane '06, Fukui '91, Oka '18).

� The solution to CONJECTURE III must in particular involve
an accurate definition of an �exceptional�=irrelevant face
of a Newton diagram.



Conjecture III � a starting point 26/41

Brzostowski '19 proved �first-half� of the Conjecture III.

If f , g: (Cn, 0)-> (C, 0) are Kushnirenko non-degenerate iso-
lated singularities with the same Newton diagrams, then
ª(f ) = ª(g).

Theorem
The �second-half� is to find the formula for ª(f ).

� Loosely speaking, this theorem follows from the fact that,
after some preparations, we can join f and g by a piece-
wise linear curve (in the space of coefficients) along which,
locally, we have Teissier's condition (c) satisfied.

� Hence, ª(f )= ª(g).
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CONJECTURE III in dimension 3 27/41

We have the following theorem

If f : (C3, 0)-> (C, 0) is a Kushnirenko non-degenerate iso-
lated surface singularity, then

ª(f )= max
S � relevant facets

m(S)-1,

provided the set of relevant facets is non-empty.
Brzostowski, Krasi«ski, & Oleksik '20

� There is also a direct formula for ª if the set of relevant
facets happens to be empty.
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Testing the hypotheses � Arnold's zoo 30/41

� In Arnold's, Gusein-Zade's & Varchenko's book there
is given a full classification of singularities with Milnor
numbers μ�16 with respect to stable C∞-ℛ-equivalence.

� Sz. Brzostowski together with T. Rodak have calcu-
lated the values of ª in these classes of singularities (for
modality �3).

� The numerical results are in favor of the conjectures:
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∗ Conjecture I.The exponents are always achieved on some
coordinate polar curves (in the coordinate system in which
the singularity has so-called normal form) -->

∗ Conjecture II'In each class the value of ª is one and the same
regardless of the value of the parameters -->

∗ Conjecture IIIThe value of the exponents can be read off the
Newton diagram (for n=3) as predicted above
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Arnold's zoo � the value of ª vs. the hypotheses 32/41

Modality 0

Class Formula μ ª Zeroes of Parametrization Why
1 Ak xk+1 k k - [x= t] 1var.
2 Dk x2 y+ yk-1 k k-2 ∂

∂x
[x=0, y= t] 2var.

3 E6 y4+x3 6 3 ∂
∂x

[x= y= t] 2var.

4 E7 xy3+x3 7 7
2

∂
∂x [x=3 t3, y=-3 t2] 2var.

5 E8 y5+x3 8 4 ∂
∂x

[x=0, y= t] 2var.
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Modality 1
Class Formula μ ª Zeroes of Parametrization Why

6 P8 axyz+x3+y3+z3 8 2 ∂
∂x ,

∂
∂y [x=0,y=0,z=t] qh

7 X9 ax2y2+x4+y4 9 3 ∂
∂x

[x=0,y=t] 2var.

8 J10 y6+ax2y2+x3 10 5 ∂
∂x

[x=0,y=t] 2var.

9∗ Tp,q,r xp+yq+zr+axyz p+q
+r-1 r-1 ∂

∂x ,
∂

∂y [x=0,y=0,z=t] ndg.

10 E12 axy5+y7+x3 12 6 ∂
∂x [x=9a3t5,y=-3at2] 2var.

11 E13 ay8+xy5+x3 13 13
2

∂
∂x [x=-9t5,y=-3t2] 2var.

12 E14 axy6+y8+x3 14 7 ∂
∂x

[x= -a
3� t3,y=t] 2var.

13 Z11 axy4+y5+x3y 11 4 ∂
∂x [x=3a2t3,y=-3at2] 2var.

14 Z12 ax2y3+xy4+x3y 12 9
2

∂
∂x [x=-3 t3

2at+1 ,y=-3 t2

2at+1 ] 2var.

9∗. For max (p, q, r)= r. Here 1
p + 1

q + 1
r <1.
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Modality 1 (cont.)

Class Formula μ ª Zeroes of Parametrization Why
15 Z13 axy5+y6+x3y 13 5 ∂

∂x
[x= -a

3� t2,y=t] 2var.

16 W12 ax2y3+y5+x4 12 4 ∂
∂x

[x=0,y=t] 2var.

17 W13 ay6+xy4+x4 13 13
3

∂
∂x [x=-4t4,y=4 t3] 2var.

