# GDAŃSK-KRAKÓW-ŁÓDŹ-WARSZAWA WORKSHOP IN SINGULARITY THEOREY 

A special session dedicated to the memory of STANISŁAW ŁOJASIEWICZ

## A view of point for the 2-dimensional Jacobian conjecture

Nguyễn Thị Bích Thủy
Ibilce/UNESP, São José do Rio Preto
December $16^{\text {th }}, 2022$

## Real and Complex Jacobian Conjecture

## Real and Complex Jacobian Conjecture

"Let $F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$, where $n \geq 1, \mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$, be a polynomial map. If

$$
\operatorname{det} J F(p) \neq 0, \quad \forall p \in \mathbb{K}^{n},
$$

then $F$ is an automorphism." (Ott-Heinrich Keller, 1939)

- $n=1$ : the conjecture is true for both $\mathbb{K}=\mathbb{R}$ and $\mathbb{K}=\mathbb{C}$.
- $n=2$ :
(1) The conjecture is false for $\mathbb{K}=\mathbb{R}$ (Pinchuk, 1994)
(2) The conjecture is still open for $\mathbb{K}=\mathbb{C}$.


## An equivalent statement of the Jacobian conjecture

Let $F: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$, where $\mathbb{K}=\mathbb{R}$ or $\mathbb{C}$, be a polynomial mapping. If $\operatorname{det} J F(p) \neq 0, \forall p \in \mathbb{K}^{n}$, then $F$ is proper.

- The map $F$ is proper if and only if its asymptotic set $S_{F}$ is empty.

$$
S_{F}:=\left\{a \in \mathbb{K}^{n}: \exists\left\{\xi_{k}\right\} \subset \mathbb{K}^{n},\left|\xi_{k}\right| \rightarrow \infty, F\left(\xi_{k}\right) \rightarrow a\right\}
$$

Motivation: Study a subset (suficient large) of non-proper mappings and investigate the Condition of the Jacobian conjecture for this subset.

Part 1. "Asymptotic set" approach (2-dimensional Real and Complex cases).

Part 2. Newton polygon approach and the 2-dimensional complex Jacobian conjecture.

Part 3. Intersection homology approach and a singular variety associated to a Pinchuk's map.

## Part 1:

"Asymptotic set" approach

## Part 1: "Asymptotic set" approach

Consider a polynomial mapping $F: \mathbb{K}^{2} \rightarrow \mathbb{K}^{2}$, where $\mathbb{K}=\mathbb{R}$ or $\mathbb{C}$.

## Purpose:

(1) Define a so-called "pertinent variables" in such a way that any mapping written under these variables (called "pertinent mappings") is non-proper.
(2) Clasify the pertinent mappings into two types: "dependent" type and "independent" type, such that for the "dependent" type, the pertinent mappings do not satisfy the condition of the Jacobian conjecture.

## Pertinent variables

## Definition

Let $u: \mathbb{K}^{2} \rightarrow \mathbb{K}$ be a polynomial function. We say that the function $u$ is a pertinent variable if there is a sequence $\left\{\left(x_{k}, y_{k}\right)\right\}_{k \in \mathbb{N}} \subset \mathbb{K}^{2}$ such that $\lim _{k \rightarrow \infty}\left\|\left(x_{k}, y_{k}\right)\right\|=\infty$ and $\lim _{k \rightarrow \infty} u\left(x_{k}, y_{k}\right)=c \in \mathbb{K}$.

## Definition

A polynomial mapping $F: \mathbb{K}^{2} \rightarrow \mathbb{K}^{2}$ is called pertinent mapping with respect to pertinent variables $u_{0}, u_{1}, \ldots, u_{n}$ if there exists a polynomial mapping $H: \mathbb{K}^{n+1} \rightarrow \mathbb{K}^{2}$ such that

$$
F(x, y)=H\left(u_{0}(x, y), u_{1}(x, y), \ldots, u_{n}(x, y)\right) .
$$

## Remark

A pertinent mapping is a non-proper mapping.

Example: Pinchuk map is a pertinent map satisfying the condition of the Jacobian conjecture for the real case.

## Counter-example to the Real Jacobian Conjecture (Pinchuk, 1994).

Construction of the smallest degree Pinchuk's map: given $(x, y) \in \mathbb{R}^{2}$, denote

$$
t=x y-1, \quad h=t(x t+1), \quad f=(x t+1)^{2}\left(t^{2}+y\right) .
$$

The smallest degree (25) of Pinchuk's maps is the one
$\mathcal{P}=(p, q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, where
$p=f+h \quad$ and
$q=-t^{2}-6 t h(h+1)-170 f h-91 h^{2}-195 f h^{2}-69 h^{3}-75 f h^{3}-\frac{75}{4} h^{4}$.
Then $\operatorname{det}(J \mathcal{P}(x, y))>0, \forall(x, y) \in \mathbb{R}^{2}$ but $\mathcal{P}$ is not injective.

