Three Hypotheses on the Łojasiewicz Exponent

GKLW Workshop in Singularity Theory

A special session dedicated to the memory of Stanisław Łojasiewicz
WARSZAWA, 12-16 XII, 2022

Szymon Brzostowski, Tadeusz Krasiński
 University of Łódź

Stanisław Łojasiewicz (9 X 1926-14 XI 2002)

Introduction

Analytic
 and
 Algebraic Geometry

edited by
Tadeusz Krasinski
Stanistaw Spodzieja

GEOMETRIC DESINGULARIZATION OF CURVES IN MANIFOLDS *) **)

STANISEAW EOJASIEWICZ

1. Introduction

The article does not pretend to any originality. In the literature there exists a number of descriptions of desingularizations in the case of curves. Deciding for this description the author think it is worth looking in details into this fascinating topic in an easily accessible case, namely - in the effects of multi blowings-up for curves in manifolds and for coherent sheaves on 2 -dimensional manifolds.

All the needed facts from analytic geometry can be find in the author's books [L1], [L2].

$$
\text { 2. The canonical blowing-up of } \mathbb{C}^{n} \text { at } 0
$$

The blow-up of \mathbb{C}^{n} at 0 is

$$
\Pi=\Pi_{n}=\{(z, \lambda): z \in \lambda\} \subset \mathbb{C}^{n} \times \mathbb{P}, \quad \mathbb{P}=\mathbb{P}_{n-1}
$$

Taking the inverse atlas for $\mathbb{C}^{n} \times \mathbb{P}$

$$
\begin{aligned}
& \gamma_{k}: \mathbb{C}^{n} \times \mathbb{C}^{n-1} \ni\left(z, w_{(k)}\right) \mapsto \\
& \left(z, \mathbb{C}\left(w_{1}, \ldots, \frac{1}{(k)}, \ldots, w_{n}\right)\right) \in \mathbb{C}^{n} \times\left\{\mathbb{P} \backslash \mathbb{P}\left(\left\{z_{k}=0\right\}\right)\right)=G_{k}, k=1, \ldots, n,
\end{aligned}
$$

[^0]

The idea of the Łojasiewicz inequality - to compare the value of an analytic function f at a point x to the distance of x to the zero-set $V(f)$

Locally
$|f(x)| \geqslant C(\operatorname{dist}(x, V(f)))^{\alpha}$

Remark 1. The inequality does not hold in C^{∞} class.

Remark 1. The inequality does not hold in C^{∞} class.
Remark 2. There are many variants of the Łojasiewicz inequality: local, global, gradient etc.

Remark 1. The inequality does not hold in C^{∞} class.
Remark 2. There are many variants of the Łojasiewicz inequality: local, global, gradient etc.

Remark 3. The Łojasiewicz inequality in many variants was studied by many mathematicians: B. Lichtin, T. C. Kuo, B. Teissier, M. Lejeune-Jalabert, J. Risler, J. Bochnak, H.H. Vui, J. Kollar, A. Płoski, J. Chądzyński, P. Tworzewski, S. Spodzieja, M. Oka, K. Kurdyka,...

Remark 1. The inequality does not hold in C^{∞} class.
Remark 2. There are many variants of the Łojasiewicz inequality: local, global, gradient etc.

Remark 3. The Łojasiewicz inequality in many variants was studied by many mathematicians: B. Lichtin, T. C. Kuo, B. Teissier, M. Lejeune-Jalabert, J. Risler, J. Bochnak, H.H. Vui, J. Kollar, A. Płoski, J. Chądzyński, P. Tworzewski, S. Spodzieja, M. Oka, K. Kurdyka,...

Remark 4. We consider the following variant of the Łojasiewicz inequality.

- $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ - a holomorphic function defined in a neighborhood of $0 \in \mathbb{C}^{n}$ satisfying $f(0)=0$,
- $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ - a holomorphic function defined in a neighborhood of $0 \in \mathbb{C}^{n}$ satisfying $f(0)=0$,
- f possesses an isolated critical point at 0 , ie., $\nabla f(0)=0$, $\nabla f(z) \neq 0$ for $z \ll 1$.
- $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ - a holomorphic function defined in a neighborhood of $0 \in \mathbb{C}^{n}$ satisfying $f(0)=0$,
- f possesses an isolated critical point at 0 , ie., $\nabla f(0)=0$, $\nabla f(z) \neq 0$ for $z \ll 1$.

In this situation we shall say that

singularity.

In this case the maping

- $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ - a holomorphic function defined in a neighborhood of $0 \in \mathbb{C}^{n}$ satisfying $f(0)=0$,
- f possesses an isolated critical point at 0 , ie., $\nabla f(0)=0$, $\nabla f(z) \neq 0$ for $z \ll 1$.

In this situation we shall say that defines (or is) an isolated singularity.
In this case the maping

$$
\nabla f=\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)
$$

is a finite mapping.

- $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ - a holomorphic function defined in a neighborhood of $0 \in \mathbb{C}^{n}$ satisfying $f(0)=0$,
- f possesses an isolated critical point at 0 , ie., $\nabla f(0)=0$, $\nabla f(z) \neq 0$ for $z \ll 1$.

In this situation we shall say that defines (or is) an isolated singularity.
In this case the maping

$$
\nabla f=\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)
$$

is a finite mapping.

We will consider also a slight general setting:

Let $F=\left(F_{1}, \ldots, F_{m}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right), m \geqslant n$, be a holomorphic mapping in a neighborhood of $0 \in \mathbb{C}^{n}$ possessing an isolated zero at $0 \in \mathbb{C}^{n}$.

We will consider also a slight general setting:
Let $F=\left(F_{1}, \ldots, F_{m}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right), m \geqslant n$, be a holomorphic mapping in a neighborhood of $0 \in \mathbb{C}^{n}$ possessing an isolated zero at $0 \in \mathbb{C}^{n}$.

In the sequel F denotes a finite mapping and f - an isolated singularity.

We will consider also a slight general setting:
Let $F=\left(F_{1}, \ldots, F_{m}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right), m \geqslant n$, be a holomorphic mapping in a neighborhood of $0 \in \mathbb{C}^{n}$ possessing an isolated zero at $0 \in \mathbb{C}^{n}$.

In the sequel F denotes a finite mapping and f - an isolated singularity.

We will consider also a slight general setting:
Let $F=\left(F_{1}, \ldots, F_{m}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right), m \geqslant n$, be a holomorphic mapping in a neighborhood of $0 \in \mathbb{C}^{n}$ possessing an isolated zero at $0 \in \mathbb{C}^{n}$.

In the sequel F denotes a finite mapping and f - an isolated singularity.

Remark. Any fact concerning a finite mapping F holds also for the gradient mapping $\nabla f=\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}\right)$.

Let $\theta>0$. Consider the inequality

$$
C|z|^{\theta} \leqslant|F(z)|,
$$

where $C>0$ is a certain constant and $|z| \ll 1$.
The optimal θ in the above inequality (that is the smallest one) is called the Eojasiewicz exponent and denoted by

Let $\theta>0$. Consider the inequality

$$
C|z|^{\theta} \leqslant|F(z)|,
$$

where $C>0$ is a certain constant and $|z| \ll 1$.
The optimal θ in the above inequality (that is the smallest one) is called the Eojasiewicz exponent and denoted by

Example. Let $F:=\left(z_{2}^{3}+z_{1}^{2}, z_{1} z_{2}^{2}\right)$. Then $\ell(F)=\frac{7}{2}>\operatorname{ord} F=2$.
For a singularity f we define its Eojasiewicz exponent $1(f)$ as

$$
\not(f):=屯(\nabla f) .
$$

- There exist effective methods of computation of Ł (eg. using PŁoski's characteristic polynomial or Groebner bases) but they are computationally expensive.

