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The tojasiewicz exponent of the gradient

e For f: (C?,0) — (C,0) holomorphic with an isolated
singularity at zero 0 € C2, (f) is the smallest & > 0 in the

inequality
grad £(z)| > Clz[’

for a positive constant C and small |z|.
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The tojasiewicz exponent of the gradient

e For f: (C?,0) — (C,0) holomorphic with an isolated
singularity at zero 0 € C2, (f) is the smallest & > 0 in the
inequality

jgrad £(2)] > Clz|’
for a positive constant C and small |z|.
@ An application (Chang & Lu 1973, Teissier 1977)

[4(F)] +1

equals the minimal possible r such that adding to f
monomilas of order strictly greater than r does not change the

equisingularity class of f.
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The relative tojasiewicz exponent

@ Restricting the inequality
lgrad f(z)| > C|z|?, C >0, |z|small

to a subset A C C? (sum of curves, 0 € A) we can consider
the relative tojasiewicz exponent

1(f|A) .
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to a subset A C C? (sum of curves, 0 € A) we can consider
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The relative tojasiewicz exponent

@ Restricting the inequality
lgrad f(z)| > C|z|?, C >0, |z|small

to a subset A C C? (sum of curves, 0 € A) we can consider

the relative tojasiewicz exponent
1(f|A) .

o 1(f) > H(f|A)
o We say that ¥(f) is attained on A if ¥(f) = #(f|A).
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Polar curves

e Every smooth A : (C?,0) — (C,0) defines a polar curve of f

rf,/\ = {J(Aa f) = O}

where ON OF  ON Of
MO =9xay “avax
A= court-
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@ Question 1: for which A

) =4(fITrn) ?
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@ Question 2: what we can say about t(f|l's \) knowing the
equisingularity class of the pair f, \ 7

@ Teissier 1977: the equality holds for A = bX — aY for
sufficiently generic (a: b) € P1(C).
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@ Question 1: for which A
) =4(fITrn) ?

@ Question 2: what we can say about t(f|l's \) knowing the
equisingularity class of the pair f, \ 7
@ Teissier 1977: the equality holds for A = bX — aY for
sufficiently generic (a: b) € P1(C).
@ Chadzynski & Krasinski 1988: for A, u transversal and smooth
l'(f) = l’(f|rf’>\ U Fm) .

@ Bogustawska 1999, Kuo & Parusinski 1998, Ptoski 2001: if A
is transversal to f then

HF) =(f[Trn) -
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Special direction

@ A consequence of Chadzynski & Krasinski 1988
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Special direction

@ A consequence of Chadzynski & Krasinski 1988

o DEF We call a direction (a: b) € P1(C) special for f if there
exists A\ tangent to this direction such that

f(f) > l’(f|rf’)\) .
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Special direction

@ A consequence of Chadzynski & Krasinski 1988

o DEF We call a direction (a: b) € P1(C) special for f if there
exists A\ tangent to this direction such that
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@ COROLLARY There exists at most one special direction.
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Special direction

@ A consequence of Chadzynski & Krasinski 1988

o DEF We call a direction (a: b) € P1(C) special for f if there
exists A\ tangent to this direction such that

f(f) > l’(f|rf’)\) .

@ COROLLARY There exists at most one special direction.

@ Proof. Suppose that there exist two (a: b) # (c : d) special
directions. Then there exist A tangent to (a: b) and
tangent to (c : d) such that

1(f) > 4(f|T¢ ) and ¥(f) > +(f[T¢ ) .
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Special direction

@ A consequence of Chadzynski & Krasinski 1988

o DEF We call a direction (a: b) € P1(C) special for f if there
exists A\ tangent to this direction such that

f(f) > l’(f|rf’)\) .

@ COROLLARY There exists at most one special direction.

@ Proof. Suppose that there exist two (a: b) # (c : d) special
directions. Then there exist A tangent to (a: b) and
tangent to (c : d) such that

1(f) > 4(f|T¢ ) and ¥(f) > +(f[T¢ ) .
e Contradiction follows form Chadzynski & Krasinski 1988.
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Theorem A.L. 2011 arXiv

o f isolated singularity,
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o f isolated singularity,
o f =M .  f(t) tangential decomposition; t = t(f) the
number of tangents.
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Theorem A.L. 2011 arXiv

f isolated singularity,

o £ =1 . f(t) tangential decomposition; t = t(f) the
number of tangents.

