
Tame non-Archimedean geometry:
Łojasiewicz inequalities and applications

GKŁW Workshop in Singularity Theory
a special session dedicated to the memory of S.Łojasiewicz

December 12-16, 2022, Banach Center, Warsaw, Poland
Krzysztof Jan Nowak

Institute of Mathematics, Jagiellonian University
E-mail: nowak@im.uj.edu.pl

Tame non-Archimedean geometry: Łojasiewicz inequalities and applications



Tame non-Archimedean geometry:
Łojasiewicz inequalities and applications

GKŁW Workshop in Singularity Theory
a special session dedicated to the memory of S.Łojasiewicz

December 12-16, 2022, Banach Center, Warsaw, Poland
Krzysztof Jan Nowak

Institute of Mathematics, Jagiellonian University
E-mail: nowak@im.uj.edu.pl

Tame non-Archimedean geometry: Łojasiewicz inequalities and applications



Tame geometry in Hensel minimal fields

I deal with tame geometry in Hensel minimal, non-trivially valued
fields K from my recent papers [N6, N7], with special attention
focused on the Łojasiewicz inequalities. The axiomatic theory of
Hensel minimality was introduced in the recent article [CHR] by
Cluckers–Halupczok–Rideau (with several variants, l-h-minimality,
l ∈ N ∪ {ω}, the stronger, the larger is the number l). Yet at least
in the equicharacteristic zero case, already 1-h-minimality provides,
likewise o-minimality does, powerful geometric tools.

Łojasiewicz inequalities and some other results of mine (as the
closedness theorem) require an additional condition that every
definable subset in the imaginary sort RV be already definable in
the pure valued field language. This condition ensures that the
residue field is orthogonal to the value group, and is satisfied by
many of the classical tame structures on Henselian fields (including
Henselian fields with analytic structure, V-minimal fields and
polynomially bounded o-minimal structures with a convex subring).
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Main results

The main presented results are the theorem on existence of limit,
curve selection, the closedness theorem and several
non-Archimedean versions of the Łojasiewicz inequalities. Relying
on them, I establish an embedding theorem for regular definable
spaces, the definable ultranormality and ultraparacompactness of
definable Hausdorff LC-spaces, the theorems on extending
continuous definable functions and existence of definable
retractions, and a non-Archimedean, non-locally compact version
of Kirszbraun’s theorem on extending definable Lipschitz maps.

The closedness theorem and ultraparacompactness of definable
LC-spaces are ingredients of my definable ultrametric version of
Bierstone–Milman’s desingularization algorithm which provides
resolution of singularities and transformation to normal crossings
by blowing up. Actually, my research into non-Archimedean
geometry was a continuation of my joint paper [K-N] on real and
p-adic hereditarily rational functions, which in turn had been
inspired by some discussions with Wojciech Kucharz on the subject.
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Basic tools

The basic tools and results involved in my research into
non-Archimedean geometry are among others the following:

1 cell decomposition with centers (due to
Cluckers–Halupczok–Rideau [CHR]);

2 the Jacobian property and definable spherical completeness;
3 relative quantifier elimination for ordered abelian groups in a

many sorted language (due to Cluckers–Halupczok);
4 orthogonality of the value group and residue field in the

leading term structure RV ;
5 my closedness theorem;
6 my non-Archimedean version of curve selection;
7 my non-Archimedean versions of the Łojasiewicz inequalities;
8 the theory of risometries (developed by Halupczok);
9 the concept of a skeleton of a parametrized Lipschitz open cell

introduced recently by myself.
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Some background

Soon after o-minimality had become a fundamental concept in real
algebraic geometry (realizing the postulate of both tame topology
and tame model theory), numerous attempts were made to find
similar approaches in algebraic geometry of valued fields. This led
to axiomatically based notions such as C-minimality (Haskel,
Macpherson, Steinhorn, 1994), P-minimality (Haskel, Macpherson,
1997), V-minimality (Hrushovski, Kazhdan, 2006), b-minimality
(Cluckers, Loeser, 2007), tame structures (Cluckers, Comte,
Loeser, 2015), and eventually Hensel minimality ([CHR], 2019).

