The Łojasiewicz exponent of the gradient of a plane complex curve with respect to its polar curve

Andrzej Lenarcik

Kielce University of Technology

GDAŃSK-KRAKÓW-ŁÓDŹ-WARSZAWA WORKSHOP IN SINGULARITY THEORY A special session dedicated to the memory of STANISŁAW ŁOJASIEWICZ Warszawa, December 12-16, 2022

The Łojasiewicz exponent of the gradient

For f : (C², 0) → (C, 0) holomorphic with an isolated singularity at zero 0 ∈ C², ł(f) is the smallest θ > 0 in the inequality

$$|\operatorname{grad} f(z)| \ge C |z|^{\theta}$$

白マ イロマ イロマ

for a positive constant C and small |z|.

The Łojasiewicz exponent of the gradient

For f : (C², 0) → (C, 0) holomorphic with an isolated singularity at zero 0 ∈ C², ł(f) is the smallest θ > 0 in the inequality

$$|\operatorname{grad} f(z)| \ge C |z|^{\theta}$$

for a positive constant C and small |z|.

• An application (Chang & Lu 1973, Teissier 1977)

$$\lfloor \mathbf{I}(f) \rfloor + 1$$

equals the minimal possible r such that adding to fmonomilas of order strictly greater than r does not change the equisingularity class of f.

(4回) キョン キョン

• Restricting the inequality

$$|\operatorname{grad} f(z)| \ge C|z|^{\theta}, \quad C > 0, \quad |z| \text{ small}$$

to a subset $A \subset \mathbb{C}^2$ (sum of curves, $0 \in A$) we can consider the relative Łojasiewicz exponent

 $\mathbf{I}(f|A)$.

• Restricting the inequality

$$|\operatorname{grad} f(z)| \ge C|z|^{\theta}, \quad C > 0, \quad |z| \text{ small}$$

to a subset $A \subset \mathbb{C}^2$ (sum of curves, $0 \in A$) we can consider the relative Łojasiewicz exponent

 $\mathbf{I}(f|A)$.

• $\mathbf{I}(f) \ge \mathbf{I}(f|A)$

• Restricting the inequality

$$|\operatorname{grad} f(z)| \ge C|z|^{\theta}, \quad C > 0, \quad |z| \text{ small}$$

to a subset $A \subset \mathbb{C}^2$ (sum of curves, $0 \in A$) we can consider the relative Łojasiewicz exponent

 $\mathbf{I}(f|A)$.

- $\mathbf{I}(f) \ge \mathbf{I}(f|A)$
- We say that $\mathbf{i}(f)$ is attained on A if $\mathbf{i}(f) = \mathbf{i}(f|A)$.

Polar curves

• Every smooth $\lambda:(\mathbb{C}^2,0)
ightarrow(\mathbb{C},0)$ defines a polar curve of f

$$\Gamma_{f,\lambda} = \{\mathbf{J}(\lambda, f) = 0\}$$

where

$$\mathbf{J}(\lambda, f) = \frac{\partial \lambda}{\partial X} \frac{\partial f}{\partial Y} - \frac{\partial \lambda}{\partial Y} \frac{\partial f}{\partial X} .$$

(日)(周)((日)(日))(日)

 \bullet Question 1: for which λ

$$\mathbf{I}(f) = \mathbf{I}(f|\Gamma_{f,\lambda}) ?$$

・ロン ・聞 と ・ 聞 と ・ 聞 と

康

• Question 1: for which λ

$$\mathbf{k}(f) = \mathbf{k}(f|\Gamma_{f,\lambda}) ?$$

伺 ト イヨト イヨト

• Question 2: what we can say about $f(\Gamma_{f,\lambda})$ knowing the equisingularity class of the pair f, λ ?

• Question 1: for which λ

$$\mathbf{k}(f) = \mathbf{k}(f|\Gamma_{f,\lambda}) ?$$

- Question 2: what we can say about $f(\Gamma_{f,\lambda})$ knowing the equisingularity class of the pair f, λ ?
- Teissier 1977: the equality holds for λ = bX − aY for sufficiently generic (a : b) ∈ P¹(ℂ).

