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Introduction: the topological Milnor fibration

Let £ : (C"*!, 0) - (C,0) be an analytic function germ.

Milnor fibration: Then, for 0 < < € < 1, the restriction of f

fl: f_l(dD;f;)nt —>aD;‘;=S’; (/‘

is a smooth locally trivial fibration. lts fibre ‘\\\v
Fr=f"'(») n B,

is called the Milnor fibre.

Remark: Milnor fibre is not an algebraic variety.
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Introduction: motivic Milnor fibre (fibration)

Definition: Grothendieck ring of algebraic varieties

We denote by K|, (Varg) the free abelian group spanned by isomorphism classes [f : X — C*]
of complex algebraic varieties over C* modulo the relation

[f X =>Cl=1fyy : Y >Cl+[fixyy : X\Y >C1  ifYcX.

The ring structure is given by the fibre product

[f : X >C'llg: Y > C']=[X X+ Y —» C*].

y

" 0=[0-C, Example J

*1=[d: C"—- C*], 1
e L:=[pr:CxC*— C*]. [pr : P"XC*" > C* ] =0L"+01L""+---+1
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Introduction: motivic Milnor fibre (fibration)

Definition: motivic zeta function
Let £ : (C"*!, 0) = (C,0) be a regular function,

Z (L) = / (ac ;, L% /5y € ML, M := K, (Varg*) L.
£(Cn+1,0) )
oy . {rec]™! : y(0) =0, 0rd, f¢) =k} -  C* sk
Z (L )_g()ymot (acf. . r " acrop )b
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Introduction: motivic Milnor fibre (fibration)

Definition: motivic zeta function
Let £ : (C"*!, 0) = (C,0) be a regular function,

Z (L) = / (ac ;, L% /5y € ML, M := K, (Varg*) L.
ﬁ(@n+1,0)

Proposition (Denef-Loeser, 1998)

3 [L—vi—sN,-
Z, =Y [fy:U;=>C H % for somev;, N, € N_,.
o+Jc{l,...,r} ieJ

Definition: motivic Milnor fibre
S;=— lim Z, (L) =- Z ~DVYIf, iU, - CleM

§—>—00

o+JC{l,...,r}
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Given a regular (e.g. polynomial) function f : (C"*!,0) — (C, 0),
how the topological and motivic Milnor fibres (fibrations) are related to each other?

Theorem (Denef—Loeser, 1998)

Motivic Milnor fibre and topological Milnor fibration have same numerical invariants :

/’{c(Ff) — /},c(sf) ’ EFf = ESf .

Ey € Z[u, v] is the Hodge-Deligne polynomial.
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Introduction

Given a regular (e.g. polynomial) function f : (C"*!,0) — (C, 0),
how the topological and motivic Milnor fibres (fibrations) can be related to each other?

Result . |

We give two (essentially equivalent) comparisons between topological and motivic Milnor fibres
(fibrations):

* Using logarithmic geometry.

* Using line bundles and a real oriented version of the deformation onto normal cone
(MacPherson’s graph construction)

Adam Parusinski (with Jean-Baptiste Campesato and Goulwen Fichou) Motivic, logarithmic, and topological Milnor fibrations



Logarithmic geometry approach
O

Logarithmic geometry: set-up

Let f : (M, D) — (C,0) be a regular function with D := f~1(0) = U D, a divisor with simple normal crossings.

iel

Canonical stratification induced by D

ForJ c I,weset D5 :=(\D;\ ] D,

jed iel\J
D, D,
D, ¢ ® D?l}
1){L2} 1){L3}
D;=M\D
D° D°

{2} {3}
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A'Campo’s model of topological Milnor fibration

Real oriented blowing-up of D in M. |

* Real oriented blowing-up of 0 € C = polar coordinates: € = R,y xS'>(r,0) > z=rf €C.

* Real oriented blowing-up of D = {z, .-z, =0} c M =C"is
M=CxC""—> M=C"
and induces (by functoriality)
f (M, D)~ (C,0)=(C,S".
- f is locally topologically trivial and over S' gives ACampo’s model: f]ﬁ : D> S,
* Inlocal coordinates at a point of D5:

f@=ux[]z" f@=qu ] aguz ][] 6.

ieJ ieJ ieJ
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Example: f(z,,z,) = 2,2,

f (€% D) - (€C,0)=(C,SH

)| e

.'t\ ot (.0 ‘0) N ‘Qa‘t'i 6,‘0.)
Q--L‘o) ('l D)

A‘L(arﬁs

| || e

4
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Logarithmic geometry. Topological space

Sheaf of monoids: M(U) = {f € Oy (U) : flunm\p) IS invertible} > % (U).

(M, D)°¢ := {(x, @) : x € M, ¢ € Homy,,(M,,S"), Vg € OF, p(g) = Iiiil }

Example: D = {z,z, =0} c C?

° log _
(M, D), =M\ D.

- (M, D)}‘{’i} = S forze D\ {0}.