The last concept seems to enjoy most natural and desirable
properties. It is tame with respect to the leading term structure
RV and provides, likewise o-minimality, powerful geometric tools
as, for instance, cell decomposition, a good dimension theory or
the Jacobian property (an analogue of the o-minimal monotonicity
theorem).
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Existence of the limit

Theorem

Let f : E → K be a 0-definable function on a subset E of K .
Suppose that 0 is an accumulation point of E . Then there is a
subset F of E , definable over algebraic closure of ∅, with
accumulation point 0, and a point w ∈ P1(K ) such that
limx→0 f |F (x) = w , and the set

{(v(x), v(f (x))) : x ∈ F \ {0}} ⊂ Γ× (Γ ∪ {∞})

is contained either in an affine line with rational slope

{(k, l) ∈ Γ× Γ : q · l = p · k + β }

with p, q ∈ Z, q > 0, β ∈ Γ, or in Γ× {∞}.
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Curve selection

Theorem

Consider an L-definable subset A of Kn with an accumulation
point a0 ∈ Kn, i.e. a0 lies in the closure of A \ {a0}. Then there
exists a continuous function a : E → Kn, which is definable (with
parameters) in the language L augmented by an angular
component map, such that 0 is an accumulation point of E ⊂ K ,
and

a(E \ {0}) ⊂ A \ {a0}, lim
t→0

a(t) = a0.

We then say that a(t) is a definable curve in A and write
a(t)→ a0.

It seems that the only non-Archimedean versions of curve selection
known before are the ones over an algebraically closed ground field
K , provided by Huber [Hub] for (valuative) semianalytic subsets,
and Lipshitz–Robinson [L-R] for (valuative) subanalytic sets.
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Closedness theorem

Theorem

Given a definable subset D of Kn, the canonical projection

π : D ×Om
K −→ D

is definably closed in the K -topology, i.e. if A ⊂ D ×Om
K is a

closed definable subset, so is its image π(A) ⊂ D.

It has numerous applications in geometry and topology of valued
fields. In particular, it allows one to use resolution of singularities in
much the same way as over the locally compact fields.

It seems that the only results in this direction known before are the
ones by Moret-Bailly [MB] for a proper morphism of K -schemes of
finite type, and by Huber [Hub] for a quasi-compact morphism of
rigid analytic varieties, over an algebraically closed valued field K .
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Non-Archimedean classical Łojasiewicz inequality

Theorem

Let f , g1, . . . , gm : A→ K be continuous L-definable functions on
a closed (in the K -topology) bounded subset A of Km. If

{x ∈ A : g1(x) = . . . = gm(x) = 0} ⊂ {x ∈ A : f (x) = 0},

then there exist a positive integer s and a constant β ∈ Γ such that

s · v(f (x)) + β  v((g1(x), . . . , gm(x))), x ∈ A.

Equivalently, there is a C ∈ |K | such that

|f (x)|s ¬ C ·max {|g1(x)|, . . . , |gm(x)|}, x ∈ A.
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It seems that the only non-Archimedean (and non-locally compact)
versions of Łojasiewicz inequalities known before are the ones for
(valuative) subanalytic functions over an algebraically closed valued
field K , provided by Lipshitz [Lip] and Lipshitz–Robinson [L-R].

Corollary

Let f : A→ K be a continuous L-definable function on a closed
bounded subset A ⊂ Kn. Then f is Hölder continuous with a
positive integer s and a constant β ∈ Γ, i.e.

s · v(f (x)− f (z)) + β  v(x − z), x , z ∈ A.

Equivalently, there is a C ∈ |K | such that

|f (x)− f (z)|s ¬ C · |x − z |, x , z ∈ A.

Corollary

Every continuous L-definable function f : A→ K on a closed
bounded subset A ⊂ Kn is uniformly continuous.
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Non-Archimedean Łojasiewicz inequalities on LC-subsets

Theorem

Let f , g : A→ K be two continuous L-definable functions on a
locally closed subset A of Kn. If

{x ∈ A : g(x) = 0} ⊂ {x ∈ A : f (x) = 0},

then there exist a positive integer s and a continuous L-definable
function h on A such that f s(x) = h(x) · g(x) for all x ∈ A.