• Question 1: for which λ

$$\mathbf{k}(f) = \mathbf{k}(f|\Gamma_{f,\lambda}) ?$$

- Question 2: what we can say about $f(\Gamma_{f,\lambda})$ knowing the equisingularity class of the pair f, λ ?
- Teissier 1977: the equality holds for λ = bX − aY for sufficiently generic (a : b) ∈ P¹(C).
- Chądzyński & Krasiński 1988: for λ, μ transversal and smooth

$$\mathbf{I}(f) = \mathbf{I}(f|\Gamma_{f,\lambda} \cup \Gamma_{f,\mu}) .$$

• Question 1: for which λ

$$\mathbf{k}(f) = \mathbf{k}(f|\Gamma_{f,\lambda}) ?$$

- Question 2: what we can say about *t*(*f*|Γ_{*f*,λ}) knowing the equisingularity class of the pair *f*, λ ?
- Teissier 1977: the equality holds for λ = bX − aY for sufficiently generic (a : b) ∈ P¹(C).
- Chądzyński & Krasiński 1988: for λ, μ transversal and smooth

$$\mathbf{I}(f) = \mathbf{I}(f|\Gamma_{f,\lambda} \cup \Gamma_{f,\mu}) .$$

• Bogusławska 1999, Kuo & Parusiński 1998, Płoski 2001: if λ is transversal to f then

$$\mathbf{I}(f) = \mathbf{I}(f|\Gamma_{f,\lambda}) \ .$$

• A consequence of Chądzyński & Krasiński 1988

イロト 人間 ト 人間 ト 人 用 ト

- A consequence of Chądzyński & Krasiński 1988
- DEF We call a direction (a : b) ∈ P¹(C) special for f if there exists λ tangent to this direction such that

 $\mathbf{I}(f) > \mathbf{I}(f|\Gamma_{f,\lambda}) \ .$

- A consequence of Chądzyński & Krasiński 1988
- DEF We call a direction (a : b) ∈ P¹(C) special for f if there exists λ tangent to this direction such that

$$\mathbf{k}(f) > \mathbf{k}(f|\Gamma_{f,\lambda}) \; .$$

• COROLLARY There exists at most one special direction.

- A consequence of Chądzyński & Krasiński 1988
- DEF We call a direction (a : b) ∈ P¹(C) special for f if there exists λ tangent to this direction such that

$$\mathbf{I}(f) > \mathbf{I}(f|\Gamma_{f,\lambda}) \ .$$

- COROLLARY There exists at most one special direction.
- Proof. Suppose that there exist two (a : b) ≠ (c : d) special directions. Then there exist λ tangent to (a : b) and μ tangent to (c : d) such that

$$\mathbf{I}(f) > \mathbf{I}(f|\Gamma_{f,\lambda}) \text{ and } \mathbf{I}(f) > \mathbf{I}(f|\Gamma_{f,\mu}) .$$

- A consequence of Chądzyński & Krasiński 1988
- DEF We call a direction (a : b) ∈ P¹(C) special for f if there exists λ tangent to this direction such that

$$\mathbf{I}(f) > \mathbf{I}(f|\Gamma_{f,\lambda}) \ .$$

- COROLLARY There exists at most one special direction.
- Proof. Suppose that there exist two (a : b) ≠ (c : d) special directions. Then there exist λ tangent to (a : b) and μ tangent to (c : d) such that

$$\mathbf{I}(f) > \mathbf{I}(f|\Gamma_{f,\lambda}) \text{ and } \mathbf{I}(f) > \mathbf{I}(f|\Gamma_{f,\mu}).$$

• Contradiction follows form Chądzyński & Krasiński 1988.