How to compute the exponent? General methods

- There exist effective methods of computation of Ł (eg. using PŁoski's characteristic polynomial or Groebner bases) but they are computationally expensive.
- In the -dimensional case there exists another useful way.

Namely, for $F=\left(F_{1}, F_{2}\right)$ we have

$$
\left.屯(F)=\max _{\varphi \cdot V\left(F_{1} \cdot F_{2}\right)}\right) \operatorname{ord} F_{\circ} \varphi,
$$

so it is enough to find (finitely many!) parametrizations $\varphi:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{2}, 0\right)$ of the curve $F_{1} \cdot F_{2}=0$ (Chadzyński \& Krasiński '88).

How to compute the exponent? General methods

- There exist effective methods of computation of Ł (eg. using PŁoski's characteristic polynomial or Groebner bases) but they are computationally expensive.
- In the -dimensional case there exists another useful way.

Namely, for $F=\left(F_{1}, F_{2}\right)$ we have

$$
\left.屯(F)=\max _{\varphi \cdot V\left(F_{1} \cdot F_{2}\right)}\right) \operatorname{ord} F_{\circ} \varphi,
$$

so it is enough to find (finitely many!) parametrizations $\varphi:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{2}, 0\right)$ of the curve $F_{1} \cdot F_{2}=0$ (Chadzyński \& Krasiński '88).

Example. Let, again, $F:=\left(z_{1}^{2}+z_{2}^{3}, z_{1} z_{2}^{2}\right)$. Then $V\left(F_{1} \cdot F_{2}\right)=\left\{\left(t^{3}\right.\right.$,
$\left.\left.-t^{2}\right),(0, t),(t, 0)\right\}$ so $£(F)=\max \left\{\frac{7}{2}, \frac{3}{1}, \frac{2}{1}\right\}=\frac{7}{2}$.

How to compute the exponent? General methods

- The above result does not extend to dimension $n \geqslant 3$:

Let $F\left(z_{1}, z_{2}, z_{3}\right):=\left(z_{1}^{2}, z_{2}^{3}, z_{3}^{3}-z_{1} z_{2}\right)$. Then $V\left(F_{1}, F_{2}\right)=\{(0$, $0, t)\}, V\left(F_{2}, F_{3}\right)=\{(t, 0,0)\}, V\left(F_{1}, F_{3}\right)=\{(0, t, 0)\}$. Hence, $\max _{\varphi \in U_{i<j}} V\left(F_{i}, F_{j}\right) \frac{\operatorname{ord} F \circ \varphi}{\operatorname{ord} \varphi}=\max \left\{\frac{3}{1}, \frac{2}{1}, \frac{3}{1}\right\}=3$, while Example (Płoski '88)

How to compute the exponent? General methods

- The above result does not extend to dimension $n \geqslant 3$:

Let $F\left(z_{1}, z_{2}, z_{3}\right):=\left(z_{1}^{2}, z_{2}^{3}, z_{3}^{3}-z_{1} z_{2}\right)$. Then $V\left(F_{1}, F_{2}\right)=\{(0$, $0, t)\}, V\left(F_{2}, F_{3}\right)=\{(t, 0,0)\}, V\left(F_{1}, F_{3}\right)=\{(0, t, 0)\}$. Hence, $\max _{\varphi \in U_{i<j}} V\left(F_{i}, F_{j}\right) \frac{\operatorname{ord} F \circ \varphi}{\operatorname{ord} \varphi}=\max \left\{\frac{3}{1}, \frac{2}{1}, \frac{3}{1}\right\}=3$, while Example (Płoski '88)

- A certain positive result of this kind: for $F=\left(F_{1}, \ldots, F_{m}\right)$: $\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right)$ we have (Chadzyński \& Krasiński '98)

$$
屯(F)=\max _{\varphi \cdot V\left(F_{1} \cdot F_{2} \cdots \cdot F_{m}\right)} \frac{\operatorname{ord} F \circ \varphi}{\operatorname{ord} \varphi} .
$$

- The above result does not extend to dimension $n \geqslant 3$:

Let $F\left(z_{1}, z_{2}, z_{3}\right):=\left(z_{1}^{2}, z_{2}^{3}, z_{3}^{3}-z_{1} z_{2}\right)$. Then $V\left(F_{1}, F_{2}\right)=\{(0$, $0, t)\}, V\left(F_{2}, F_{3}\right)=\{(t, 0,0)\}, V\left(F_{1}, F_{3}\right)=\{(0, t, 0)\}$. Hence, $\max _{\varphi \odot \cup_{i<j} V\left(F_{i}, F_{j}\right)} \frac{\operatorname{ord} F \circ \varphi}{\operatorname{ord} \varphi}=\max \left\{\frac{3}{1}, \frac{2}{1}, \frac{3}{1}\right\}=3$, while Example (Płoski '88)

- A certain positive result of this kind: for $F=\left(F_{1}, \ldots, F_{m}\right)$: $\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right)$ we have (Chadzyński \& Krasiński '98)

$$
屯(F)=\max _{\varphi \in V\left(F_{1} \cdot F_{2} \cdots \cdots F_{m}\right)} \frac{\operatorname{ord} F \circ \varphi}{\operatorname{ord} \varphi} .
$$

(This result is not very useful in practice because one must test infinitely many parametrizations φ.)

CONJECTURE I $-\nmid(f)$ on „coordinate polar curves

Focusing on isolated singularities, we pose
Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be an isolated singularity. Then

$$
\not(f)=\max _{\varphi \in \cup_{i=1}^{n} V\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{i}}, \ldots, \frac{\partial f}{\partial z_{n}}\right)}\left(\frac{\operatorname{ord} \nabla f \circ \varphi}{\operatorname{ord} \varphi}\right) .
$$

CONJECTURE I

CONJECTURE I $-\nmid(f)$ on „coordinate polar curves

Focusing on isolated singularities, we pose
Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be an isolated singularity. Then

$$
\nvdash(f)=\max _{\varphi \bullet U_{i=1}^{n} V\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{i}}, \ldots, \frac{\partial f}{\partial z_{n}}\right)}\left(\frac{\operatorname{ord} \nabla f \circ \varphi}{\operatorname{ord} \varphi}\right) .
$$

CONJECTURE I

- We are not aware of any counterexample to this.

COnjecture I $-\nmid(f)$ on „coordinate polar curves

Focusing on isolated singularities, we pose
Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be an isolated singularity. Then

$$
\not(f)=\max _{\varphi \in U_{i=1}^{n} V\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{i}}, \ldots, \frac{\partial f}{\partial z_{n}}\right)}\left(\frac{\operatorname{ord} \nabla f \circ \varphi}{\operatorname{ord} \varphi}\right) .
$$

CONJECTURE I

- We are not aware of any counterexample to this.
- Below, we will give many examples in its favor. A fast one:

COnjecture I $-\nmid(f)$ on „coordinate polar curves

Focusing on isolated singularities, we pose
Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be an isolated singularity. Then

$$
\not(f)=\max _{\varphi \in U_{i=1}^{n} V\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{i}}, \ldots, \frac{\partial f}{\partial z_{n}}\right)}\left(\frac{\operatorname{ord} \nabla f \circ \varphi}{\operatorname{ord} \varphi}\right) .
$$

CONJECTURE I

- We are not aware of any counterexample to this.
- Below, we will give many examples in its favor. A fast one:

Example. For $f(x, y, z):=x^{2} z+y z^{2}+y^{3} z+(2 y+3) x^{2} y^{4}$ we have $\nvdash(f)=6$ and this exponent is achieved on the parametrization $\varphi(t):=\left(-t^{3} \cdot \sqrt{1-6 t^{4}+4 t^{6}},-t^{2},-3 \cdot t^{8}+2 \cdot t^{10}\right) \in V\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial z}\right)$.

