The Łojasiewicz exponent of the gradient of
a plane complex curve with respect to its polar

curve

Andrzej Lenarcik

Kielce University of Technology
GDAŃSK-KRAKÓW-ŁÓDŹ-WARSZAWA WORKSHOP IN SINGULARITY THEORY
A special session dedicated to the memory of STANISŁAW ŁOJASIEWICZ
Warszawa, December 12-16, 2022

The Łojasiewicz exponent of the gradient

- For $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow(\mathbb{C}, 0)$ holomorphic with an isolated singularity at zero $0 \in \mathbb{C}^{2}, \boldsymbol{t}(f)$ is the smallest $\theta>0$ in the inequality

$$
|\operatorname{grad} f(z)| \geqslant C|z|^{\theta}
$$

for a positive constant C and small $|z|$.

The Łojasiewicz exponent of the gradient

- For $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow(\mathbb{C}, 0)$ holomorphic with an isolated singularity at zero $0 \in \mathbb{C}^{2}, \boldsymbol{t}(f)$ is the smallest $\theta>0$ in the inequality

$$
|\operatorname{grad} f(z)| \geqslant C|z|^{\theta}
$$

for a positive constant C and small $|z|$.

- An application (Chang \& Lu 1973, Teissier 1977)

$$
\lfloor\nmid(f)\rfloor+1
$$

equals the minimal possible r such that adding to f monomilas of order strictly greater than r does not change the equisingularity class of f.

The relative $\npreceq o j a s i e w i c z$ exponent

- Restricting the inequality

$$
|\operatorname{grad} f(z)| \geqslant C|z|^{\theta}, \quad C>0, \quad|z| \text { small }
$$

to a subset $A \subset \mathbb{C}^{2}$ (sum of curves, $0 \in A$) we can consider the relative Łojasiewicz exponent

$$
\nmid(f \mid A) .
$$

The relative $\npreceq o j a s i e w i c z$ exponent

- Restricting the inequality

$$
|\operatorname{grad} f(z)| \geqslant C|z|^{\theta}, \quad C>0, \quad|z| \text { small }
$$

to a subset $A \subset \mathbb{C}^{2}$ (sum of curves, $0 \in A$) we can consider the relative Łojasiewicz exponent

$$
\nmid(f \mid A) .
$$

- $\boldsymbol{\not}(f) \geqslant \boldsymbol{t}(f \mid A)$

The relative $\npreceq o j a s i e w i c z$ exponent

- Restricting the inequality

$$
|\operatorname{grad} f(z)| \geqslant C|z|^{\theta}, \quad C>0, \quad|z| \text { small }
$$

to a subset $A \subset \mathbb{C}^{2}$ (sum of curves, $0 \in A$) we can consider the relative $Ł$ ojasiewicz exponent

$$
\nvdash(f \mid A) .
$$

- $\boldsymbol{\not}(f) \geqslant \boldsymbol{}(f \mid A)$
- We say that $\boldsymbol{\not}(f)$ is attained on A if $\boldsymbol{\imath}(f)=\boldsymbol{Y}(f \mid A)$.

Polar curves

- Every smooth $\lambda:\left(\mathbb{C}^{2}, 0\right) \rightarrow(\mathbb{C}, 0)$ defines a polar curve of f

$$
\Gamma_{f, \lambda}=\{\mathbf{J}(\lambda, f)=0\}
$$

where

$$
\mathbf{J}(\lambda, f)=\frac{\partial \lambda}{\partial X} \frac{\partial f}{\partial Y}-\frac{\partial \lambda}{\partial Y} \frac{\partial f}{\partial X}
$$

Questions

- Question 1: for which λ

$$
\boldsymbol{\not}(f)=\boldsymbol{\not}\left(f \mid \Gamma_{f, \lambda}\right) ?
$$

Questions

- Question 1: for which λ

$$
\boldsymbol{t}(f)=\boldsymbol{t}\left(f \mid \Gamma_{f, \lambda}\right) ?
$$

- Question 2: what we can say about $\mathbf{~}\left(f \mid \Gamma_{f, \lambda}\right)$ knowing the equisingularity class of the pair f, λ ?

