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Let U be open in Rn or a Riemannian manifold. Let f : U → R be a C 2

function. Set ϕ : R→ R ∪ {+∞} defined by

ϕ(t) = inf{|∇f (x)| : x ∈ f −1(t)}

if t ∈ f (U), and ϕ(t) = +∞ otherwise. We say that t0 ∈ R is a typical value
of f if there exists c0 > 0 such that ϕ(t) > c0 in some neighborhood of t0.
The complement in R of the set of typical values of f is the set of generalized
critical values of f denoted by K (f ). Clearly K0(f ) ⊂ K (f ), where K0(f )
stands for the set of all critical values of f , but in general

K0(f ) 6= K (f ).

For instance if f extends to a neighborhood of U in such a way that the
extension has a critical point at x ∈ ∂U , but f has no critical points in U ,
then f (x) ∈ K (f ) \ K0(f ).



Exercise . Prove that

K (f ) = {t ∈ R : ∃xν∈U f (xν)→ t, |∇f (xν)| → 0, as ν → +∞}.

Let ε ≥ 0, the set

Vε(f ) = {x ∈ U : |∇f (x)| 6 (1 + ε)ϕ(f (x))}

is called the ε-ridge/valley set of f . Clearly Vε(f ) contains the set of all
critical points of f , of course Vε(f ) depends on U .



Assume the set K (f ) of generalized critical values of f , is finite. Let

Γε(f ) ⊂ Vε(f )

be a curve satisfying the following properties:

(i) Γε(f ) is a finite union of smooth connected curves and points;

(ii) for any t ∈ f (U) \ K (f ) the set f −1(t) ∩ Γε(f ) consists of exactly one
point;

(iii) Γε(f ) intersects transversally f −1(t) for all but finitely many t ∈ f (U).

Such a curve Γε(f ) will be called an ε-talweg of f . Note that the ε-talweg of
f depends on U , the domain of f .



Let 0 < τ ≤ 1. We say that a C 1 curve x : I → U is a τ -trajectory of ∇f if
x ′(t) 6= 0 for each t ∈ I and

〈∇f (x(t)), x ′(t)〉 ≥ τ |∇f (x(t))| |x ′(t)|, t ∈ I . (1)

In other words, the cosine of the angle between ∇f (x(t)) and x ′(t) is greater
than or equal to τ . Clearly a 1-trajectory of ∇f is a trajectory of ∇f in the
standard sense.

Theorem (Generalized Comparison Principle)
Assume that f : U → R is a C 2 function defined in an open subset U of Rn

and 0 < τ ≤ 1. Let x : I → U be a τ -trajectory of ∇f . Then the length of
x(t) is bounded by

1 + ε

τ
Length Γε(f ).

Comparison Principle. The length of any trajectory of ∇f is bounded by
(1 + ε) Length Γε(f ).
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Since Γε(f ) meets transversally all but a finite number of fibers of f , we will
assume that the curve Γε(f ) is smooth, connected and transverse to every
fiber of f . Moreover by deleting finitely many fibers f −1(t), t ∈ K (f ), we may
assume that f has no generalized critical values in U .
Let x : I → U be a τ -trajectory of ∇f ; note that it is an embedding of I into
U . So, X := x(I ) is a smooth curve. Let x(s) be the arc-length
parametrization of X of ∇f and let γ(u) be the arc-length parametrization of
the curve Γε(f ). We fix orientations so that both functions s 7→ (f ◦ x)(s) and
u 7→ (f ◦ γ)(u) are strictly increasing.



Let η : X → Γε(f ) be given by η = (f |Γε(f ))
−1 ◦ (f |X ). We now compute η in

our arc-length charts, that is, we consider h(s) = γ−1 ◦ η ◦ x(s). Clearly, to
prove Theorem 1 it is enough to show that h′(s) > τ

1+ε . Taking the derivative
with respect to s in the equality (f ◦ η ◦ x)(s) = (f ◦ x)(s) we obtain

〈∇f ((η ◦ x)(s)), (η ◦ x)′(s)〉 = 〈∇f (x(s)), x ′(s)〉.
Since x(s) is a τ -trajectory of ∇f , by (1) we have