(Semi-)Quasihomogeneous functions

Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a holomorphic function. We shall say:

- f is quasihomogeneous of type shortly: $\mathrm{QH}\left(d ; l_{1}, \ldots, l_{n}\right.$, if $d, l_{1}, \ldots, l_{n} \in\left(Q>0, l_{1} / d, \ldots, l_{n} / d \in(0,1 / 2]\right.$ and for all monomials $z^{a}=z_{1}^{a_{1}} \cdot \ldots \cdot z_{n}^{a_{n}}$ appearing in f with a non-zero coefficient we have $a_{1} l_{1}+\ldots+a_{n} l_{n}=d$
The numbers l_{1}, \ldots, l_{n} are weights. The number d is the weighted degree of the polynomial f.
- f is semiquasihomogeneous of type shortly: $\mathrm{SQH}\left(d ; l_{1}, \ldots, l_{n}\right)$ if $f=f_{d}+f_{d+1}+\ldots$, where $f_{i} \in \mathrm{QH}(i$; $\left.l_{1}, \ldots, l_{n}\right)$ and f_{d} is an isolated singularity

Let $f:=\left(x z+y^{5}\right)+x^{3}$. Then $f \in \operatorname{SQH}\left(1 ; \frac{1}{2}, \frac{1}{5}, \frac{1}{2}\right)$.
Example

The following theorem holds (Krasiński, Oleksik \& Płoski '09 for $n \leqslant 3$; Brzostowski '14 and Abderrahmane '15 for general $n)$:

Let $f \in \mathrm{QH}\left(1 ; l_{1}, \ldots, l_{n}\right)$ be an isolated singularity. Put

Then

$$
\not(f)=\frac{1}{l_{\text {min }}}-1
$$

Theorem

The following theorem holds (Krasiński, Oleksik \& Płoski ’09 for $n \leqslant 3$; Brzostowski '14 and Abderrahmane '15 for general $n)$:

Let $f \in \mathrm{QH}\left(1 ; l_{1}, \ldots, l_{n}\right)$ be an isolated singularity. Put Then

$$
\not(f)=\frac{1}{l_{\min }}-1
$$

Theorem

- The above theorem holds also for SQH functions.

The formula for $¥(f)$ for SQH functions

The following theorem holds (Krasiński, Oleksik \& Płoski '09 for $n \leqslant 3$; Brzostowski '14 and Abderrahmane ' 15 for general $n)$:

Let $f \in \mathrm{QH}\left(1 ; l_{1}, \ldots, l_{n}\right)$ be an isolated singularity. Put $l_{\min }:=\min \left\{l_{1}, \ldots, l_{n}\right\}$. Then

$$
\not(f)=\frac{1}{l_{\text {min }}}-1 .
$$

Theorem

- The above theorem holds also for SQH functions.
- $\not(f)$ is achieved on coordinate polar curves, confirming I CONJECTURE in this case.

Conjecture II — $\ddagger(f)$ as an invariant

$\mathrm{l}(f)$ is a topological invariant of a singularity CONJECTURE II

Conjecture II — $\ddagger(f)$ as an invariant

$\not(f)$ is a topological invariant of a singularity CONJECTURE II

Precisely:

If f and g are two singularities (isolated) \mathscr{B}-topologically equivalent i.e. $g=f \circ \Phi$, where $\Phi:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ is a homeomorphism, then $\not(f)=\nsupseteq(g)$.

Conjecture II — $\ddagger(f)$ as an invariant

An intuitive reason to believe this: is connected with the topology of the singularity; for, the number $\lfloor\ell(f)\rfloor+1$ is the degree of $C^{0}-\mathscr{B}$-determinacy of the germ f in \mathscr{O}_{n} (Chang \& Lu '73, Teissier '77, Bochnak \& Kucharz '79).

ConJecture II — $\ddagger(f)$ as an invariant

An intuitive reason to believe this: is connected with the topology of the singularity; for, the number $\lfloor\ell(f)\rfloor+1$ is the degree of C^{0} - \mathscr{B}-determinacy of the germ f in \mathcal{O}_{n} (Chang \& Lu '73, Teissier '77, Bochnak \& Kucharz '79).

Thus, if ord $(f-g)>\lfloor\not(f)\rfloor+1$, then g is \mathscr{B}-topologically equivalent to f; moreover, for such f and g we have $\nmid f)=\nvdash(g)$ by Płoski's lemma so the conjecture holds in this important case.

Results confirming this conjecture:

- dimension 2 (Teissier '77); in this case, one can provide a formula for $\not(f)$ in terms of so-called characteristic sequences of the branches of the curve $\{f=0\}$ and their intersection multiplicities (Płoski '01)

Results confirming this conjecture:

- dimension 2 (Teissier '77); in this case, one can provide a formula for $\not(f)$ in terms of so-called characteristic sequences of the branches of the curve $\{f=0\}$ and their intersection multiplicities (Płoski '01)
- SQH singularities of 3 variables (Krasiński, Oleksik \& Płoski ’09)

Results confirming this conjecture:

- dimension 2 (Teissier ${ }^{9} 77$); in this case, one can provide a formula for $\not(f)$ in terms of so-called characteristic sequences of the branches of the curve $\{f=0\}$ and their intersection multiplicities (Płoski '01)
- SQH singularities of 3 variables (Krasiński, Oleksik \& Płoski '09)
- If $f, g:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ are two isolated hypersurface singularities that are \mathscr{B} - \mathscr{L}-bi-Lipschitz equivalent, that is $g=\Psi \circ f \circ \Phi$, where $\Phi:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right), \Psi:(\mathbb{C}, 0) \rightarrow(\mathbb{C}, 0)$ are bi-Lipschitz homeomorphisms, then $\not(f)=\nsupseteq(g)$ (Bivià-Ausina \& Fukui '17).

A weaker form of CONJECTURE II is:
(Teissier '77) If $\left(f_{s}\right)$ is a topologically trivial (holomorphic) deformation of a singularity f_{0}, then for small $s \in \mathbb{C}$.

A weaker form of Conjecture II is:
(Teissier '77) If $\left(f_{s}\right)$ is a topologically trivial (holomorphic) deformation of a singularity f_{0}, then $l\left(f_{s}\right)=1\left(f_{0}\right)$ for small $s \in \mathbb{C}$.

CONJECTURE II'

In this direction, we have, for a of the germ f_{0} :

- $\nmid\left(f_{s}\right) \geqslant \ngtr\left(f_{0}\right)$ (Teissier '77, Płoski '10); this is so-called „lower semicontinuity" of the Łojasiewicz exponent,

A weaker form of CONJECTURE II is:
(Teissier '77) If (f_{s}) is a topologically trivial (holomorphic) deformation of a singularity f_{0}, then $l\left(f_{s}\right)=l\left(f_{0}\right)$ for small $s \in \mathbb{C}$.