Theorem

Let f : A→ K be a continuous L-definable function on a locally
closed subset A of Kn and g : D(f ) := {x ∈ A : f (x) 6= 0} → K a
continuous L-definable function. Then f s · g extends, for s � 0, by
zero through the set Z (f ) := {x ∈ A : f (x) = 0} to a (unique)
continuous L-definable function on A.
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Ideas behind the proof of the Łojasiewicz inequalities

Several problems of non-Archimedean geometry, as e.g. separation
of definable subsets or Łojasiewicz inequalities, come down to
certain problems of piecewise linear geometry over Q. This is by
elimination of valued field quantifiers, whereby we are reduced to
consider some sets definable in a generalized Presburger language
in the value group sort Γ. Those sets consist of the valuations of
the points of the definable sets in the valued field sort K .

Archimedean ordered abelian groups Γ admit quantifier elimination
in the Presburger language (<,+,−, 0, 1,≡n, n > 1). However,
general ordered abelian groups admit only relative (with respect to
some auxiliary, linearly ordered sorts) quantifier elimination in a
generalized Presburger language. Fortunately, we can often get rid
of the congruence fragment of the Presburger language, analyzing
only underlying sets determined by linear equations and inequalities
(with rational coefficients). In this manner, we are reduced to
study the piecewise linear shadows of definable sets in Kn, being
objects with a polyhedral structure.
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Application to regulous functions

In our joint paper [K-N], we applied the Łojasiewicz inequality
(second version) to establish, in the real and p-adic cases, the
extension theorem that a continuous rational function on an affine
variety extends to a continuous rational function on the ambient
affine space if and only if its restriction to each subvariety remains
rational (an intrinsic condition). In the proof, we were working to a
large extent on a variety obtained by blowing up an ideal on the
algebraic variety under study. The passage back to the initial
variety was possible over locally compact fields, because
projections with projective fibers are closed (in fact, proper) maps.

Afterwards, in order to carry over this extension theorem of
regulous (continuous hereditarily rational) functions to any
Henselian non-trivially valued field (cf. [N1, N3]), I established the
closedness theorem that every such a projection is a definably
closed map.
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Embedding theorem

Definable spaces X are defined, after van den Dries, by gluing
finitely many affine definable sets (i.e. definable subsets of affine
spaces Kn). The embedding theorem for definable spaces in
o-minimal structures due to van den Dries, which originates from
Robson in the semialgebraic case, can be carried over to our
non-Archimedean settings, as stated below.

Theorem

Every regular definable space X is affine, i.e. X can be embedded
into an affine space KN .

One of the ingredients of the proof is the fact that every closed
definable subset of an affine space is the zero set of a continuous
definable function. This, in turn, relies on the łojasiewicz
inequalities (similarly as for o-minimal structures) and on
model-theoretic compactness arguments.
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Definable LC-spaces

By definable LC-spaces we mean those definable spaces which are
defined by gluing finitely many definable, locally closed subsets of
affine spaces Kn. Such spaces include, in particular, definable
topological manifolds obtained by gluing definable open subsets of
Kn.

Proposition

Every definable Hausdorff LC-space X is regular.

Theorem

Every definable Hausdorff LC-space X is definably ultranormal and
ultraparacompact.
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Extension theorem and definable retractions

Theorem

Let A be a closed 0-definable subset of a definable Hausdorff
LC-space X . Then
1) every continuous 0-definable function f : A→ K can be
extended to a continuous 0-definable function F : X → K ;
2) there exists a 0-definable retraction r : X → A.

In the purely topological case, a non-Archimedean version of the
Tietze–Urysohn theorem (on extending continuous functions from a
closed subset of an ultranormal spaces into a locally compact field
with non-Archimedean absolute value) was given by Elis (1967).
The existence of a continuous retraction onto a closed subset of an
ultranormal metrizable space was established by Dancis (1993).
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Kirszbraun’s extension theorem

Theorem

Let K be an arbitrary Hensel minimal field of equicharacteristic
zero, and f : A→ Km be a 0-definable 1-Lipschitz map on a
(possibly non-closed) subset A ⊂ Kn of dimension k.

I. Suppose the value group vK has no minimal element among the
elements > 1. Then, for any ε ∈ |K |, ε > 1, f extends to a
0-definable ε-Lipschitz map F : Kn → Km.