〈∇f (x(s)), x ′(s)〉 ≥ τ |∇f (x(s))||x ′(s)| = τ |∇f (x(s))|
since |x ′(s)| = 1. Therefore, by the Cauchy–Schwarz inequality

|∇f ((η ◦ x)(s))| · |(η ◦ x)′(s)| > τ |∇f (x(s))|.
Since η(x(s)) ∈ Vε(f ), we have

(1 + ε)|∇f (x(s))| ≥ |∇f ((η ◦ x)(s))|,
thus |(η ◦ x)′(s)| > τ

1+ε . But γ is an arc-length parametrisation, so

h′(s) = (γ−1 ◦ η ◦ x)′(s) = |(η ◦ x)′(s)| ≥ τ

1 + ε
,

and Theorem follows.



Comparison principle

Theorem (Comparison Principle, D’Acunto , K. 2005)
Let f : U → R be a C 2 function defined in an open subset U of Rn or on a
Riemannian manifold. Let x : I → U be a trajectory of ∇f . Then the length
of the trajectory x(t) is bounded by (1 + ε)Length Γε(f ).

For two values y1 < y2, consider a trajectory x(t) of ∇f , starting at the level
f −1(y1) and ending at the level f −1(y2). By the Comparison Principle Then
the length of the trajectory x(t)

Length of x(t) ≤ (1 + ε)Length (f −1(y1, y2) ∩ Γε(f )).





Given f : U → R of class C 2, assume that ε-talweg, denoted by Γε(f ), is of
finite length. Let K ⊂ U be compact. Consider a sequence aν ∈ K , ν ∈ N
such that the sequence f (aν) ∈ R, ν ∈ N is decreasing, moreover aν+1 is the
orthogonal projection of aν on f −1(f (aν+1)) ∩ K .

Theorem (Convergence of proximal algorithm)
There exists limν→∞ aν = a∗, moreover

|aν − a∗| ≤ Length(Γε(f ) ∩ f −1([f (a∗), f (aν)]).

Indeed, by Comparison Principle, the length of the trajectory γν of ∇f , joining
aν with the level f −1(f (aν+1)) is bounded by the length of
(Γε(f ) ∩ f −1([f (aν+1), f (aν)]). On the other hand |aν − aν+1| is bounded by
the length of γν . Clearly

|aν − a∗| ≤
∞∑
k=ν

|ak − ak+1|.



X

a0

f (x) = f (a0)

a1

f (x) = f (a1)

a2

f (x) = f (a2)

a∗

f (x) = f ∗
γ1

γ2

Γ1 - talweg

M1 = Int X - stratum

M2 = ∂X = Γ2 - talweg



Convexification and discrete gradient trajectories

Let X ⊂ Rn be a compact convex semialgebraic set and f ≥ m > 0 a
polynomial. Then for some N ∈ N (explicite) the function

ϕN,ξ(x) := (1 + |x − ξ|2)N f (x)

is µ-strongly convex on X for any ξ ∈ X .
Choose an arbitrary point a0 ∈ X , and by induction set

aν := argminX ϕN,aν−1.

Theorem (K.,Spodzieja 2015)
The limit

a∗ = lim
ν→∞

aν

exists, and f (a∗) is a lower critical value of f on X .



Talweg lines and gradient extremal lines

In the definition of ε-ridge/valley we allow ε = 0. In this case V0(f ) is the set
of points x ∈ U at which |∇f | has a global minimum on the fiber f −1(f (x)).
The set V0(f ) depends on U , so it is more natural to consider also local
minima of |∇f | on fibers of f , that is the set

Γ1(f ) = {x ∈ U : |∇f | has a loc. min. at x on the fiber f −1(f (x))}.

We will call this set the talweg (in ancient spelling thalweg) of f or the ridge
and valley lines of f . Clearly V0(f ) ⊂ Γ1(f ).



Actually the notion of ridge or bottom of a valley is not really well determined
in the literature. There are several definitions which are used in applied
sciences. These “natural” lines appear in classical geomorphology, specially in
hydrology, oil recovery meteorology and recently in a very spectacular way in
artificial vision.
In the late 19th century there were fascinating discussions on how to define
mathematically the lines (“talwegs”) sketching the drainage pattern of a
landscape of the graph of a function f in two variables: see, among many
others, de Saint-Venant, Cayley, Maxwell, Jordan. Nowadays, the discussion is
still alive and has been imported to image analysis. Some authors insisted that
“talwegs” should be composed of trajectories of ∇f ; they suggested that
stable and unstable manifolds should be good candidates. However to define
“talweg” in this way, f must have saddle points in U , but on the other hand
we “see” ridges or valleys even when we do not “see” saddle points, for
instance they are possibly outside of the domain U .