Conjecture II'

In this direction, we have, for a of the germ f_{0} :

- $\nmid\left(f_{s}\right) \geqslant \ngtr\left(f_{0}\right)$ (Teissier '77, Płoski'10); this is so-called „lower semicontinuity" of the Łojasiewicz exponent,
- $\mathfrak{l}\left(f_{s}\right)=\nsupseteq\left(f_{0}\right)$ for an SQH function f_{0} (S. Brzostowski. '14).
- If for a holomorphic family $\left\{f_{s}(z)\right\}$ of isolated hypersurface singularities we assume a somewhat stronger triviality than the topological one, namely that it satisfies Teissier's condition (c), then
(Teissier '77).
- If for a holomorphic family $\left\{f_{s}(z)\right\}$ of isolated hypersurface singularities we assume a somewhat stronger triviality than the topological one, namely that it satisfies Teissier's condition (c), then $\left(f_{s}\right)=1\left(f_{0}\right)$ (Teissier '77).
Here, condition (c) means that for the family $\left\{f_{s}\right\}$ we have:

$$
\frac{\partial f_{s}(z)}{\partial s} \epsilon \overline{\left(z_{1}, \ldots, z_{n}\right) \cdot\left(\nabla_{z} f_{s}(z)\right)},
$$

where, as before, the bar " "" designates integral closure of an ideal (in the ring $\mathcal{O}_{n+1} \simeq \mathbb{C}\left\{s, z_{1}, \ldots, z_{n}\right\}$). Relaxing the above requirement on $\left\{f_{s}\right\}$ to alent to μ-constancy of the family (cf. Greuel '86).

One can also ask: and what about families of mappings with constant intersection multiplicity? There is the following answer (Płoski '10 for full intersections; Rodak, Różycki \& Spodzieja '16 in general):

If $\left(F_{s}\right)$ is a deformation of a map-germ $F:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right)$ having constant intersection multiplicity for small s, then Ł $\left(F_{s}\right) \geqslant €\left(F_{0}\right)$.

The exponent in a family of mappings

One can also ask: and what about families of mappings with constant intersection multiplicity? There is the following answer (Płoski '10 for full intersections; Rodak, Różycki \& Spodzieja '16 in general):
If $\left(F_{s}\right)$ is a deformation of a map-germ $F:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right)$ having constant intersection multiplicity for small s, then Ł $\left(F_{s}\right) \geqslant €\left(F_{0}\right)$.

Theorem

In general, however, the above inequality may be strict:
Example. (Mc Neal \& Némethi '05) Let $F_{s}\left(z_{1}, z_{2}\right):=\left(s z_{1}+\right.$ $\left.z_{1}^{2}+z_{2}^{2}, z_{1}^{2}-z_{2}^{5}\right):\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{2}, 0\right)$. Then $£\left(F_{s}\right)=4>2=屯\left(F_{0}\right)$, although $e\left(F_{s}\right)=e\left(F_{0}\right)$.

Conjecture III — the non-degenerate case

One of the most important numerical invariant of an isolated singularity is its Milnor number $\mu(f)$. It is a topological invariant of f.

Conjecture III — the non-degenerate case

One of the most important numerical invariant of an isolated singularity is its Milnor number $\mu(f)$. It is a topological invariant of f.
(Kushnirenko '76) gave an effective formula for $\mu(f)$ in terms of the Newton polyhedron (diagram) of f in the case f is non-degenerate.

Conjecture III — the non-degenerate case

One of the most important numerical invariant of an isolated singularity is its Milnor number $\mu(f)$. It is a topological invariant of f.
(Kushnirenko '76) gave an effective formula for $\mu(f)$ in terms of the Newton polyhedron (diagram) of f in the case f is non-degenerate.

Arnold claimed that any "interesting invariant" of an isolated singularity can be read off its Newton polyhedron in non-degenerate case.

Conjecture III - the non-degenerate case

One of the most important numerical invariant of an isolated singularity is its Milnor number $\mu(f)$. It is a topological invariant of f.
(Kushnirenko '76) gave an effective formula for $\mu(f)$ in terms of the Newton polyhedron (diagram) of f in the case f is non-degenerate.

Arnold claimed that any "interesting invariant" of an isolated singularity can be read off its Newton polyhedron in non-degenerate case.

The Łojasiewicz exponent is "an interesting invariant" of an isolated singularity although we don't know if it is a topological invariant.

Conjecture III — the non-degenerate case

We pose

The Łojasiewicz exponent can be read off the Newton diagram for singularities non-degenerate in the sense of Kushnirenko.

Conjecture III — the non-degenerate case

We pose

The Łojasiewicz exponent can be read off the Newton diagram for singularities non-degenerate in the sense of Kushnirenko.

CONJECTURE III

- This is true in dimension 2 (Lenarcik '98).

There exist some
(Abderrahmane
The solution to ConJEcture III must in particular involve
an accurate definition of an „exceptional"=irrelevant face
of a Newton diagram.

Conjecture III — the non-degenerate case

We pose
The Łojasiewicz exponent can be read off the Newton diagram for singularities non-degenerate in the sense of Kushnirenko.

CONJECTURE III

- This is true in dimension 2 (Lenarcik '98).
- There exist some partial results in this direction for $n \geqslant 3$ (Abderrahmane '06, Fukui '91, Oka '18).

Conjecture III — the non-degenerate case

We pose
The Łojasiewicz exponent can be read off the Newton diagram for singularities non-degenerate in the sense of Kushnirenko.

CONJECTURE III

- This is true in dimension 2 (Lenarcik '98).
- There exist some partial results in this direction for $n \geqslant 3$ (Abderrahmane '06, Fukui '91, Oka '18).
- The solution to CONJECTURE III must in particular involve an accurate definition of an „exceptional"=irrelevant face of a Newton diagram.

Conjecture III - a starting point

Brzostowski '19 proved "first-half" of the Conjecture III.
If $, g:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ are Kushnirenko non-degenerate isolated singularities with the same Newton diagrams, then $ł(f)=ł(g)$.

Conjecture III - a starting point

Brzostowski '19 proved "first-half" of the Conjecture III.
Iff $, g:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ are Kushnirenko non-degenerate isolated singularities with the same Newton diagrams, then $ł(f)=ł(g)$.

The "second-half" is to find the formula for $\ngtr(f)$.

Conjecture III - a starting point

Brzostowski '19 proved "first-half" of the Conjecture III.
Iff $, g:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ are Kushnirenko non-degenerate isolated singularities with the same Newton diagrams, then $ł(f)=ł(g)$. Theorem
The "second-half" is to find the formula for $孔(f)$.

- Loosely speaking, this theorem follows from the fact that, after some preparations, we can join f and g by a piecewise linear curve (in the space of coefficients) along which, locally, we have Teissier's condition (c) satisfied.

Conjecture III - a starting point

Brzostowski '19 proved "first-half" of the Conjecture III.
Iff $, g:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ are Kushnirenko non-degenerate isolated singularities with the same Newton diagrams, then $ł(f)=ł(g)$.

Theorem

The "second-half" is to find the formula for $孔(f)$.

- Loosely speaking, this theorem follows from the fact that, after some preparations, we can join f and g by a piecewise linear curve (in the space of coefficients) along which, locally, we have Teissier's condition (c) satisfied.
- Hence, $\ngtr(f)=\neq(g)$.

Conjecture III in dimension 3

We have the following theorem
If $f:\left(\mathbb{C}^{3}, 0\right) \rightarrow(\mathbb{C}, 0)$ is a Kushnirenko non-degenerate isolated surface singularity, then

$$
\not(f)=\max _{S-\text { relevant facets }} m(S)-1,
$$

provided the set of relevant facets is non-empty. Brzostowski, Krasiński, \& Oleksik '20

- There is also a direct formula for \ddagger if the set of relevant facets happens to be empty.