II. Suppose the value group vK has the minimal element ε among
the elements > 1. Then f extends to a 0-definable εk -Lipschitz
map F : Kn → Km.

To my best knowledge, the only definable, non-Archimedian
version of Kirszbraun’s extension theorem was achieved by
Cluckers–Martin [C-M] (2018) in the p-adic, thus locally compact
case (for Lipschitz maps definable in p-adic fields also with an
analytic structure).

Tame non-Archimedean geometry: Łojasiewicz inequalities and applications



Valuation preliminaries

We begin with basic notions from valuation theory. By (K , v) we
mean a field K endowed with a valuation v . Let

Γ = vK , OK , MK and K̃ = Kv

denote the value group, valuation ring, its maximal ideal and
residue field, respectively. Let r : OK → Kv be the residue map. In
this paper, we shall consider the equicharacteristic zero case, i.e.
the characteristic of the fields K and Kv are assumed to be zero.
For elements a ∈ K , the value is denoted by va and the residue by
av or r(a) when a ∈ OK . Then

OK = {a ∈ K : va  0}, MK = {a ∈ K : va > 0}.

For a ring R, let R× denote the multiplicative group of units of R.
Obviously, 1 +MK is a subgroup of the multiplicative group K×.
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Leading term structure

Let
rv : K× → G (K ) := K×/(1 +MK )

be the canonical group epimorphism; this leading term map rv
corresponds in a sense to the sign function in real geometry. Since
vK ∼= K×/O×K , we get the canonical group epimorphism
v̄ : G (K )→ vK and the following exact sequence

1→ K̃× → G (K )→ vK → 0. (∗)

We put v(0) =∞ and v̄(0) =∞.

We shall consider the following 2-sorted pure valued field language
Lhen (with imaginary auxiliary sort RV ) on Henselian fields (K , v)
of equicharacteristic zero, which goes back to Basarab [B] and
yields (even resplendent) quantifier elimination of valued field
quantifiers for the theory of Henselian fields.
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A 2-sorted language of valued fields

Main sort: a valued field with the language of rings (K , 0, 1,+,−, ·)
or with the language Lvf of valued fields (K , 0, 1,+,−, ·,OK ).

Auxiliary sort: RV (K ) := G (K ) ∪ {0} with the language specified
as follows: (multiplicative) language of groups (1, ·) and one unary
predicate P so that PK (ξ) iff v̄(ξ)  0; here we put ξ · 0 = 0 for
all ξ ∈ RV (K ). The predicate

R(ξ) ⇐⇒ [ξ = 0 ∨ (ξ 6= 0 ∧ P(ξ) ∧ P(1/ξ))]

will be construed as the residue field Kv = K̃ with the language of
rings (0, 1,+, ·); obviously, RK (ξ) iff v̄(ξ) = 0. The sort RV binds
together the residue field and value group.

One connecting map: rv : K → RV (K ), rv(0) = 0.
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The language of rings in the leading term structure RV

The valuation ring can be defined by putting OK = rv−1(PK ). The
residue map r : OK → Kv will be identified with the map

r(x) =

{
rv(x) if x ∈ O×K ,

0 if x ∈MK .

Remark

Addition in the residue field RK ∪ {0} is the restriction of the
following algebraic operation on RV (K ):

rv(x) + rv(y) =

{
rv(x + y) if v(x + y) = min{v(x), v(y)},

0 otherwise

for all x , y ∈ K×; clearly, we put ξ + 0 = ξ for every ξ ∈ RV (K ).
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Angular component map

Remark

The standard language for the sort RV , whose vocabulary has just
been introduced, is of course equivalent to the language of rings
(0, 1,+, ·) from the previous remark. In particular, v̄(ξ) > 0 iff
1 + ξ = 1. This language of rings for RV will be denoted by Lrv .