Questions

- Question 1: for which λ

$$
\boldsymbol{t}(f)=\boldsymbol{\not}\left(f \mid \Gamma_{f, \lambda}\right) ?
$$

- Question 2: what we can say about $\mathbf{~}\left(f \mid \Gamma_{f, \lambda}\right)$ knowing the equisingularity class of the pair f, λ ?
- Teissier 1977: the equality holds for $\lambda=b X-a Y$ for sufficiently generic $(a: b) \in \mathbb{P}^{1}(\mathbb{C})$.

Questions

- Question 1: for which λ

$$
\boldsymbol{t}(f)=\boldsymbol{\not}\left(f \mid \Gamma_{f, \lambda}\right) ?
$$

- Question 2: what we can say about $\mathbf{~}\left(f \mid \Gamma_{f, \lambda}\right)$ knowing the equisingularity class of the pair f, λ ?
- Teissier 1977: the equality holds for $\lambda=b X-a Y$ for sufficiently generic $(a: b) \in \mathbb{P}^{1}(\mathbb{C})$.
- Chądzyński \& Krasiński 1988: for λ, μ transversal and smooth

$$
\nmid(f)=\boldsymbol{\not}\left(f \mid \Gamma_{f, \lambda} \cup \Gamma_{f, \mu}\right)
$$

Questions

- Question 1: for which λ

$$
\nmid(f)=\nmid\left(f \mid \Gamma_{f, \lambda}\right) ?
$$

- Question 2: what we can say about $\nmid\left(f \mid \Gamma_{f, \lambda}\right)$ knowing the equisingularity class of the pair f, λ ?
- Teissier 1977: the equality holds for $\lambda=b X-a Y$ for sufficiently generic $(a: b) \in \mathbb{P}^{1}(\mathbb{C})$.
- Chądzyński \& Krasiński 1988: for λ, μ transversal and smooth

$$
\nmid(f)=\boldsymbol{\not}\left(f \mid \Gamma_{f, \lambda} \cup \Gamma_{f, \mu}\right)
$$

- Bogusławska 1999, Kuo \& Parusiński 1998, Płoski 2001: if λ is transversal to f then

$$
\nmid(f)=\nmid\left(f \mid \Gamma_{f, \lambda}\right) .
$$

Special direction

- A consequence of Chądzyński \& Krasiński 1988

Special direction

- A consequence of Chądzyński \& Krasiński 1988
- DEF We call a direction $(a: b) \in \mathbb{P}^{1}(\mathbb{C})$ special for f if there exists λ tangent to this direction such that

$$
\boldsymbol{\not}(f)>\boldsymbol{\not}\left(f \mid \Gamma_{f, \lambda}\right) .
$$

Special direction

- A consequence of Chądzyński \& Krasiński 1988
- DEF We call a direction $(a: b) \in \mathbb{P}^{1}(\mathbb{C})$ special for f if there exists λ tangent to this direction such that

$$
\nmid(f)>\boldsymbol{t}\left(f \mid \Gamma_{f, \lambda}\right) .
$$

- COROLLARY There exists at most one special direction.

Special direction

- A consequence of Chądzyński \& Krasiński 1988
- DEF We call a direction $(a: b) \in \mathbb{P}^{1}(\mathbb{C})$ special for f if there exists λ tangent to this direction such that

$$
\nmid(f)>\nmid\left(f \mid \Gamma_{f, \lambda}\right) .
$$

- COROLLARY There exists at most one special direction.
- Proof. Suppose that there exist two $(a: b) \neq(c: d)$ special directions. Then there exist λ tangent to $(a: b)$ and μ tangent to ($c: d$) such that

$$
\boldsymbol{\not}(f)>\boldsymbol{t}\left(f \mid \Gamma_{f, \lambda}\right) \text { and } \boldsymbol{\not}(f)>\boldsymbol{t}\left(f \mid \Gamma_{f, \mu}\right) .
$$

Special direction

- A consequence of Chądzyński \& Krasiński 1988
- DEF We call a direction $(a: b) \in \mathbb{P}^{1}(\mathbb{C})$ special for f if there exists λ tangent to this direction such that

$$
\nmid(f)>\nmid\left(f \mid \Gamma_{f, \lambda}\right) .
$$

- COROLLARY There exists at most one special direction.
- Proof. Suppose that there exist two $(a: b) \neq(c: d)$ special directions. Then there exist λ tangent to $(a: b)$ and μ tangent to ($c: d$) such that

$$
\boldsymbol{\not}(f)>\boldsymbol{t}\left(f \mid \Gamma_{f, \lambda}\right) \text { and } \boldsymbol{\not}(f)>\boldsymbol{t}\left(f \mid \Gamma_{f, \mu}\right) .
$$

- Contradiction follows form Chądzyński \& Krasiński 1988.