- In Arnold's, Gusein-Zade's \& Varchenko's book there is given a full classification of singularities with Milnor numbers $\mu \leqslant 16$ with respect to stable $C^{\infty}-\mathscr{B}$-equivalence.

The numerical results are in favor of the conjectures:

- In Arnold's, Gusein-Zade's \& Varchenko's book there is given a full classification of singularities with Milnor numbers $\mu \leqslant 16$ with respect to stable $C^{\infty}-\mathscr{B}$-equivalence.
- Sz. Brzostowski together with T. Rodak have calculated the values of \ngtr in these classes of singularities (for modality $\leqslant 3$).
- In Arnold's, Gusein-Zade's \& Varchenko's book there is given a full classification of singularities with Milnor numbers $\mu \leqslant 16$ with respect to stable $C^{\infty}-\mathscr{B}$-equivalence.
- Sz. Brzostowski together with T. Rodak have calculated the values of \nmid in these classes of singularities (for modality $\leqslant 3$).
- The numerical results are in favor of the conjectures:

Conjecture I.The exponents are always achieved on some coordinate polar curves (in the coordinate system in which the singularity has so-called normal form)

Conjecture II'In each class the value of $¥$ is one and the same regardless of the value of the parameters

Conjecture I.The exponents are always achieved on some coordinate polar curves (in the coordinate system in which the singularity has so-called normal form)

Conjecture II’In each class the value of \ddagger is one and the same regardless of the value of the parameters

Conjecture I.The exponents are always achieved on some coordinate polar curves (in the coordinate system in which the singularity has so-called normal form)

Conjecture II’In each class the value of \ddagger is one and the same regardless of the value of the parameters

Conjecture IIIThe value of the exponents can be read off the Newton diagram (for $n=3$) as predicted above

Modality 0

	Class	Formula	μ	\neq	Zeroes of	Parametrization	Why
1	A_{k}	x^{k+1}	k	k	-	$[x=t]$	1 var.
2	D_{k}	$x^{2} y+y^{k-1}$	k	$k-2$	$\frac{\partial}{\partial x}$	$[x=0, y=t]$	2 var.
3	E_{6}	$y^{4}+x^{3}$	6	3	$\frac{\partial}{\partial x}$	$[x=y=t]$	2 var.
4	E_{7}	$x y^{3}+x^{3}$	7	$\frac{7}{2}$	$\frac{\partial}{\partial x}$	$\left[x=3 t^{3}, y=-3 t^{2}\right]$	2 var.
5	E_{8}	$y^{5}+x^{3}$	8	4	$\frac{\partial}{\partial x}$	$[x=0, y=t]$	2 var.

Arnold's zoo - the value of 1 vs. the hypotheses

Modality 1

	Class	Formula	μ	\neq	Zeroes of	Parametrization	Why
6	P_{8}	$a x y z+x^{3}+y^{3}+z^{3}$	8	2	$\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$	$[x=0, y=0, z=t]$	qh
7	X_{9}	$a x^{2} y^{2}+x^{4}+y^{4}$	9	3	$\frac{\partial}{\partial x}$	$[x=0, y=t]$	2 var.
8	J_{10}	$y^{6}+a x^{2} y^{2}+x^{3}$	10	5	$\frac{\partial}{\partial x}$	$[x=0, y=t]$	2 var.
9^{*}	$T_{p, q, r}$	$x^{p}+y^{q}+z^{r}+a x y z$	$p+q$ $+r-1$	$r-1$	$\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$	$[x=0, y=0, z=t]$	ndg.
10	E_{12}	$a x y^{5}+y^{7}+x^{3}$	12	6	$\frac{\partial}{\partial x}$	$\left[x=9 a^{3} t^{5}, y=-3 a t^{2}\right]$	2 var.
11	E_{13}	$a y^{8}+x y^{5}+x^{3}$	13	$\frac{13}{2}$	$\frac{\partial}{\partial x}$	$\left[x=-9 t^{5}, y=-3 t^{2}\right]$	2 var.
12	E_{14}	$a x y^{6}+y^{8}+x^{3}$	14	7	$\frac{\partial}{\partial x}$	$\left[x=\sqrt{\frac{-a}{3}} t^{3}, y=t\right]$	2 var.
13	Z_{11}	$a x y^{4}+y^{5}+x^{3} y$	11	4	$\frac{\partial}{\partial x}$	$\left[x=3 a^{2} t^{3}, y=-3 a t^{2}\right]$	2 var.
14	Z_{12}	$a x^{2} y^{3}+x y^{4}+x^{3} y$	12	$\frac{9}{2}$	$\frac{\partial}{\partial x}$	$\left[x=-3 \frac{t^{3}}{2 a t+1}, y=-3 \frac{t^{2}}{2 a t+1}\right]$	2 var.

9^{*}. For $\max (p, q, r)=r$. Here $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$.

Arnold's zoo - the value of 1 vs. the hypotheses

Modality 1 (cont.)

	Class	Formula	μ	\neq	Zeroes of	Parametrization	Why
15	Z_{13}	$a x y^{5}+y^{6}+x^{3} y$	13	5	$\frac{\partial}{\partial x}$	$\left[x=\sqrt{\frac{-a}{3}} t^{2}, y=t\right]$	2 var.
16	W_{12}	$a x^{2} y^{3}+y^{5}+x^{4}$	12	4	$\frac{\partial}{\partial x}$	$[x=0, y=t]$	2 var.
17	W_{13}	$a y^{6}+x y^{4}+x^{4}$	13	$\frac{13}{3}$	$\frac{\partial}{\partial x}$	$\left[x=-4 t^{4}, y=4 t^{3}\right]$	2 var.
18	Q_{10}	$a x y^{3}+y^{4}+x^{3}+y z^{2}$	10	3	$\frac{\partial}{\partial x}, \frac{\partial}{\partial z}$	$\left[x=3 \sqrt{a} t^{3}, y=-3 t^{2}, z=0\right]$	sqh
19	Q_{11}	$a z^{5}+x z^{3}+x^{3}+y^{2} z$	11	$\frac{7}{2}$	$\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$	$\left[x=3 t^{3}, y=0, z=-3 t^{2}\right]$	sqh
20	Q_{12}	$a x y^{4}+y^{5}+x^{3}+y z^{2}$	12	4	$\frac{\partial}{\partial x}, \frac{\partial}{\partial z}$	$\left[x=-\sqrt{\frac{-a}{3}} t^{2}, y=t, z=0\right]$	sqh
21	S_{11}	$a x^{3} z+x^{4}+x z^{2}+y^{2} z$	11	3	$\frac{\partial}{\partial y}, \frac{\partial}{\partial z}$	$\left[x=2 t, y=0, z=-2 a t^{2}\right]$	sqh
22	S_{12}	$a z^{5}+x z^{3}+x^{2} y+y^{2} z$	12	$\frac{10}{3}$	$\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$	$\left[x=16 t^{4}, y=16 t^{5}, z=-8 t^{3}\right]$	sqh
23	U_{12}	$a x y z^{2}+z^{4}+x^{3}+y^{3}$	12	3	$\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$	$[x=0, y=0, z=t]$	sqh