• f isolated singularity,

・ロット (四) ・ (日) ・ (日)

康

- f isolated singularity,
- f = f⁽¹⁾...f^(t) tangential decomposition; t = t(f) the number of tangents.

|| 白戸 || (田 | (田 |

- f isolated singularity,
- f = f⁽¹⁾...f^(t) tangential decomposition; t = t(f) the number of tangents.
- We put $\mathbf{i}_i := \mathbf{i}(f^{(i)}) + \operatorname{ord} f \operatorname{ord} f^{(i)}$ (i = 1, ..., t).

伺下 イヨト イヨト

- f isolated singularity,
- f = f⁽¹⁾...f^(t) tangential decomposition; t = t(f) the number of tangents.
- We put $\mathbf{i}_i := \mathbf{i}(f^{(i)}) + \operatorname{ord} f \operatorname{ord} f^{(i)}$ $(i = 1, \dots, t)$.

•
$$\mathbf{I}(f) = \max{\{\mathbf{I}_1, \ldots, \mathbf{I}_t\}}.$$

伺下 イヨト イヨト

- f isolated singularity,
- f = f⁽¹⁾...f^(t) tangential decomposition; t = t(f) the number of tangents.
- We put $\mathbf{i}_i := \mathbf{i}(f^{(i)}) + \operatorname{ord} f \operatorname{ord} f^{(i)}$ $(i = 1, \dots, t)$.
- $\mathbf{I}(f) = \max{\mathbf{I}_1, \ldots, \mathbf{I}_t}.$
- The special direction exists if and only if there exists exactly one maximum among numbers t₁,..., t_t.

向下 イヨト イヨト

- f isolated singularity,
- f = f⁽¹⁾...f^(t) tangential decomposition; t = t(f) the number of tangents.
- We put $\mathbf{i}_i := \mathbf{i}(f^{(i)}) + \operatorname{ord} f \operatorname{ord} f^{(i)}$ $(i = 1, \dots, t)$.
- $\mathbf{I}(f) = \max{\mathbf{I}_1, \ldots, \mathbf{I}_t}.$
- The special direction exists if and only if there exists exactly one maximum among numbers t₁,..., t_t.
- If the special direction exists then for every λ tangent to this direction

 $\mathbf{I}(f) > \mathbf{I}(f|\Gamma_{f,\lambda}) \ .$

(本語) (本語) (本語) (二語)

• If f is unitangent (t(f) = 1) then the direction tangent to f is special.

イロト 人間 ト 人間 ト 人 用 ト

康

• If f is unitangent (t(f) = 1) then the direction tangent to f is special.

伺 ト イヨト イヨト

 If f has only smooth and pairwise transversal components then there is no special direction and 𝔥(f) = ord f − 1.

- If f is unitangent (t(f) = 1) then the direction tangent to f is special.
- If f has only smooth and pairwise transversal components then there is no special direction and $\mathbf{t}(f) = \operatorname{ord} f - 1$.
- More difficult example of series without the special direction:
 f⁽¹⁾ = X(X + Y²)(X² + Y³), f⁽²⁾ = Y² + X⁵, f = f⁽¹⁾f⁽²⁾. This example gives an occasion to show how to compute the Łojasiewicz exponent by using the Newton diagram.

・ 同 ト ・ ヨ ト ・ ヨ ト

Łojasiewicz exponent and the Newton Polygon (set of pairwise nonparallel compact segments of the boundary)

•
$$f(X, Y) = \sum c_{\alpha\beta} X^{\alpha} Y^{\beta}$$
, $\operatorname{supp} f = \{(\alpha, \beta) : c_{\alpha\beta} \neq 0\}.$

伺 ト イヨト イヨト

Łojasiewicz exponent and the Newton Polygon (set of pairwise nonparallel compact segments of the boundary)

•
$$f(X, Y) = \sum c_{\alpha\beta} X^{\alpha} Y^{\beta}$$
, supp $f = \{(\alpha, \beta) : c_{\alpha\beta} \neq 0\}$.
• $f(X, Y) = \sum c_{\alpha\beta} X^{\alpha} Y^{\beta}$, supp $f = \{(\alpha, \beta) : c_{\alpha\beta} \neq 0\}$.
• $f(X, Y) = \sum c_{\alpha\beta} X^{\alpha} Y^{\beta}$, supp $f = \{(\alpha, \beta) : c_{\alpha\beta} \neq 0\}$.