The set Γ1(f ) is hence one of the possible candidates for a “talweg”. It has
several advantages, which we explain below. First let us introduce a larger set
called the gradient extremal set

Θ1(f ) = {x ∈ U : d(|∇f |2) ∧ df = 0}.

This is simply the set of critical points of the map (f , |∇f |2) : U → R2 and of
course

Γ1(f ) ⊂ Θ1(f ).

Clearly Θ1(f ) is closed in U .
Let Hf (x) be the Hessian matrix of f at the point x . Note that
∇(|∇f |2) = 2Hf · ∇f . Hence we have the following

Lemma
The set Θ1(f ) = {x ∈ Rn : d(|∇f |2) ∧ df = 0} is the set of points x ∈ Rn

such that ∇f (x) is an eigenvector of Hf (x).



The canonical stratification of the incidence variety Σ
Let Sn(R) the space of n × n symmetric matrices with real entries. We define

Σ = {(V ,H) ∈ Rn × Sn(R) : ∃λ ∈ R, H · V = λV }.

Denote by S∗n (R) ⊂ Sn(R) the space of n × n symmetric matrices with real
entries and simple and nonzero eigenvalues.

Theorem (Stratification of Sigma )
Denote Σ0 = 0× Sn(R), Σ∗0 = 0× S∗n (R), Σ1 = Σ \ Σ0. Then

1. Σ is algebraic of codimension n − 1.

2. Σ0 \ Σ∗0 is algebraic of codimension n + 1,

3. Σ1 = Σ \ Σ0 is nonsingular,

4. (Σ1,Σ
∗
0) satisfies Whitney’s condition condition b (and even a stronger

condition: (Σ1,Σ
∗
0) is locally analytically trivial along Σ∗0).



Given a C 2 function f : U → R, where U is an open subset of Rn, we shall
consider Tf : U → Rn × Sn(R), the Gauss–Hesse map of f , given by

Tf (x) = (∇f (x),Hf (x)).

Recall that Σ consists of couples (eigenvector, symmetric matrix). Hence

Θ1(f ) = (Tf )−1(Σ). (2)

Let U be an open subset of Rn and let f : U → R be a C∞ function. We
denote by Cf = {x ∈ U : ∇f (x) = 0} the critical set of f . Recall that f is a
Morse function at x ∈ Cf if the Hessian matrix Hf (x) has only nonzero
eigenvalues. Suppose that the eigenvalues of Hf (x) are simple; then Hf (x)
has n distinct eigenspaces L1, . . . , Ln each of dimension 1.



Theorem (Local structure of the gradient extremal set of a
generic C∞ function)
Assume that Tf , the Gauss–Hesse map of f , is transverse to the strata of Σ.
Then

1. f is Morse function, hence the critical set Cf has only isolated points,

2. Θ1(f ) \ Cf is a C∞ submanifold of dimension 1,

3. for any x ∈ Cf there exists an open neighborhood Ux such that

Θ1(f ) ∩ Ux = S1 ∪ · · · ∪ Sn, (3)

3.1 each Si is a connected C∞ submanifold of dimension 1, closed in Ux ,
3.2 Si ∩ Sj = {x}, for any i 6= j ,
3.3 Li is tangent to Si at x .

Possibly Θ1(f ) = ∅.



Bound for the length of gradient trajectories for generic C∞ functions.

Let V be an open subset of U such that V ⊂ U is compact and the boundary
B of V is smooth. Let Θ2(f ) denote the corresponding gradient extremal set
of f on the boundary of V .

Theorem
There is an open and dense set S ⊂ C∞(U ,R) such that, if f ∈ S, then the
length of any trajectory of ∇f in V is bounded by the length of
(V ∩Θ1(f )) ∪Θ2(f ), in particular it is finite.



Open Problems.

Describe global structure of the gradient extremal set of a generic C∞

function f on a compact manifold M .

More precisely, assume that M is connected. To the best of my knowledge,
the following questions are open:

I Is there a Morse function f : M → R such that Θ1(f ) is connected ?