(just decide ¢(z,))

N@
-

- (M, D)}‘{)g} =S xS

(decide @(z)), @(z,))
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Logarithmic geometry. Algebraic space

Sheaf of monoids: M(U) = {f € Oy (U) : flunm\p) IS invertible} > % (U).

(M, D)8 = {(x,®) : x € M, ® € Hom,,,,(M,,C*), Vg € OF, d(g) = g(x)}

Example: D = {z,z, =0} c C?

° alog
(M, D)% = M\ D.

* (M, D)ﬁ‘f} = C*forze D\ {0}.

(decide ®(z,))

. alog _ ~x *
(M,D)HO}_C X C*.

(decide ®(z,), D(z,))
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Logarithmic geometry. Complete space

Sheaf of monoids: M(U) = {f € Oy (U) : flunm\p) IS invertible} > % (U).

(M, D)% = {(x, p,w) : (x,p) € (M, D)8, y € Hom,, (M., (0,+]),Vg € O%, w(g) = |g(x)| }

Example: D = {z,z, =0} c C?

° clog __
(M, Dy = M\ D.

* (M, D)ﬁ‘;g} = (0,400] X S ~ C*u S!

= (M, D) u(M, D).

clo 2
- (M, D)|}0§ = ((0,+c0] x S

~(C*XCHUMS'xSHU(C*x SHu(S! x C*
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Comparison of logarithmic spaces |

(M, D)l¢ = {(x, @) : x € M, ¢ € Homp,o,(M,, S1), Vg € O, (g) = |§8| }

(M, D)y°¢ = {(x,®) : x € M, ® € Hom,,,,(M,,C*), Vg € OF, ®(g) = g(x)}

(M, D) = {(x,0,y) : (x,9) € (M, D)%, y € Hom,,, (M,,(0,+x]),Vg € OF, w(g) = [g(x)| }

(M, D)8 < (M, D)'°¢ «— (M, D)2

I

(M, D)'°¢
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Comparison of logarithmic fibrations |l

(M, Dyo¢ < > (M, D)o — (M, D)
lfalog lfclog lflog
(C, O)alog c > (C, 0)clog pr , (C, O)log
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Comparison of logarithmic fibrations |l

Applying functoriality to f : (M, D) — (C,0), we get

1 1 pr 1
(M,D)aong - > (M’D)C0g|D > (M,D)Ong
lfalog lfclog lflog
1 1 pr 1
(C, 0", < . (C,0°7%,, . (C,0)%
C* < » C*US! ~ (0, +00] X S! z , S!
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Milnor fibrations and logarithmic geometry

Topological Milnor fibration J

f °¢ - (M, D)8 S coincides with A'Campo’s model for the topological Milnor fibration.

|D |D

Motivic Milnor fibre (comparing to the Denef-Loeser formula)

S, =-— —DI| e . (M, D)MO8 5
; @Z‘c[( ) [leJ (M, D)pe
(M, Dy'e Ly pye
Interpretation of the sign: Y Dy
division by powers of R_,,. fliofl ff;;gj l
C* > S

/R
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Applications

Topological Milnor fibration determines motivic Milnor fibre
The motivic Milnor fibre S, is determined by the stratified topological Milnor fibration fl"g (M, D)10g - St J

Theorem

Let f : (C"*!,0) — (C,0) be regular. Then

S;== X, (DM [ (ML D~ € € K, (VarE)
o+JCl

(No need to make L invertible.)

Proof by computation of the effect of the blowing-up on (M, D)l¢.
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Geometric construction of (M, D)clo¢

Case of a single smooth hypersurface D c M.

Fix L - M a line bundle together with a section s : M — L such that D = s~1(0).
Denote by fg the (real oriented) compactification of L by the sphere bundle S(L).

Consider (real oriented) MacPherson graph construction:

D sy
AZS""--.. \\J ‘§(L)
L pL A= +o0  w L US(L|D)(M’D)10g
N s s
yr:L->M
M
D

clog _*S log _ 7% log
Then (M, D)™t = L+ {Jg,,, (M, D)°* = L}, | |(M, D).
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Geometric construction of (M, D)clo¢

* General case D = | (M, D)°e = HM(M , D)z,

iel

IGI

* Formulas over Ds:

;log (% Wes) = uy ) [Ty v ,]V"
flog ( (0 )ZGJ) - arg(uJ(x)) HzGJ i

- Define & : (M, D)°l°g R’ by & = (&),c;, Where over DS:

_J (uIN)™ dfied
i(x.0) = {0 ifigJ.

* A’ Campo’s second model is given by

y E(A) - S,

where A= {£eR! 1 £>0, Y &=1}.
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A'Campo’s second construction

* A’ Campo’s second model is given by
E(a) - S,

where A={£eR! 1 £20, Y& =1}.

» We can define a continuous monodromy on &-!(A) giving
over each DS:

h,;(x,v)= (x, <exp (/léi(x, U)27t\/—_1> Ui>ieJ> .
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