It is well known that exact sequence (∗) splits whenever the residue
field Kv is ℵ1-saturated. In this case, there is a section
θ : G (K )→ K̃× of the monomorphism ι : K̃× → G (K ) and the
map

(θ, v̄) : G (K )→ K̃× × vK

is an isomorphism. Generally, the existence of such a section θ is
equivalent to that of an angular component map ac = θ ◦ rv .
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Orthogonality property

Remark

It is easy to check that the language Lrv with the section θ is
equivalent with the language which consists of two maps

θ : RV (K )→ Kv , θ(0) = 0, and v̄ : RV (K )→ vK∪{∞}, v̄(0) =∞,

of the language of rings (0, 1,+,−, ·) on the residue field Kv , and
the language of ordered groups (0,+,−, <) on the value group vK .

Hence the residue field is orthogonal to the value group, i.e. every
definable subset C ⊂ (Kv)p × (vK )q is a finite union of Cartesian
products

C =
k⋃

i=1

Xi × Yi (†)

for some definable subsets Xi ⊂ (Kv)p and Yi ⊂ (vK )q.
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The language under consideration

We shall work with a language L which is an expansion of the
language Lvf of valued fields, possibly with some auxiliary
imaginary sorts. The words 0-definable and A-definable shall mean
L-definable and LA-definable in a fixed language L; ”definable”
will refer to definable in L with arbitrary parameters.

For presentation of Hensel minimality, it is more convenient to
adopt multiplicative notation for valuations | · |. For any λ ∈ ΓK ,
λ ¬ 1, put

Mλ := {x ∈ K : |x | < λ}, RV×λ := K×/(1 +Mλ),

rvλ : K → RVλ := RV×λ ∪ {0}, 0 7→ 0.

We say that a finite set C ⊂ K λ-prepares a subset X ⊂ K if
whether some x ∈ K lies in X depends only on the tuple
(rvλ(x − c))c∈C .

Tame non-Archimedean geometry: Łojasiewicz inequalities and applications



The language under consideration

We shall work with a language L which is an expansion of the
language Lvf of valued fields, possibly with some auxiliary
imaginary sorts. The words 0-definable and A-definable shall mean
L-definable and LA-definable in a fixed language L; ”definable”
will refer to definable in L with arbitrary parameters.

For presentation of Hensel minimality, it is more convenient to
adopt multiplicative notation for valuations | · |. For any λ ∈ ΓK ,
λ ¬ 1, put

Mλ := {x ∈ K : |x | < λ}, RV×λ := K×/(1 +Mλ),

rvλ : K → RVλ := RV×λ ∪ {0}, 0 7→ 0.

We say that a finite set C ⊂ K λ-prepares a subset X ⊂ K if
whether some x ∈ K lies in X depends only on the tuple
(rvλ(x − c))c∈C .

Tame non-Archimedean geometry: Łojasiewicz inequalities and applications



The notion of Hensel minimality

A first approximation to the notion of Hensel minimality is: Any
A-definable subset X ⊂ K (for A ⊂ K ) can be 1-prepared by a
finite A-definable set C ⊂ K . This, however, is not yet strong
enough: a strong control of parameters from RVλ is needed and,
consequently, different variants, l-h-minimality with l ∈ N{ω}, are
considered.

Let T be a complete L-theory of valued fields of equicharacteristic
0. We say that T is l-h-minimal if every model K of T has the
following property: For every λ ∈ ΓK , 0 < λ ¬ 1, for every set
A ⊂ K and for every set A′ ⊂ RVλ of cardinality |A′| ¬ l , every
(A ∪ RV ∪ A′)-definable subset X ⊂ K can be λ-prepared by a
finite A-definable set C ⊂ K .

Below we recall the following three results of Hensel minimality
from the paper [CHR], which are crucial for our approach:
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enough: a strong control of parameters from RVλ is needed and,
consequently, different variants, l-h-minimality with l ∈ N{ω}, are
considered.

Let T be a complete L-theory of valued fields of equicharacteristic
0. We say that T is l-h-minimal if every model K of T has the
following property: For every λ ∈ ΓK , 0 < λ ¬ 1, for every set
A ⊂ K and for every set A′ ⊂ RVλ of cardinality |A′| ¬ l , every
(A ∪ RV ∪ A′)-definable subset X ⊂ K can be λ-prepared by a
finite A-definable set C ⊂ K .