I If so, are the critical points of f restricted to Θ1(f ) exactly the critcal
points of f on M ?

I If so, it should be possible to interpret Morse (Floer) Homology on Θ1(f ).



Lecture 2: Effective estimates for the length of gradient
trajectories in the polynomial case.



o-minimal structures

A collection M =
⋃

n∈NMn is an o-minimal structure on (R,+, ·), where
each Mn is a family of subsets of Rn, if

1. each Mn is closed under finite set-theoretical operations;

2. if A ∈Mn and B ∈Mm, than A× B ∈Mn+m;

3. let A ∈Mn+m and π : Rn+m → Rn be the projection on the first n
coordinates, then π(A) ∈Mn;

4. let f , g1, ..., gk ∈ Q[X1, ...,Xn], then
{x ∈ Rn : f (x) = 0, g1(x) > 0, ..., gk(x) > 0} ∈ Mn;

5. M1 consists of all finite unions of open intervals and points.

For a fixed o-minimal structure M, A ∈Mn is called definable in M. A
map f : A→ Rm, is M definable if its graph is M- definable. Semialgebraic
sets, globally subanalytic sets form o-minimal structures. An important new
o-minimal structure is Rexp the expansion of semialgebraic sets by the global
exponential function (suggested by Tarski).



Lemma (Infimum on fibers)
Let f : A→ R be a definable function such that f (x) > 0 for all x ∈ A. Let
G : A→ Rm be a definable mapping and define a function ϕ : G (A)→ R by

ϕ(y) = inf
x∈G−1(y)

f (x).

Then ϕ is definable.

Lemma (Definable choice)
Let S ⊆ Rm+n be a definable set and πm : Rm+n → Rm be the projection on
the first m coordinates. Then there exists a definable map f : πm(S)→ Rn

such that the graph of f is contained in S .

Lemma (Uniform finiteness)
Let A ⊂ Rn+m be a definable set and assume that for all y ∈ Rm the set
Ay = {x ∈ Rn : (x , y) ∈ A} is finite. Then there exists an integer N such that
CardAy ≤ N for all y ∈ Rm.



Let Γ be a compact definable curve and let H denote the set of affine
hyperplanes in Rn. Then, for almost every H ∈ H (that is, except maybe for a
definable subset H1 ⊂ H of codimension greater than or equal to 1), the set
Γ ∩ H is finite. Let i(Γ,H) denote the cardinality of Γ ∩ H .

Theorem (Cauchy - Crofton formula)
There exists a normalization of the canonical measure µ on H such that the
length of Γ can be expressed by the formula

Length(Γ) =

∫
H

i(Γ,H)dµ. (4)

Corollary (Uniform bound for the length of definable curves)
Let K ⊂ Rn be a compact set and let G = {Γp}p∈P be a definable family of
definable curves contained in K . Then there exists a constant mG > 0,
depending only on the family G, such that for any p ∈ P ,

Length(Γp) ≤ mG.



The constant mG in the Corollary is the product of some integer i∗ by the
normalized volume of the hyperplanes that intersect the compact set K . Let
us denote by ν(n) this volume when K = Bn. Then we have the following

ν(n) = nVoln(Bn)
Voln−1(Bn−1) .

Using the Euler Γ function we obtain the following alternative formula:

ν(n) = 2Γ

(
1

2

)
Γ

(
n + 1

2

)
Γ

(
n

2

)−1

Note that in dimension 2, we have ν(2) = π and, for any n ∈ N, ν(n) 6 2n.
A simple computation shows that ν(n) ∼

√
2πn for sufficiently large n.



Lemma (Generalized critical values, definable case)
Let f : U → R be a C 1 function defined on an open bounded subset U of Rn.
Assume that f is definable in an o-minimal structure. Then the set K (f ) is
finite.

Proof Recall that
ϕ(t) = inf{|∇f (x)| : x ∈ f −1(t)}

is a definable function on f (U) ⊂ R. Hence there are t0 < t1 < · · · < tN such
that f is monotone (and nonnegative) on each (ti , ti+1).
Recall that t ∈ R is a typical value of f if there exists c > 0 such that
ϕ(t) > c in some neighborhood of t. Otherwise t ∈ K (f ). For any ε > 0 set

Σε := {x ∈ U : |∇f (x)| ≤ ε}.