Arnold's zoo — the value of \ddagger vs. the hypotheses

Modality 2

	Class	Formula	μ	1	Zeroes of	Parametrization	Why
24	$J_{3,0}$	$c x y^{7}+y^{9}+b x^{2} y^{3}+x^{3}$	16	8	$\frac{\partial}{\partial x}$	$\begin{array}{r} {\left[x=-128 \frac{b^{7} t^{3}}{(c t+3)}, y=4 \frac{b^{2} t}{(c t+3)^{2}}\right] \text { for } b \neq 0} \\ {\left[x=27 \sqrt{c} t^{7}, y=-3 t^{2}\right] \text { for } b=0} \end{array}$	2 var.
25	$\boldsymbol{J}_{3, p}$	$x^{3}+x^{2} y^{3}+\boldsymbol{a} y^{9+p}$	$16+p$	$8+p$	$\frac{\partial}{\partial x}$	$[x=0, y=t]$	2 var.
26	$Z_{1,0}$	$c x y^{6}+y^{7}+d x^{2} y^{3}+x^{3} y$	15	6	$\frac{\partial}{\partial x}$	$\begin{array}{r} {\left[x=3 t^{2}(9 c t-2 d)^{3}, y=-3 t(9 c t-2 d)\right]} \\ \text { for } c \neq 0 \vee d \neq 0 \\ {[x=0, y=t] \text { for } c=0 \wedge d=0} \end{array}$	2 var.
27	$Z_{1, p}$	$x^{3} y+x^{2} y^{3}+\boldsymbol{a} y^{7+p}$	$15+p$	$6+p$	$\frac{\partial}{\partial x}$	$[x=0, y=t]$	2 var.
28	$W_{1,0}$	$x^{4}+\boldsymbol{a} x^{2} y^{3}+y^{6}$	15	5	$\frac{\partial}{\partial x}$	$[x=0, y=t]$	2 var.
29	$W_{1, p}$	$x^{4}+x^{2} y^{3}+\boldsymbol{a} y^{6+p}$	$15+p$	$5+p$	$\frac{\partial}{\partial x}$	$[x=0, y=t]$	2 var.
30	$W_{1,2 q-1}^{\#}$	$\left(y^{3}+x^{2}\right)^{2}+\boldsymbol{a} x y^{4+q}$	$14+2 q$	$\frac{9}{2}+q$	$\frac{\partial}{\partial x}$	$\left[x=t^{3}+\frac{1}{8} a_{0} t^{2 q+2}+\ldots, y=-t^{2}\right]$	2 var.
31	$W_{1,2 q}^{\#}$	$\left(y^{3}+x^{2}\right)^{2}+\boldsymbol{a} x^{2} y^{3+q}$	$15+2 q$	$5+q$	$\frac{\partial}{\partial x}$	$\left[x=t^{3}+\frac{1}{4} a_{0}(-1)^{q} t^{2 q+3}+\ldots, y=-t^{2}\right]$	2 var.

Here $\boldsymbol{a}:=\left(a_{0}+a_{1} y\right), p, q>0$.

Arnold's zoo — the value of 1 vs. the hypotheses

Modality 2 (cont.); here $\boldsymbol{a}:=\left(a_{0}+a_{1} y\right), p, q>0$

Class	Formula	μ		Zer.	Parametrization	
$Q_{2,0}$	$x^{3}+y z^{2}+a x^{2} y^{2}+x y^{4}$	14	5	$\frac{2}{x^{2}} \cdot \overline{2}$		
$Q_{2, p}$	$x^{3}+y z^{2}+x^{2} y^{2}+a y^{6+p}$	14+p	${ }^{5+p}$		$[x=0, y=t, z=0]$	
$S_{1,0}$	$x^{2} z+y z^{2}+y^{5}+a y^{3} z$	14	4		$x=0, y=t, z=-\frac{1}{2} a_{1} t^{3}-\frac{1}{2} a^{2}$	
$S_{1, p}$	$x^{2} z+y z^{2}$	14	4+p		[$x=0, y=t, z=0]$	
${ }_{36} S_{1,2 q-1}^{\#}$	$x^{2} z+y z^{2}+y^{3} z+a x y^{3}+q$		+q			
${ }_{2 q}$			4+q	$q \frac{\partial}{\partial x} \frac{\partial}{\partial z} \frac{\partial}{\partial y}$	$\begin{array}{r} {\left[x=-t^{3} \sqrt{1+2 a_{0}(-1)^{1+q} t^{2 q}+2 a_{1}(-1) q^{2 q+2}, y=-t^{2}},\right.} \\ z=(-1)^{q}\left(-a_{0} t^{2 q+4}+a_{1} t^{2 q+6}\right] \end{array}$	
$U_{1,0}$	$x^{3}+x z^{2}+x y^{3}+a y^{3} z$	14	$\frac{7}{2}$	$\left.\frac{\partial}{\partial x^{2}} \frac{\partial}{\partial z} \right\rvert\,$	$\begin{array}{r} {\left[y=\left(\frac{-1}{6}+\frac{1}{6}\right) t^{2}, x=\left(\frac{-1}{12} a_{0}^{2}+\frac{1}{18}-\frac{1}{18} \eta\right) t^{3} z=\frac{-1}{12} a_{0}(-1+n) t^{3}\right]} \\ \text { for } \eta=\sqrt{-3} a_{0}^{2}+1 \text { and } a_{0}^{2}+1 / 3 \end{array}$	
$U_{1,2 q-1}$	$x^{3}+x z^{2}+x y^{3}+a y^{1+q} z^{2}$			$\frac{\partial}{2 x} \frac{\partial}{2 z}$	$\left[\begin{array}{l}{\left[x=(-1)^{q}\left(a_{0} t^{2 q+2}-a_{1} t^{2 q+4}\right), y=t^{2}\right.} \\ z=-t^{3} \sqrt{\left.1-3 a_{0}^{4} t^{4-2}+6 a_{0} a_{1} 1^{4 q}-3 a_{1}^{2} 1^{4 q+2}\right]}\end{array}\right.$	
$U_{1,2}$	$x^{3}+x z^{2}+x y^{3}+a y^{3}+$					

Arnold's $z 00$ - the value of \ddagger vs. the hypotheses

Modality 2 (cont.); here $\boldsymbol{a}:=\left(a_{0}+a_{1} y\right)$

	Class	Formula	μ	ł	Zeroes of	Parametrization	Why
41	E_{18}	$x^{3}+y^{10}+\boldsymbol{a x} y^{7}$	18	9	$\frac{\partial}{\partial x}$	$\begin{array}{r} {\left[x=-\frac{a_{0}^{4} 7^{2}}{\left(a_{1} t^{2}+3\right)^{4}}, y=-\frac{a_{0} t^{2}}{a_{1} t^{2}+3}\right] \text { for } a_{0} \neq 0} \\ {\left[x=\frac{1}{3} \sqrt{\left.-3 a_{1} t^{4}, y=t\right] \text { for } a_{0}=0}\right.} \end{array}$	2 var .
42	E	$x^{3}+x y^{7}+\boldsymbol{a} y^{11}$	19	$\frac{19}{2}$	$\frac{\partial}{\partial x}$	$\left[x=\frac{1}{81} t^{7}, y=-\frac{1}{3} t^{2}\right]$	2 var .
43	E_{20}	$x^{3}+y^{11}+\boldsymbol{a x} y^{8}$	20	10	$\frac{\partial}{\partial x}$	$\left[x=\frac{1}{3} \sqrt{-3 a_{1} t-3 a_{0} t^{4}, y=t}\right]$	2var.
44	Z_{17}	$x^{3} y+y^{8}+\boldsymbol{a x} y^{6}$	17	7	$\frac{\partial}{\partial x}$	$\left[x=\frac{1}{3} \sqrt{\left.-3 a_{1} t^{2}+3 a_{0} t^{5}, y=-t^{2}\right]}\right.$	2 var .
45	Z_{18}	$x^{3} y+x y^{6}+\boldsymbol{a} y^{9}$	18	$\frac{15}{2}$	$\frac{\partial}{\partial x}$	$\left[x=9 t^{5}, y=-3 t^{2}\right]$	2 var .
46	Z_{19}	$x^{3} y+y^{9}+\boldsymbol{a x} y^{7}$	19	8	$\frac{\partial}{\partial x}$	$\left[x=-\frac{1}{3} \sqrt{3 a_{1} t^{2}-3 a_{0} t^{6}, y=-t^{2}}\right]$	2var.
47	W_{17}	$x^{4}+x y^{5}+\boldsymbol{a} y^{7}$	17	$\frac{17}{3}$	$\frac{\partial}{\partial x}$	$\left[x=-2 t^{5}, y=2 t^{3}\right]$	2 var .
48	W_{18}	$x^{4}+y^{7}+\boldsymbol{a} x^{2} y^{4}$	18	6	$\frac{\partial}{\partial x}$	$[x=0, y=t]$	2 var .