Theorem A.L. 2011 arXiv

- f isolated singularity,

Theorem A.L. 2011 arXiv

- f isolated singularity,
- $f=f^{(1)} \ldots f^{(t)}$ tangential decomposition; $t=t(f)$ the number of tangents.

Theorem A.L. 2011 arXiv

- f isolated singularity,
- $f=f^{(1)} \ldots f^{(t)}$ tangential decomposition; $t=t(f)$ the number of tangents.
- We put $\mathbf{t}_{i}:=\mathbf{t}\left(f^{(i)}\right)+\operatorname{ord} f-\operatorname{ord} f^{(i)}(i=1, \ldots, t)$.

Theorem A.L. 2011 arXiv

- f isolated singularity,
- $f=f^{(1)} \ldots f^{(t)}$ tangential decomposition; $t=t(f)$ the number of tangents.
- We put $\mathbf{t}_{i}:=\mathbf{t}\left(f^{(i)}\right)+\operatorname{ord} f-\operatorname{ord} f^{(i)}(i=1, \ldots, t)$.
- $\boldsymbol{\not}(f)=\max \left\{\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{t}\right\}$.

Theorem A.L. 2011 arXiv

- f isolated singularity,
- $f=f^{(1)} \ldots f^{(t)}$ tangential decomposition; $t=t(f)$ the number of tangents.
- We put $\mathbf{f}_{i}:=\mathbf{t}\left(f^{(i)}\right)+\operatorname{ord} f-\operatorname{ord} f^{(i)}(i=1, \ldots, t)$.
- $\mathfrak{t}(f)=\max \left\{\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{t}\right\}$.
- The special direction exists if and only if there exists exactly one maximum among numbers $\boldsymbol{\not}_{1}, \ldots, \boldsymbol{\not}_{t}$.

Theorem A.L. 2011 arXiv

- f isolated singularity,
- $f=f^{(1)} \ldots f^{(t)}$ tangential decomposition; $t=t(f)$ the number of tangents.
- We put $\mathbf{t}_{i}:=\mathbf{t}\left(f^{(i)}\right)+\operatorname{ord} f-\operatorname{ord} f^{(i)}(i=1, \ldots, t)$.
- $\boldsymbol{\not}(f)=\max \left\{\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{t}\right\}$.
- The special direction exists if and only if there exists exactly one maximum among numbers $\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{t}$.
- If the special direction exists then for every λ tangent to this direction

$$
\nmid(f)>\nmid\left(f \mid \Gamma_{f, \lambda}\right) .
$$

Corollaries

- If f is unitangent $(t(f)=1)$ then the direction tangent to f is special.

Corollaries

- If f is unitangent $(t(f)=1)$ then the direction tangent to f is special.
- If f has only smooth and pairwise transversal components then there is no special direction and $\not \boldsymbol{\not}(f)=\operatorname{ord} f-1$.

Corollaries

- If f is unitangent $(t(f)=1)$ then the direction tangent to f is special.
- If f has only smooth and pairwise transversal components then there is no special direction and $\nmid(f)=\operatorname{ord} f-1$.
- More difficult example of series without the special direction: $f^{(1)}=X\left(X+Y^{2}\right)\left(X^{2}+Y^{3}\right), f^{(2)}=Y^{2}+X^{5}, f=f^{(1)} f^{(2)}$. This example gives an occasion to show how to compute the Łojasiewicz exponent by using the Newton diagram.
$Ł o j a s i e w i c z$ exponent and the Newton Polygon (set of pairwise nonparallel compact segments of the boundary)
- $f(X, Y)=\sum c_{\alpha \beta} X^{\alpha} Y^{\beta}, \quad \operatorname{supp} f=\left\{(\alpha, \beta): c_{\alpha \beta} \neq 0\right\}$.