The collection Σε, ε > 0 is a definable family of definable and bounded sets.
For ε > 0 small enough Σε = Σ1

ε ∪ · · · ∪ Σk
ε , have the same number of

connected components. Moreover, the geometric diameter of any Σi
ε is

uniformly bounded by some constant D > 0. Thus, f (Σi
ε) is a segment of the

length at most εD.



Note that
K (f ) =

⋂
ε>0

f (Σε).

Therefore K (f ) consists of at most k points.

Let U be an open subset of Rn × Rk and f : U → R a definable function.
Then the set U is definable by definition. Let us denote by P ⊂ Rk the
projection of U on the last coordinates. For p ∈ P set

Up = {x ∈ Rn : (x , p) ∈ U}, fp : Up → R,

where fp(x) = f (x , p), x ∈ Up is a definable function. Throughout this
section, F = {fp}p∈P denotes the definable family of such functions fp.



Gradient trajectories of definable functions

Under these hypotheses, we state the main result of this section:

Theorem
Let F be a definable family of functions as above. Assume that for each
p ∈ P , the function fp is of class C 2 on Up and there exists a compact set
K ⊂ Rn such that Up ⊂ K . Then there exists a constant MF > 0 such that,
for all p ∈ P , the length of any trajectory of ∇fp is bounded by MF .

Let F denote a definable family of functions satisfying the same assumptions
as in Theorem except that the definable sets Up are bounded but not
necessarily contained in a fixed compact set K . Let dp denote the diameter of
Up. Then we have the following corollary:

Corollary
There exists a constant MF > 0 such that for every p ∈ P the length of any
trajectory of ∇fp is bounded by MF · dp.



Bounds for gradient trajectories of polynomials

Throughout this section f : Rn → R denotes a polynomial function of degree
d . We will give an explicit upper bound for the length of a trajectory of ∇f
restricted to the unit ball Bn. First observe that the following corollary follows
easily from the previous Theorem.

Corollary
Let f be a polynomial in n variables of degree d . Then the length of any
trajectory of ∇f in a ball of radius r is bounded by rA(n, d), where A(n, d) is
a constant depending only on d and n.

In order to estimate A(n, d) explicitly we will use the method described in
Lecture 1. We shall construct explicitly a talweg of f , i.e. a semialgebraic
curve Γ with the following property: if y ∈ Bn, then

|∇f (y)| ≥ |∇f (x)| for some x ∈ Γ ∩ f −1(f (y)). (5)



In other words, we have to minimize |∇f |2 on the fibers of f restricted to Bn.
More precisely, we shall prove that, for a generic polynomial f of degree d , the
set

Γ1 = {x ∈ Bn : |∇f |2 has a loc. min. at x on f −1(f (x)) ∩ Bn}

is of dimension at most 1. We shall prove that the set Γ2 ⊂ Sn−1 defined by

Γ2 = {x ∈ Sn−1 : |∇f |2 has a loc. min. at x on f −1(f (x)) ∩ Sn−1}

is of dimension 1. Then we take Γ = Γ1 ∪ Γ2 and for a generic polynomial we
shall give explicit formulae for polynomials describing Γ1 and Γ2.
The following proposition shows that the locus of points at which the level
sets of the polynomials f and |∇f |2 are not transverse, generically defines an
algebraic curve. Let X = (X1, . . . ,Xn) and denote by Rd [X] the space of
polynomials in n variables of degree less than or equal to d .



Let X = (X1, . . . ,Xn) and denote by Rd [X] the space of polynomials in n
variables of degree less than or equal to d .

Lemma (Generic transversality)
Let n, d ≥ 2. Then there exists a semialgebraic set Ed ⊂ Rd [X] of
codimension greater than or equal to 1 such that, for any polynomial
f ∈ Rd [X] \ Ed , the set

Θ1(f ) = {x ∈ Rn : d(|∇f |2) ∧ df = 0}

is either empty or a finite union of real algebraic curves.

Proof. Recall that by (2) we have Θ1(f ) = (Tf )−1(Σ), where

Σ = {(V ,H) : ∃λ ∈ R : H · V = λV }
is an algebraic subset of Rn × Sn(R) and Tf = (∇f ,Hf ) is the Gauss–Hess
map of f . Recall that codim Σ = n − 1. Let

Ed = {f ∈ Rd [X] : Tf is not transverse to Σ}.
By routine arguments, Ed is semialgebraic. To show that the set Rd [X] \ Ed is
dense in Rd [X] we make quadratic perturbation.