Arnold's zoo - the value of \ddagger vs. the hypotheses

Modality 2 (cont.); here $\boldsymbol{a}:=\left(a_{0}+a_{1} y\right)$

	Class	Formula	μ	ł	Zeroes of	Parametrization	Why
49	Q_{16}	$x^{3}+y z^{2}+y^{7}+\boldsymbol{a x} y^{5}$	16	6	$\frac{\partial}{\partial x}, \frac{\partial}{\partial z}$	$\left[x=-\frac{a_{0}^{3} t^{5}}{\left(a_{1} t^{5}+3\right)^{3}}, y=-\frac{a_{0} t^{2}}{a^{2}}, z=0\right]$ for $a_{0} \neq 0$ $\left[y=t, x=\sqrt{\left.-\frac{1}{3} a_{1} t^{3}, z=0\right]}\right.$ for $a_{0}=0$	sqh
50	Q_{17}	$x^{3}+y z^{2}+x y^{5}+\boldsymbol{a y} y^{8}$	17	$\frac{13}{2}$	$\frac{\partial}{\partial x}, \frac{\partial}{\partial z}$	$\left[y=-\frac{1}{3} t^{2}, x=-\frac{1}{27} t^{5}, z=0\right]$	sqh
51	Q_{18}	$x^{3}+y z^{2}+y^{8}+\boldsymbol{a x y} y^{6}$	18	7	$\frac{\partial}{\partial x}, \frac{\partial}{\partial z}$	$\left[x=\frac{1}{3} \sqrt{\left.-3 a_{0}-3 a_{1} t t^{3}, y=t, z=0\right]}\right.$	sqh
52	S_{16}	$x^{2} z+y z^{2}+x y^{4}+\boldsymbol{a y} y^{6}$	16	$\frac{14}{3}$	$\frac{\partial}{\partial x}, \frac{\partial}{\partial z}$	$\left[x=t^{5}, y=t^{3}, z=-\frac{1}{2} t^{7}\right]$	sqh
53	S_{17}	$x^{2} z+y z^{2}+y^{6}+\boldsymbol{a y ^ { 4 } z}$	17	5	$\frac{\partial}{\partial x}, \frac{\partial}{\partial z}$	$\left[x=0, y=t, z=-\frac{1}{2} a_{0} t^{3}-\frac{1}{2} a_{1} t^{4}\right]$	sqh
54	U_{16}	$x^{3}+x z^{2}+y^{5}+\boldsymbol{a x ^ { 2 } y ^ { 2 }}$	16	4	$\frac{\partial}{\partial x}, \frac{\partial}{\partial z}$	$[x=0, y=t, z=0]$	sqh

Arnold's zoo - the value of \ddagger vs. the hypotheses

Modality k - 1

	Class	Formula	μ	1	Zer.	Parametrization	Why
55	$\boldsymbol{J}_{k, 0}$	$x^{3}+b x^{2} y^{k}+y^{3 k}+\left(\sum_{j=0}^{k-3} c_{j} y^{j}\right) x y^{2 k+1}$	$6 k-2$	$3 k-1$	$\frac{\partial}{\partial x}$	$\left[x=\frac{1}{3}\left(-b+\sqrt{b^{2}-3 \sum_{j=0}^{k-3} c_{j} t^{j+1}}\right) t^{k}, y=t\right]$	2var.
56	$\boldsymbol{J}_{k, i}$	$x^{3}+x^{2} y^{k}+\left(\sum_{j=0}^{k-2} a_{j} y^{j}\right) y^{3 k+i}$	$6 k+i-2$	$3 k+i-1$	$\frac{\partial}{\partial x}$	$[x=0, y=t]$	2var.
57	$\boldsymbol{E}_{6 k}$	$x^{3}+y^{3 k+1}+\left(\sum_{j=0}^{k-2} a_{j} y^{j}\right) x y^{2 k+1}$	$6 k$	$3 k$	$\frac{\partial}{\partial x}$	$\left[x=\frac{\sqrt{3}}{3} \sqrt{-\sum_{j=0}^{k-2} a_{j} t^{2 j}} t^{2 k+1}, y=t^{2}\right]$	2var.
58	$\boldsymbol{E}_{6 k+1}$	$x^{3}+x y^{2 k+1}+\left(\sum_{j=0}^{k-2} a_{j} y^{j}\right) y^{3 k+2}$	$6 k+1$	$3 k+\frac{1}{2}$	$\frac{\partial}{\partial x}$	$\left[x=\frac{1}{3} i \sqrt{3} t^{2 k+1}, y=t^{2}\right]$	2var.
59	$\boldsymbol{E}_{6 k+2}$	$x^{3}+y^{3 k+2}+\left(\sum_{j=0}^{k-2} a_{j} y^{j}\right) x y^{2 k+2}$	$6 k+2$	$3 k+1$	$\frac{\partial}{\partial x}$	$\left[x=\frac{\sqrt{3}}{3} \sqrt{-\sum_{j=0}^{k-2} a_{j} t^{2 j}} t^{2 k+2}, y=t^{2}\right]$	2var.

Thanks!

Thanks for your attention!

Bibliography

Bibliography

[Abd05] Yacoub Ould Mohamed Abderrahmane. On the Łojasiewicz exponent and Newton polyhedron. Kodai Math. J., 28(1):106-110, 2005.
[Abd17] Yacoub Ould Mohamed Abderrahmane. The Łojasiewicz exponent for weighted homogeneous polynomial with isolated singularity. Glasg. Math. J., 59(2):493-502, 2017.
[AFdBLM10] Enrique Artal-Bartolo, Javier Fernández de Bobadilla, Ignacio Luengo, and Alejandro Melle-Hernández. Milnor number of weighted-Lê-Yomdin singularities. Int. Math. Res. Not. IMRN, (22):4301-4318, 2010.
[AGV85] Vladimir Igorevich Arnold, Sabir Medgidovich Gusein-Zade, and Aleksandr Nikolaevich Varchenko. Singularities of differentiable maps. Vol. I. The classification of critical points, caustics and wave fronts, volume 82 of Monographs in Mathematics.