18 Q10 axy3+y4+x3+yz2 10 3 ∂
∂x ,

∂
∂z [x=3 a√ t3,y=-3t2,z=0] sqh

19 Q11 az5+xz3+x3+y2z 11 7
2

∂
∂x ,

∂
∂y [x=3 t3,y=0,z=-3t2] sqh

20 Q12 axy4+y5+x3+yz2 12 4 ∂
∂x ,

∂
∂z

[x=- -a
3� t2,y=t,z=0] sqh

21 S11 ax3z+x4+xz2+y2z 11 3 ∂
∂y ,

∂
∂z [x=2t,y=0,z=-2at2] sqh

22 S12 az5+xz3+x2y+y2z 12 10
3

∂
∂x ,

∂
∂y [x=16t4,y=16t5,z=-8t3] sqh

23 U12 axyz2+z4+x3+y3 12 3 ∂
∂x ,

∂
∂y [x=0,y=0,z=t] sqh
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Modality 2

Class Formula μ ª Zeroes of Parametrization Why

24 J3,0 cxy7+y9+bx2y3+x3 16 8 ∂
∂x

[x=-128 b7t3

(ct+3)7
,y=4 b2t

(ct+3)2
] for b=/ 0

[x=27 c√ t7,y=-3t2] for b=0
2var.

25 J3,p x3+x2y3+ay9+p 16+p 8+p ∂
∂x

[x=0,y=t] 2var.

26 Z1,0 cxy6+y7+dx2y3+x3y 15 6 ∂
∂x

[x=3t2(9ct-2d)3,y=-3t(9ct-2d)]
for c=/ 0(d=/ 0

[x=0,y=t] for c=0)d=0
2var.

27 Z1,p x3y+x2y3+ay7+p 15+p 6+p ∂
∂x

[x=0,y=t] 2var.

28 W1,0 x4+ax2y3+y6 15 5 ∂
∂x

[x=0,y=t] 2var.

29 W1,p x4+x2y3+ay6+p 15+p 5+p ∂
∂x

[x=0,y=t] 2var.

30 W1,2q-1
# (y3+x2)2+axy4+q 14+2q 9

2+q ∂
∂x [x=t3+ 1

8 a0t2q+2+ . . . ,y=-t2] 2var.

31 W1,2q
# (y3+x2)2+ax2y3+q 15+2q 5+q ∂

∂x [x=t3+ 1
4 a0(-1)qt2q+3+ . . . ,y=-t2] 2var.

Here a := (a0 +a1 y), p, q>0.
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Modality 2 (cont.); here a := (a0+a1 y), p, q>0
Class Formula μ ª Zer. Parametrization Why

32 Q2,0 x3+yz2+ax2y2+xy4 14 5 ∂
∂x ,

∂
∂z

[x=-1
8

t2(((((t+4a1 a0
2-3� )))))2

(t+2a0a1+2a1 a0
2-3� )3a1

3
,y= 1

4

t(((((t+4a1 a0
2-3� )))))

(t+2a0a1+2a1 a0
2-3� )a1

2
,

z=0] for a1=/ 0

[x=(-a0+ a0
2-3� )t2,y=(-a0+ a0

2-3� )t,z=0] for a1=0

sqh

33 Q2,p x3+yz2+x2y2+ay6+p 14+p 5+p ∂
∂x ,

∂
∂z

[x=0,y=t,z=0] ndg.

34 S1,0 x2z+yz2+y5+ay3z 14 4 ∂
∂x ,

∂
∂z [x=0,y=t,z=-1

2a1t3-
1
2a0t2] sqh

35 S1,p x2z+yz2+x2y2+ay5+p 14+p 4+p ∂
∂x ,

∂
∂z

[x=0,y=t,z=0] ndg.

36 S1,2q-1
# x2z+yz2+y3z+axy3+q 13+2q 7

2+q ∂
∂x ,

∂
∂z

[x= 1
2 a0(-1)qt2q+2+t3,y=-t2,z= 1

2 a0(-1)qt2q+3] for 1<q

[x=-3
8 a0

2t5- 1
2 a0t4+t3,y=-t2,z=-1

4 a0
2t6- 1

2 a0t5] for q=1
ndg.

37 S1,2q
# x2z+yz2+y3z+ax2y2+q 14+2 q 4+q ∂

∂x ,
∂
∂z

[x=-t3 1+2a0(-1)1+qt2q+2a1(-1)qt2q+2� ,y=-t2,
z=(-1)q(-a0t2q+4+a1t2q+6)]

ndg.

38 U1,0 x3+xz2+xy3+ay3z 14 7
2

∂
∂x ,

∂
∂z

[y=(-1
6 + 1

6 η)t2,x=(-1
12 a0

2+ 1
18
- 1

18 η)t3,z=-1
12 a0(-1+η)t3]

forη= -3 a0
2+1� and a0

2=/ 1/3
sqh

39 U1,2q-1 x3+xz2+xy3+ay1+qz2 13+2q 3+q ∂
∂x ,

∂
∂z

[x=(-1)q(a0t2q+2-a1t2q+4),y=-t2,

z=-t3 1-3a0
2 t4q-2+6a0a1t4q-3a1

2t4q+2� ]
ndg.