We now study Γ2, the set of points of Sn−1 where |∇f |2 has a local minimum
on the fibers of f restricted to the sphere. Let r(x) = |x |2 and define

Θ2(f ) = {x ∈ Sn−1 : d(|∇f |2) ∧ df ∧ dr = 0}.

Note that Γ2 ⊂ Θ2(f ) and Θ2(f ) is the set of critical points of |∇f |2 on the
fibers of f restricted to the sphere. For a generic polynomial f the set Θ2(f )
is a curve, namely we have:

Lemma (Generic transversality on the sphere)
There exists a semialgebraic set Fd ⊂ Rd [X] of codimension greater than or
equal to 1 such that, for any f ∈ Rd [X] \ Fd , the set Θ2(f ) is nonempty and
is a finite union of real algebraic curves.

Proof. We proceed as before and define

Σ̃ =
{

(V ,H , p) ∈ Rn × Sn(R)× Sn−1 : (H · V ) ∧ V ∧ p = 0
}
.

and argue on transversality to Σ̃.



Take Gd = Ed ∪ Fd .

Theorem (Estimate in a generic case)
Let n, d > 2 be integers. Then for any f ∈ Rd [X] \ Gd , the length of any
trajectory of ∇f in Bn is bounded by

A(n, d) = ν(n)((3d − 4)n−1 + 2(3d − 3)n−2)

where ν(n) is a constant depending only on the dimension.

Proof. To apply Cauchy-Crofton formula we need

Lemma
For a generic affine hyperplane H the set H ∩Θ1(f ) has at most (3d − 4)n−1

points.

Recall that Θ1(f ) = {x ∈ Rn : d(|∇f |2) ∧ df = (2Hf · ∇f ) ∧∇f = 0}. So, it
is contained in the zero set of (n − 1) polynomials of the degree at most
(d − 2) + (d − 1)− (d − 1) = 3d − 4. We conclude with general version of
Bézout’s Theorem.



Similarly

Lemma
For a generic affine hyperplane H the set H ∩Θ2(f ) has at most 2(3d − 3)n−2

points.

According to Comparison Principle the length of any ∇f in Bn is bounded by
A(n, d), for a generic polynomial f ∈ Rd [X1, . . . ,Xn].
Finally, by a perturbation argument (a bit involved) and Generalized
Comparison Principle we obtain

Theorem
If f : Rn → R, with n > 2, is a polynomial of degree d ≥ 2, then the length of
any trajectory of ∇f in a ball of radius r is bounded by

ν(n)rA(n, d),

where A(n, d) = (3d − 4)n−1 + 2(3d − 3)n−2.



Example for a lower bound

For integers d and n, we will denote by D(n, d) the supremum of the lengths
of gradient trajectories of polynomials of degree d in the unit ball in Rn. Then

Theorem
For any integers n, d ≥ 2

D(n, 2d) > 2dn−1, d ∈ N.

Idea of example; the dth Chebyshev polynomial (of the first kind) Td(x) is
determined by Td(cos θ) = cos(dθ). For x = (x1, . . . , xn) ∈ Rn, put
fi(x) = xi+1 − Td(xi) and p =

∑n−1
i=1 f 2

i . Now we define our polynomial by

f (x) = α(1− x2
1 )− p(x),

where α > 0 is small enough. For n = 3 and d = 6 the levels of f looks like





We state an estimate on the length of gradient trajectories of fewnomials. Let
fi , i = 1, . . . , n, be polynomials in n variables with only K monomials. Then,
Khovanskĭı’s classical result states that the number of non degenerate
solutions of the system f1 = · · · = fn = 0 is bounded by

2n(1 + n)K2
K(K−1)

2 .

Theorem
Let f be a polynomial in n variables containing only k monomials. Then the
length of the trajectories of ∇f inside a ball of radius r is bounded by

rν(n)N(n, k),

where N(n, k) = 2n[(1 + n)K12
K1(K1−1)

2 + (1 + n)K22
K2(K2−1)

2 ],

K1 = 2n(k + n(n+3)
2 )3 and K2 = 6n(k + n(n+3)

2 )3.