Below we recall the following three results of Hensel minimality
from the paper [CHR], which are crucial for our approach:
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Valuative Jacobian Property

Proposition

Let f : K → K be a 0-definable function. Then there exists a finite
0-definable set C ⊂ K such that for every ball B 1-next to C ,
either f is constant on B, or there exists a µB ∈ vK such that
(1) for every open ball B ′ ⊂ B, f (B ′) is an open ball of radius
µB + rad (B ′);
(2) for every x1, x2 ∈ B, we have
v(f (x1)− f (x2)) = µB + v(x1 − x2).
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Domain and Range Preparation

Proposition

Let f : K → K be a 0-definable function and let C0 ⊂ K be a
finite, 0-definable set. Then there exist finite, 0-definable sets
C ,D ⊂ K with C0 ⊂ C such that f (C ) ⊂ D and for every ball B
1-next to C , the image f (B) is either a singleton in D or a ball
1-next to D.
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Cells

For m ¬ n, denote by π¬m or π<m+1 the projection Kn → Km

onto the first m coordinates; put x¬m = π¬m(x). Let C ⊂ Kn be a
non-empty 0-definable set, ji ∈ {0, 1} and

ci : π<m(X )→ K

be 0-definable functions i = 1, . . . , n. Then C is called a
0-definable cell with center tuple c = (ci )

n
i=1 and of cell-type

j = (ji )
n
i=1 if it is of the form:

C = {x ∈ Kn : (rv(xi − ci (x<i )))ni=1 ∈ R} ,

for a (necessarily 0-definable) set
R ⊂
∏n

i=1 ji · G (K ),
where 0 · G (K ) = 0 ⊂ RV (K ) and 1 · G (K ) = G (K ) ⊂ RV (K ).
One can similarly define A-definable cells.
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Parametrized cells

In the absence of the condition that algebraic closure and definable
closure coincide in T = Th (K ) (i.e. the algebraic closure acl (A)
equals the definable closure dcl (A) for any Henselian field K ′ ≡ K
and every A ⊂ K ′), a concept of parameterized cells must come
into play. Let us mention that one can ensure the above condition
via an expansion of the language for the sort RV .

Consider a 0-definable function σ : C → RV (K )k . Then (C , σ) is
called a 0-definable parameterized (by σ) cell if each set σ−1(ξ),
ξ ∈ σ(C ), is a ξ-definable cell with some center tuple cξ depending
definably on ξ and of cell-type independent of ξ.

Remark

If the language L has an angular component map, then one can
take σ from the above definition to be residue field valued (instead
of RV-valued).

Tame non-Archimedean geometry: Łojasiewicz inequalities and applications



Parametrized cells

In the absence of the condition that algebraic closure and definable
closure coincide in T = Th (K ) (i.e. the algebraic closure acl (A)
equals the definable closure dcl (A) for any Henselian field K ′ ≡ K
and every A ⊂ K ′), a concept of parameterized cells must come
into play. Let us mention that one can ensure the above condition
via an expansion of the language for the sort RV .

Consider a 0-definable function σ : C → RV (K )k . Then (C , σ) is
called a 0-definable parameterized (by σ) cell if each set σ−1(ξ),
ξ ∈ σ(C ), is a ξ-definable cell with some center tuple cξ depending
definably on ξ and of cell-type independent of ξ.

Remark

If the language L has an angular component map, then one can
take σ from the above definition to be residue field valued (instead
of RV-valued).

Tame non-Archimedean geometry: Łojasiewicz inequalities and applications



Classical and parameterized cell decompositions

Theorem

Suppose that algebraic closure and definable closure coincide in a
1-h-minimal theory T = Th (K ). For every 0-definable set X ⊂ Kn,
there exists a finite decomposition of X into 0-definable cells Ck .
Furthermore, there exists a finite decomposition of X into
0-definable subsets Ck such that each cell Ck is, after some
permutation of the variables, a 0-definable cell of type
(1, . . . , 1, 0, . . . , 0) with 1-Lipschitz continuous centers c1, . . . , cn.
Such cells shall be called 1-Lipschitz cells.

Theorem

For every 0-definable set X ⊂ Kn, there exists a finite
decomposition of X into 0-definable parametrized cells (Ck , σk).
Moreover, given finitely many 0-definable functions fj : X → K ,
one can require that the restriction of every function fj to each cell
σ−1k (ξ) be continuous.
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