Birkhäuser Boston Inc., Boston, MA, 1985. Translated from the Russian by Ian Porteous and Mark Reynolds.
[Arn04] Vladimir Igorevich Arnold. Arnold's Problems. Springer Berlin Heidelberg, 2004.
[BF17] Carles Bivià-Ausina and Toshizumi Fukui. Invariants for biLipschitz equivalence of ideals. Q. J. Math., 68(3):791-815, 2017. [Biv02] Carles Bivià-Ausina. A method to estimate the degree of C^{0} sufficiency of analytic functions. Experiment. Math., 11(1):81-85, 2002.
[BKO12] Szymon Brzostowski, Tadeusz Krasiński, and Grzegorz Oleksik. A conjecture on the Łojasiewicz exponent. J. Singul., 6:124-130, 2012. Singularities in Geometry and Appl., Bedlewo (2011).
[BKO20] Szymon Brzostowski, Tadeusz Krasiński, and Grzegorz Oleksik. The Łojasiewicz exponent of non-degenerate surface singularities. ArXiv e-prints, https://arxiv.org/abs/ 2010.06071v1:1-16, 2020.
[BMP17] Janko Böhm, Magdaleen Suzanne Marais, and Gerhard Pfister. A classification algorithm for complex singularities of corank and modality up to two. In Singularities and computer
algebra. Festschrift for Gert-Martin Greuel on the occasion of his $70 t h$ birthday. Based on the conference, Lambrecht (Pfalz), Germany, June 2015, pages 21-46. Cham: Springer, 2017.
[Brz15] Szymon Brzostowski. The Łojasiewicz exponent of semiquasihomogeneous singularities. Bull. Lond. Math. Soc., 47(5):848-852, 2015.
[Brz19] Szymon Brzostowski. A note on the Łojasiewicz exponent of non-degenerate isolated hypersurface singularities. In Tadeusz Krasiński and Stanisław Spodzieja, editors, Analytic and Algebraic Geometry 3, pages 27-40. Wydawnictwo Uniwersytetu Łódzkiego, Łódź, 2019.
[CK88] Jacek Chądzyński and Tadeusz Krasiński. The Łojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero. In Singularities (Warsaw, 1985), volume 20 of Banach Center Publ., pages 139-146. PWN, Warsaw, 1988.
[CK97] Jacek Chądzyński and Tadeusz Krasiński. A set on which the local Łojasiewicz exponent is attained. Ann. Polon. Math., 67(3):297-301, 1997.
[CL73] Shih Hung Chang and Y. C. Lu. On C^{0}-sufficiency of complex jets. Canadian J. Math., 25:874-880, 1973.
[DG83] James Damon and Terence Gaffney. Topological triviality of deformations of functions and Newton filtrations. Invent. Math., 72(3):335-358, 1983.
[dJP00] Theo de Jong and Gerhard Pfister. Local analytic geometry. Basic theory and applications. Advanced Lectures in Mathematics. Friedr. Vieweg \& Sohn, Braunschweig, 2000.
[Fuk91] Toshizumi Fukui. Łojasiewicz type inequalities and Newton diagrams. Proc. Amer. Math. Soc., 112(4):1169-1183, 1991.
[Gre86] Gert-Martin Greuel. Constant Milnor number implies constant multiplicity for quasihomogeneous singularities. Manuscripta Math., 56(2):159-166, 1986.
[Kin78] Henry C. King. Topological type of isolated critical points. Ann. Math. (2), 107:385-397, 1978.
[KOP09] Tadeusz Krasiński, Grzegorz Oleksik, and Arkadiusz Płoski. The Łojasiewicz exponent of an isolated weighted homogeneous surface singularity. Proc. Amer. Math. Soc., 137(10):3387-3397, 2009.
[Kou76] Anatoly Georgievich Kouchnirenko. Polyèdres de Newton et nombres de Milnor. Invent. Math., 32(1):1-31, 1976.
[Len98] Andrzej Lenarcik. On the Łojasiewicz exponent of the gradient of a holomorphic function. In Singularities Symposium—Łojasiewicz 70 (Kraków, 1996; Warsaw, 1996), volume 44 of Banach Center Publ., pages 149-166. Polish Acad. Sci., Warsaw, 1998.
[LM95] Ignacio Luengo and Alejandro Melle. A formula for the Milnor number. C. R. Acad. Sci. Paris Sér. I Math., 321(11):1473-1478, 1995.
[LR76] Dũng Tráng Lê and Chakravarthi Padmanabhan Ramanujam. The invariance of Milnor's number implies the invariance of the topological type. Amer. J. Math., 98(1):67-78, 1976.
[LT08] Monique Lejeune-Jalabert and Bernard Teissier. Clôture intégrale des idéaux et équisingularité. Ann. Fac. Sci. Toulouse Math. (6), 17(4):781-859, 2008. With an appendix by Jean-Jacques Risler. An updated version of: Clôture intégrale des idéaux et équisingularité. Centre de Mathématiques, Université Scientifique et Medicale de Grenoble (1974).
[Mer77] Michel Merle. Invariants polaires des courbes planes. Invent. Math., 41(2):103-111, 1977.
[Oka18] Mutsuo Oka. Łojasiewicz exponents of non-degenerate holomorphic and mixed functions. Kodai Math. J., 41(3):620-651, 2018.
[Ole13] Grzegorz Oleksik. The Łojasiewicz exponent of nondegenerate surface singularities. Acta Math. Hungar., 138(1-2):179-199, 2013.
[Pło85] Arkadiusz Płoski. Sur l'exposant d'une application analytique. II. Bull. Polish Acad. Sci. Math., 33(3-4):123-127, 1985.
[Pło88] Arkadiusz Płoski. Multiplicity and the Łojasiewicz exponent. In Singularities (Warsaw, 1985), volume 20 of Banach Center Publ., pages 353-364. PWN, Warsaw, 1988.
[Pło90] Arkadiusz Płoski. Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of \boldsymbol{C}^{2}. Ann. Polon. Math., 51:275-281, 1990.
[Pło01] Arkadiusz Płoski. On the maximal polar quotient of an analytic plane curve. Kodai Math. J., 24(1):120-133, 2001.
[Pło10] Arkadiusz Płoski. Semicontinuity of the Łojasiewicz exponent. Univ. Iagel. Acta Math., 48:103-110, 2010.
[RRS16] Tomasz Rodak, Adam Różycki, and Stanisław Spodzieja. Multiplicity and semicontinuity of the łojasiewicz exponent. Bull.

Pol. Acad. Sci. Math., 64(1):55-62, 2016.
[Sae88] Osamu Saeki. Topological invariance of weights for weighted homogeneous isolated singularities in C^{3}. Proc. Amer. Math. Soc., 103(3):905-909, 1988.
[Tei77] Bernard Teissier. Variétés polaires. I. Invariants polaires des singularités d'hypersurfaces. Invent. Math., 40(3):267-292, 1977. [Tim77] James Gregory Timourian. The invariance of Milnor's number implies topological triviality. Amer. J. Math., 99(2):437-446, 1977.
[Var82] Aleksandr Nikolaevich Varchenko. A lower bound for the codimension of the $\mu=$ const stratum in terms of the mixed Hodge structure. Vestnik Moskov. Univ. Ser. I. Mat. Mekh., 6:28-31, 1982.
[Yau88] Stephen Shing-Toung Yau. Topological types and multiplicities of isolated quasihomogeneous surface singularities. Bull. Amer. Math. Soc. (N.S.), 19(2):447-454, 1988.

[^0]: 2010 Mathematics Subject Classification. Primary 32Sxx, Secondary 14Hxx.
 Key words and phrases. Resolution of singularities, curve, blowing-up, coherent analytic sheaf.
 ${ }^{*}$) This article was published (in Polish) in the proceedings of $\mathrm{X}^{t h}$ Workshop on Theory of Extremal Problems (1989) and has never appeared in translation elsewhere. To honor this