Let D ⊂ Rn be path-connected, by diamg (D) we mean the infinimum of c >
such that any pairs of points can be joined in D by path of length ≤ c .

Theorem
Let f : Rn → R, with n > 2, be a polynomial of degree d ≥ 2 and let B(r) be
a ball of radius r in Rn. Let Di , i ∈ I , be all connected components of
{f > 0} ∩ B(r). Then∑

i∈I

diamg (Di) ≤ Odn−1 = 2rν(n)(3d + 2)n−1. (6)

In particular diamg (Di) 6 2rν(n)(3d + 2)n−1 for any connected component
Di . More precisely, any two points in Di can be joined in Di by an arc which is
a piecewise trajectory of ∇g or −∇g of length not greater than
2rν(n)(3d + 2)n−1, where g is a polynomial of degree at most d + 2.



Lecture 3: From Talweg to KL-inequality and the  Lojasiewicz
gradient inequality

Let f : U → R be a C 21 function defined on an open bounded subset U of
Rn. Assume that f is definable in an o-minimal structure. Then Γ1(f )

ϕ(t) = inf{|∇f (x)| : x ∈ f −1(t)}

is a definable function on f (U) ⊂ R. Let us take definable 1-talweg, denoted
Γ1(f ). That is, if y ∈ Γ1(f ) then |∇f (y)| ≤ 2ϕ(f (y)). Thus for any x ∈ U
such that f (x) = f (y) we have

2|∇f (x)| ≥ |∇f (y)|.

Let η : (a, b)→ Γ1(f ) be an (almost) arc-length parametrization,|η′| ≤ 2. Set
h = f ◦ η : (a, b)→ R, recall that h is strictly increasing definable C 1. Put
c , d) = h((a, b)). So h : (a, b)→ (c , d) is a diffeomorphism. Set

Ψ = 4h−1 : (c , d)→ (a, b).



Let us take x ∈ U , there exists y ∈ Γ1(f ) such that f (x) = f (y) = t. Let
s ∈ (a, b) such that y = η(s). Then

|h′(s)| = |〈∇(η(s)), η′(s)〉| ≤ |∇f (η(s))||η′(s)〉| ≤ 2|∇f (y)|.

So, |h′(s)|−1| ≥ (2|∇f (y)|)−1. Now we compute

|∇(Ψ ◦ f )(x)| = |Ψ′(f (x))||∇f (x)| ≥ 4|h′(s)|−1|(1/2)|∇f (y)|.

Therefore |∇(Ψ ◦ f )(x)| ≥ 1.



K-L inequality

Theorem (K 1998)
Let f : U → R be a C 2 definable in an o-minimal structure M, where U ⊂ Rn

is open bounded set. Then there exists continuous strictly increasing function
Ψ : (α, β)→ R definable in the structure M such that

‖∇(Ψ ◦ f )‖ ≥ 1,

holds in U .

The function Ψ is called a desingularizing function for f . Since Ψ is definable
it is differentiable except finitely many points.
Frequently, a function f : U → R (not necessarily definable, possibly even
open in some infinite dimensional Hilbert space) satisfying the conclusion of
this theorem, is said to has KL -property.



Applying K-L inequality

For two values y1 < y2, consider a trajectory x(t) of ∇f , starting at the level
f −1(y1) and ending at the level f −1(y2). Up to a reparametrization x(t) is a
trajectory of ∇(Ψ ◦ f ) starting at (Ψ ◦ f )−1(Ψ(y1)) and ending at
(Ψ ◦ f )−1(Ψ(y2)). Take the arc length parametrization s of the trajectory
x(t), and set g(s) = Ψ ◦ f (x(s)), then

g ′(s) = 〈∇(Ψ ◦ f )(x(s), x ′(s)〉 = ‖∇(Ψ ◦ f )‖ ≥ 1.

Hence the length of x(t) is not greater then Ψ(y2)−Ψ(y1).



 Lojasiewicz’s gradient inequality.

Theorem ( Lojasiewicz 1962)
Let f : U → R be a real analytic function, where U ⊂ Rn is open and K ⊂ U
a compact set. Then for any x∗ ∈ K there exists constants C > 0, ε > 0 and
ρ < 1 such that

‖∇f (x)‖ ≥ C |f (x)− f (x∗)|ρ, (7)

for x ∈ K such that |f (x)− f (x∗)| ≤ ε.