We put §; := #(f()) + ord f —ord f() (i =1,...,1).
1(f) = max{ty,... 1}

The special direction exists if and only if there exists exactly

(]

one maximum among numbers t1,... 1;.
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Theorem A.L. 2011 arXiv

f isolated singularity,

o £ =1 . f(t) tangential decomposition; t = t(f) the
number of tangents.

We put §; := #(f()) + ord f —ord f() (i =1,...,1).
1(f) = max{ty,... 1}

The special direction exists if and only if there exists exactly

(]

one maximum among numbers t1,... 1;.

If the special direction exists then for every A tangent to this

direction
1(F) > +(fTr ) -
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Corollaries

e If f is unitangent (t(f) = 1) then the direction tangent to f is
special.
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Corollaries

e If f is unitangent (t(f) = 1) then the direction tangent to f is
special.

@ If f has only smooth and pairwise transversal components
then there is no special direction and ¥(f) = ord f — 1.
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Corollaries

e If f is unitangent (t(f) = 1) then the direction tangent to f is
special.

@ If f has only smooth and pairwise transversal components
then there is no special direction and ¥(f) = ord f — 1.

@ More difficult example of series without the special direction:
FD = X(X + Y2)(X2+ Y3), fA = y2 4+ X5 f=rff,
This example gives an occasion to show how to compute the
tojasiewicz exponent by using the Newton diagram.
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tojasiewicz exponent and the Newton Polygon (set of

pairwise nonparallel compact segments of the boundary)

o f(X,Y)= angXaYﬁ, supp f = {(o, ) : cap # 0}.
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tojasiewicz exponent and the Newton Polygon (set of

pairwise nonparallel compact segments of the boundary)
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tojasiewicz exponent and the Newton Polygon (set of

pairwise nonparallel compact segments of the boundary)

(0.0)

°
@ We say that f in nondegenerate on the segment S of the
Newton polygon if the polynomial
in(f,8) = Y copXY”?
(a,B)€S
has no multiple factors different from X and Y.
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Kouchnirenko nondegeneracy + theorem
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Kouchnirenko nondegeneracy + theorem

e DEF f is nondegenerate in the Kouchnirenko sense if f is
nondegenerate on every segment of the Newton polygon.
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Kouchnirenko nondegeneracy + theorem

e DEF f is nondegenerate in the Kouchnirenko sense if f is
nondegenerate on every segment of the Newton polygon.

@ Theorem (A.L. 1998) f has an isolated singularity, the
Newton polygon has at least one nonexceptional segment, f is
nondegenerate in the Kouchnirenko sense. Then

H(r) = max{a(S), (S)} — 1

where S runs over the nonexceptional segments of the

Newton polygon

(0,b) :
| exceptional
| segments
|
(1,q)

D _

|
|
|
7\
il (a,0)
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Computations

i | (f,o‘) (2 3) | (3 2) () 1
X T) = X X
@G(SL e(®)=¥ e
¥ (59)- o)L=
A S
o4l = |
B o g U () =5

AP aRP I3 El
{ 6+6-4=8 £ =4+6-2=8 & x(f )= of5)-1=4
YA LHAGIG)8 | s




Intersection multiplicity of local curves f and g, semigroup

of branch

@ Algebra: (f, g)o is the C codimention of the ideal generated
by f and g in the ring C{X, Y}
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Intersection multiplicity of local curves f and g, semigroup

of branch

@ Algebra: (f, g)o is the C codimention of the ideal generated
by f and g in the ring C{X, Y}

e Topology: (f,g)o is the linking number of two knots (links)
defined by f~1(0) and g~1(0) (intersections with a small
sphere S3)

e (f,g)o > (ord f)(ord g)

@ Semigroup I of a branch h (irreducible curve)

r(h) = {(h,g)o g ?s an arbitrary curve for wich h}
is not a component
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Intersection multiplicity of local curves f and g, semigroup

of branch

@ Algebra: (f, g)o is the C codimention of the ideal generated
by f and g in the ring C{X, Y}

e Topology: (f,g)o is the linking number of two knots (links)
defined by f~1(0) and g~1(0) (intersections with a small
sphere S3)

e (f,g)o > (ord f)(ord g)

@ Semigroup I of a branch h (irreducible curve)

() = {(hedo: &

° F(h):NBo+---+NBg, fo < - <Bg the minimal
sequence of generators, called the branch characteristics

is an arbitrary curve for wich h}

is not a component

(singularity invariant).
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Description of #(f|I'¢ )
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Version of Eggers tree: A.L. 2011, 2013
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Positions of branches
Kuo Lu Lemma 1977
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The case when ) is tangent to f
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