Łojasiewicz exponent and the Newton Polygon (set of pairwise nonparallel compact segments of the boundary)

- $f(X, Y)=\sum c_{\alpha \beta} X^{\alpha} Y^{\beta}, \quad \operatorname{supp} f=\left\{(\alpha, \beta): c_{\alpha \beta} \neq 0\right\}$.

Łojasiewicz exponent and the Newton Polygon (set of

 pairwise nonparallel compact segments of the boundary)- $f(X, Y)=\sum c_{\alpha \beta} X^{\alpha} Y^{\beta}, \quad \operatorname{supp} f=\left\{(\alpha, \beta): c_{\alpha \beta} \neq 0\right\}$.

- We say that f in nondegenerate on the segment S of the Newton polygon if the polynomial

$$
\operatorname{in}(f, S)=\sum_{(\alpha, \beta) \in S} c_{\alpha \beta} X^{\alpha} Y^{\beta}
$$

has no multiple factors different from X and Y.

Kouchnirenko nondegeneracy + theorem

Kouchnirenko nondegeneracy + theorem

- DEF f is nondegenerate in the Kouchnirenko sense if f is nondegenerate on every segment of the Newton polygon.

Kouchnirenko nondegeneracy + theorem

- DEF f is nondegenerate in the Kouchnirenko sense if f is nondegenerate on every segment of the Newton polygon.
- Theorem (A.L. 1998) f has an isolated singularity, the Newton polygon has at least one nonexceptional segment, f is nondegenerate in the Kouchnirenko sense. Then

$$
\nmid(f)=\max _{S}\{\alpha(S), \beta(S)\}-1
$$

where S runs over the nonexceptional segments of the Newton polygon

Computations

$$
f^{(1)}=X\left(X+Y^{2}\right)\left(X^{2}+Y^{3}\right)=X^{(4,0)}+X^{(2,3)} Y^{(2,3,2)}+X^{(32}+X Y^{(1,5)}
$$

$$
\begin{array}{cc}
x_{1}=6+6-4=8 ; x_{2}=4+6-2=8 & \text { 个 }
\end{array} \quad \notin\left(f^{(2)}\right)=\alpha(s)-1=4
$$

Intersection multiplicity of local curves f and g, semigroup of branch

- Algebra: $(f, g)_{0}$ is the \mathbb{C} codimention of the ideal generated by f and g in the ring $\mathbb{C}\{X, Y\}$

Intersection multiplicity of local curves f and g, semigroup of branch

- Algebra: $(f, g)_{0}$ is the \mathbb{C} codimention of the ideal generated by f and g in the ring $\mathbb{C}\{X, Y\}$
- Topology: $(f, g)_{0}$ is the linking number of two knots (links) defined by $f^{-1}(0)$ and $g^{-1}(0)$ (intersections with a small sphere S^{3})

Intersection multiplicity of local curves f and g, semigroup of branch

- Algebra: $(f, g)_{0}$ is the \mathbb{C} codimention of the ideal generated by f and g in the ring $\mathbb{C}\{X, Y\}$
- Topology: $(f, g)_{0}$ is the linking number of two knots (links) defined by $f^{-1}(0)$ and $g^{-1}(0)$ (intersections with a small sphere S^{3})
- $(f, g)_{0} \geqslant(\operatorname{ord} f)(\operatorname{ord} g)$

Intersection multiplicity of local curves f and g, semigroup of branch

- Algebra: $(f, g)_{0}$ is the \mathbb{C} codimention of the ideal generated by f and g in the ring $\mathbb{C}\{X, Y\}$
- Topology: $(f, g)_{0}$ is the linking number of two knots (links) defined by $f^{-1}(0)$ and $g^{-1}(0)$ (intersections with a small sphere S^{3})
- $(f, g)_{0} \geqslant(\operatorname{ord} f)(\operatorname{ord} g)$
- Semigroup 「 of a branch h (irreducible curve)

$$
\Gamma(h)=\left\{(h, g)_{0}: g \begin{array}{l}
\text { is an arbitrary curve for wich } h \\
\text { is not a component }
\end{array}\right\}
$$