40 U1,2q x3+xz2+xy3+ay3+qz 14+2 q 7
2+q ∂

∂x ,
∂
∂z [x= 1

2 a0(-1)qt2q+3,y=-t2,z=-3
8 a0

2t4q+3+t3] ndg.
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Modality 2 (cont.); here a := (a0+a1 y)

Class Formula μ ª Zeroes of Parametrization Why

41 E18 x3+y10+axy7 18 9 ∂
∂x

[[[[[[[[[[[[x=-
a0
4t7

(a1t2+3)4
,y=- a0t2

a1t2+3]]]]]]]]]]]] for a0=/ 0

[x= 1
3

-3a1� t4,y=t] for a0=0
2var.

42 E19 x3+xy7+ay11 19 19
2

∂
∂x [x= 1

81 t7,y=-1
3 t2] 2var.

43 E20 x3+y11+axy8 20 10 ∂
∂x [x= 1

3
-3a1 t-3a0� t4,y=t] 2var.

44 Z17 x3y+y8+axy6 17 7 ∂
∂x [x= 1

3
-3a1t2+3a0� t5,y=-t2] 2var.

45 Z18 x3y+xy6+ay9 18 15
2

∂
∂x [x=9 t5,y=-3 t2] 2var.

46 Z19 x3y+y9+axy7 19 8 ∂
∂x [x=-1

3 3a1t2-3a0� t6,y=-t2] 2var.
47 W17 x4+xy5+ay7 17 17

3
∂
∂x [x=-2 t5,y=2 t3] 2var.

48 W18 x4+y7+ax2y4 18 6 ∂
∂x

[x=0,y=t] 2var.
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Modality 2 (cont.); here a := (a0+a1 y)

Class Formula μ ª Zeroes of Parametrization Why

49 Q16 x3+yz2+y7+axy5 16 6 ∂
∂x ,

∂
∂z

[x=-
a0
3t5

(a1t2+3)3
,y=- a0t2

a1t2+3
,z=0] for a0=/ 0

[y=t,x= -1
3 a1� t3,z=0] for a0=0

sqh

50 Q17 x3+yz2+xy5+ay8 17 13
2

∂
∂x ,

∂
∂z [y=-1

3 t2,x=- 1
27 t5,z=0] sqh

51 Q18 x3+yz2+y8+axy6 18 7 ∂
∂x ,

∂
∂z [x= 1

3
-3a0-3a1t� t3,y=t,z=0] sqh

52 S16 x2z+yz2+xy4+ay6 16 14
3

∂
∂x ,

∂
∂z [x=t5,y=t3,z=-1

2 t7] sqh
53 S17 x2z+yz2+y6+ay4z 17 5 ∂

∂x ,
∂
∂z [x=0,y=t,z=-1

2a0t3- 1
2a1t4] sqh

54 U16 x3+xz2+y5+ax2y2 16 4 ∂
∂x ,

∂
∂z

[x=0,y=t,z=0] sqh



Arnold's zoo � the value of ª vs. the hypotheses 39/41

Modality k-1
Class Formula μ ª Zer. Parametrization Why

55 Jk,0 x3+bx2yk+y3k+(∑j=0
k-3cjyj)xy2k+1 6k-2 3k-1 ∂

∂x [[[[[[[[[[x= 1
3 ((((((((((-b+ b2-3∑j=0

k-3cjtj+1� ))))))))))tk,y=t]]]]]]]]]] 2var.
56 Jk,i x3+x2yk+(∑j=0

k-2ajyj)y3k+i 6k+i-2 3k+i-1 ∂
∂x

[x=0,y=t] 2var.
57 E6k x3+y3k+1+(∑j=0

k-2ajyj)xy2k+1 6k 3k ∂
∂x [[[[[[[[[[x= 3�

3
-∑j=0

k-2ajt2 j� t2k+1,y=t2]]]]]]]]]] 2var.
58 E6k+1 x3+xy2k+1+(∑j=0

k-2ajyj)y3k+2 6k+1 3k+ 1
2

∂
∂x [x= 1

3 i 3� t2k+1,y=t2] 2var.
59 E6k+2 x3+y3k+2+(∑j=0

k-2ajyj)xy2k+2 6k+2 3k+1 ∂
∂x [[[[[[[[[[x= 3�

3
-∑j=0

k-2ajt2 j� t2k+2,y=t2]]]]]]]]]] 2var.



Thanks! 40/41

Thanks for your attention!
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