伺 ト イヨト イヨト

Łojasiewicz exponent and the Newton Polygon (set of pairwise nonparallel compact segments of the boundary)

•
$$f(X, Y) = \sum c_{\alpha\beta} X^{\alpha} Y^{\beta}$$
, $\operatorname{supp} f = \{(\alpha, \beta) : c_{\alpha\beta} \neq 0\}$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $(0, 0)$
• $($

• We say that f in nondegenerate on the segment S of the Newton polygon if the polynomial

$$\operatorname{in}(f,S) = \sum_{(\alpha,\beta)\in S} c_{\alpha\beta} X^{\alpha} Y^{\beta}$$

has no multiple factors different from X and Y.

Kouchnirenko nondegeneracy + theorem

Andrzej Lenarcik

||▲御 || ▲ 周 || ▲ 周 ||

康

Kouchnirenko nondegeneracy + theorem

• DEF *f* is nondegenerate in the Kouchnirenko sense if *f* is nondegenerate on every segment of the Newton polygon.

Kouchnirenko nondegeneracy + theorem

- DEF f is nondegenerate in the Kouchnirenko sense if f is nondegenerate on every segment of the Newton polygon.
- Theorem (A.L. 1998) f has an isolated singularity, the Newton polygon has at least one nonexceptional segment, f is nondegenerate in the Kouchnirenko sense. Then

$$\mathbf{i}(f) = \max_{S} \{\alpha(S), \beta(S)\} - 1$$

where \boldsymbol{S} runs over the nonexceptional segments of the Newton polygon

 Algebra: (f,g)₀ is the C codimention of the ideal generated by f and g in the ring C{X, Y}

- Algebra: (f,g)₀ is the C codimention of the ideal generated by f and g in the ring C{X, Y}
- Topology: (f, g)₀ is the linking number of two knots (links) defined by f⁻¹(0) and g⁻¹(0) (intersections with a small sphere S³)

- Algebra: (f,g)₀ is the C codimention of the ideal generated by f and g in the ring C{X, Y}
- Topology: (f, g)₀ is the linking number of two knots (links) defined by f⁻¹(0) and g⁻¹(0) (intersections with a small sphere S³)
- $(f,g)_0 \ge (\operatorname{ord} f)(\operatorname{ord} g)$

- Algebra: (f,g)₀ is the C codimention of the ideal generated by f and g in the ring C{X, Y}
- Topology: (f, g)₀ is the linking number of two knots (links) defined by f⁻¹(0) and g⁻¹(0) (intersections with a small sphere S³)
- $(f,g)_0 \ge (\operatorname{ord} f)(\operatorname{ord} g)$
- Semigroup Γ of a branch h (irreducible curve)

 $\Gamma(h) = \left\{ (h,g)_0 : g \text{ is an arbitrary curve for wich } h \right\}$ is not a component

同本本語本本語本 語

- Algebra: (f,g)₀ is the C codimention of the ideal generated by f and g in the ring C{X, Y}
- Topology: (f,g)₀ is the linking number of two knots (links) defined by f⁻¹(0) and g⁻¹(0) (intersections with a small sphere S³)
- $(f,g)_0 \ge (\operatorname{ord} f)(\operatorname{ord} g)$
- Semigroup Γ of a branch h (irreducible curve)

 $\Gamma(h) = \left\{ (h,g)_0 : g \text{ is an arbitrary curve for wich } h \right\}$ is not a component

Γ(h) = N β
₀ + · · · + N β
_g, β
₀ < · · · < β
_g the minimal sequence of generators, called the branch characteristics (singularity invariant).

Version of Eggers tree: A.L. 2011, 2013

Positions of branches of $J(\lambda, f)$ with respect to f. Spirit of Kuo Lu Lemma 1977