Intersection multiplicity of local curves f and g, semigroup of branch

- Algebra: $(f, g)_{0}$ is the \mathbb{C} codimention of the ideal generated by f and g in the ring $\mathbb{C}\{X, Y\}$
- Topology: $(f, g)_{0}$ is the linking number of two knots (links) defined by $f^{-1}(0)$ and $g^{-1}(0)$ (intersections with a small sphere S^{3})
- $(f, g)_{0} \geqslant(\operatorname{ord} f)(\operatorname{ord} g)$
- Semigroup 「 of a branch h (irreducible curve)

$$
\Gamma(h)=\left\{(h, g)_{0}: g \begin{array}{l}
\text { is an arbitrary curve for wich } h \\
\text { is not a component }
\end{array}\right\}
$$

- $\Gamma(h)=\mathbb{N} \bar{\beta}_{0}+\cdots+\mathbb{N} \bar{\beta}_{\mathbf{g}}, \bar{\beta}_{0}<\cdots<\bar{\beta}_{\mathbf{g}}$ the minimal sequence of generators, called the branch characteristics (singularity invariant).

Description of $\nmid\left(f \mid \Gamma_{f, \lambda}\right)$
$J(\lambda, f)=g_{1} \ldots g_{s}$ factorization into branches
The a. λ is not a branch of $f \quad$ we may write

$$
\chi\left(f \mid \Gamma_{f, \lambda}\right)=\max _{j} \frac{\left(f, g_{j}\right)_{0}}{\operatorname{ord} g_{j}}-\frac{\left(\lambda, g_{j}\right)_{0}}{\operatorname{ord} g_{j}} \frac{\left(\frac{f}{\lambda}, g_{j}\right)_{0}}{\operatorname{ard} g_{j}}
$$

b. in general

The case $f=\lambda \tilde{f}$

$$
\begin{aligned}
J(\lambda, f) & =\lambda J(\lambda, \tilde{f}) \\
\frac{f}{\lambda} & =\tilde{f}
\end{aligned}
$$

Version of Eggers tree: A.L. 2011, 2013

Positions of branches of $\mathbf{J}(\lambda, f)$ with respect to f. Spirit of Kuo Lu Lemma 1977

D. T. Le 1975 top. appr.
Merle 1977 f branch, λ gen. doterninse the positions of branches (red) Ephraim 1983 f branch, λ arb. g_{1}, \ldots, g_{5} of $J(\lambda, f)$ with respect to $_{0} f$ and λ.
Kuo Lu 1977, Kuo-Lu tree
Eggers 1982, Eggers tree f reduced, λ gen
Lê, Michel, Weber 1989,1991 f reduced, $\lambda \lambda f$, no mult. Delgado 1994, two bváuches Casas 2000, summary Garcia Barroso 2000° developed Eggers
Mangendre 1998 pair fig milt

Eggers observed that red branches leave the tree at the balls of the type $B\left(f_{i}, f_{j}\right), B\left(f_{i}, \delta_{i k}\right)$ package g_{B} He described ord g_{B}

Egger assumed λ generic. Other authors observed that A.L., PToski2000, fnondeg, λ hf Gwoździevicz, Tosh 2002 Ir educed, 7 arb. no mult Kuo, Parusinskii 2001, pair $1, g$ Some exceptions: collinear bars A.L. 2004 freduced, λ arb. Michel 2008 pair f, g

The case when λ is tangent to f

Kuo-Parus 2004 observed that when the tree (Mu n-Lu) of the pair fig has what they call collinear points or bars, the way the roots of $f(f, g)$ leave the tree is not an invariant of the tree.
Here we have similar: we define B min as the ball among $B\left(f_{i}, f_{j}\right), B\left(f_{i}, \delta_{i k}\right), B\left(f_{i}, \lambda\right)$ with the minimal radius R. When $R>1$ then the way how branches of $J(\lambda, f)$ leave the tree of f below $B_{\text {min }}$ is not equisingularity invariant of the pair f, λ.

$$
\begin{aligned}
& \text { Ex } f=Y^{4}-X^{2}, ~ a, ~ f^{\prime}=Y^{4}-X^{2}+X^{2} Y \quad Q \quad, 0 \\
& \lambda=X \\
& \lambda^{\prime}=X \\
& \chi\left(f \mid \Gamma_{f, \lambda}\right)=1 \\
& 12 \\
& \chi\left(f^{\prime}| |_{f^{\prime} \lambda^{\prime}}\right)=\frac{3}{2}
\end{aligned}
$$