We deduce it from the KL-inequality. For simplicity, assume f (x∗) = 0. In the
subanalytic case we can take Ψ(y) = bsgn(y)|y |1−ρ, where 1− ρ > 0 and
b > 0 is a constant. Since ‖∇(Ψ ◦ f )‖ ≥ 1, we get

|Ψ′(f (x)||∇f (x)| = b(1− ρ)|f (x)|−ρ||∇f (x)| ≥ 1.

So, ‖∇f (x)‖ ≥ C |f (x)|ρ holds with C = b(1− ρ).



By F : (Rn, a)→ (Rm, 0), where a ∈ Rn, we denote a mapping from a
neighborhood U ⊂ Rn of the point a to Rm such that F (a) = 0. We put
V (F ) = {x ∈ U : F (x) = 0}.
If F : (Rn, a)→ (Rm, 0) is a real analytic mapping, then there are positive
constants C , η, ε such that the following  Lojasiewicz inequality holds:

|F (x)| ≥ C dist(x ,V (F ))η if |x − a| < ε, (8)

where | · | is the Euclidean norm in Rn and dist(x ,V ) is the distance of
x ∈ Rn to the set V (dist(x ,V ) = 1 if V = ∅). The smallest exponent η in
(8) is called the  Lojasiewicz exponent of F at a and is denoted by La(F ). It is
known that La(F ) is a rational number and (8) holds with any η ≥ La(F ) and
some C , ε > 0.



Let f : (Rn, a)→ (R, 0) be a real analytic function.
Then there are positive constants C , ε and a constant % ∈ [0, 1) such that the
following  Lojasiewicz gradient inequality holds

|∇f (x)| ≥ C |f (x)|% if |x − a| < ε. ( L)

The smallest exponent % in ( L), denoted by %a(f ), is called the  Lojasiewicz
exponent in the gradient inequality. The number %a(f ) is rational and ( L)
holds with any exponent % ≥ %a(f ) and some positive constants C , ε.



In the case of an analytic function f : (Rn, a)→ (R, 0) such that V (f ) = {a}
(i.e. has a strict extremum at a), Gwoździewicz proved that

La(f ) =
1

1− %a(f )
= La(∇f ) + 1. (G1)

The above result is not true in the general case, even if we assume that f has
an isolated singularity. For an arbitrary analytic function f : (Rn, a)→ (R, 0)
we have proved (with Spodzieja) that

La(f ) ≤ 1

1− %a(f )
(9)

and there are positive constants C , ε such that

|∇f (x)| ≥ C dist(x ,V (f ))%a(f )/(1−%a(f )) if |x − a| < ε (10)

If f has an isolated singularity at a, we proved that

1

1− %a(f )
≤ La(∇f ) + 1. (11)

By Gwoździewicz’s result (G1), the estimates (9) and (11) are exact in terms
of %a(f ).



Bounds on %a(f ) for polynomials

Let f : Rn → R be a polynomial of degree d . If f has a local strict extremum
at a, Gwoździewicz proved that

%a(f ) ≤ 1− 1

(d − 1)n + 1
. (G2)

He used polar curves. In the general case, i.e. without the assumption that a
is an isolated point of V (f ),

Theorem ( D. D’Acunto and K. Kurdyka, A. Gabrielov)

%a(f ) ≤ 1− 1

d(3d − 4)n−1
for d ≥ 2, (D-K )



Proof.
Let a ∈ Γ1(f ) ⊂ Rn and assume ∇f (a) = 0.
Consider η(s) arc-length parametrization of Γ1(f ) and
h(s) = f ◦ η(s) = ska(s), a(0) 6= 0. How to control k ?
Recall that the talweg Γ1(f ) is contained in

Θ1(f ) = {x ∈ Rn : d(|∇f |2) ∧ df = (2Hf · ∇f ) ∧∇f = 0}.

So, Θ1(f ) is contained in the zero set of (n − 1) polynomials of the degree at
most (d − 2) + (d − 1)− (d − 1) = 3d − 4. The order k , of f on Θ1(f ) is
bounded by

k ≤ d(3d − 4)n−1

and we conclude as in the implication KL inequality to  Lojasiewicz inequality.
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