Affirmation: The variables $t, h, f$ are pertinent.

## Classify pertinent variables

## Definition

Let $u_{0}, u_{1}, \ldots, u_{n}: \mathbb{K}^{2} \rightarrow \mathbb{K}$ be pertinent variables. We say that they are dependent pertinent variables if there exists $z \in \mathbb{K}^{2}$ such that the two vectors

$$
\begin{aligned}
& \left(\frac{\partial u_{0}}{\partial x}(z), \frac{\partial u_{1}}{\partial x}(z), \ldots, \frac{\partial u_{n}}{\partial x}(z)\right), \\
& \left(\frac{\partial u_{0}}{\partial y}(z), \frac{\partial u_{1}}{\partial y}(z), \ldots, \frac{\partial u_{n}}{\partial y}(z)\right)
\end{aligned}
$$

are linearly dependent in $\mathbb{K}^{n+1}$. Otherwise, the pertinent variables $u_{0}, u_{1}, \ldots, u_{n}$ are independent pertinent variables.

## Example:

## Proposition

The Pinchuk pertinent variables:

$$
t=x y-1, \quad h=t(x t+1), \quad f=(x t+1)^{2}\left(t^{2}+y\right)
$$

are independent in both real and complex cases.
Notice that the Pinchuk map is not a counter-example in the complex case.

## Proposition

If $u_{0}, u_{1}, \ldots, u_{n}$ are dependent then any pertinent maping
$F\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ does not satisfy the condition of the Jacobian conjecture.

## Theorem

Consider the set of pertinent variables from $\mathbb{K}^{2}$ to $\mathbb{K}$ :

$$
u_{0}=y, u_{1}=x-b x^{r} y^{s}, \ldots, u_{n}=x-b x^{n r} y^{n s}, \quad(b \in \mathbb{K}, r, s>0)
$$

Then the variables $u_{0}, u_{1}, \ldots, u_{n}$ are pertinent and
(1) If $r=1$, then the pertinent variables $u_{0}, u_{1}, \ldots, u_{n}$ are dependent.
(2) If $r>1$, then for a fixed natural number $n \geq 2$, the pertinent variables $u_{0}, u_{1}, \ldots, u_{n}$ are independent.

Denote by $\mathcal{C}$ the class of pertinent mappings $F\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ and write:

$$
\mathcal{C}=\bigcup_{r=1}^{\infty} \mathcal{C}_{r}
$$

- If $\mathcal{C}_{1}$ is a class where Jacobian conjectrue is true;
- If there exists a counter-example to Jacobian conjecture, this one belongs to some class $\mathcal{C}_{r}$ with $r \geq 2$.


# Part 2: <br> Newton polygon and <br> 2-dimensional complex Jacobian conjecture 

## Newton polygon

## Definition

Let $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a polynomial of two variables $x$ and $y$, i.e., $f$ can be written as a finite sum:

$$
f=\sum_{i, j} a_{i j} x^{i} y^{j}
$$

The support of $f$, denoted by $\operatorname{Supp} f$, is defined by:

$$
\operatorname{Supp} f=\left\{(i, j): a_{i j} \neq 0\right\}
$$

The Newton polygon of $f$, denoted by $N(f)$, is the convex hull of the origin and Suppf:

$$
N(f)=\operatorname{Conv}\left(\{(0,0)\} \cup\left\{(i, j): a_{i j} \neq 0\right\}\right)
$$

Example 1: $f(x, y)=x+x^{2}+x y+y+y^{2}$.


Example 2: $f(x, y)=x+x^{2} y+x y+x y^{2}+y$.


The Newton polygon approach was studied by Abhyankar in the book S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Institute of Fundamental Research, 1977
to study the 2-dimensional Jacobian conjecture in the complex case.

## Some principal results by Newton polygon approach

Let $F=(f, g): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a polynomial mapping.
(1) (Abhyankar, 1977). If $\operatorname{deg}(f)$ divide $\operatorname{deg}(g)$ or $\operatorname{deg}(g)$ divide $\operatorname{deg}(f)$ then the conjecture is true.
(2) (Appelgate, Onishi, Nagata, 1985). Let $d:=\operatorname{gcd}(\operatorname{deg}(f), \operatorname{deg}(g))$, the greatest common divisor of degrees of $f$ and $g$. Then If $d \leq 8$ or $d$ is a prime number then the conjecture is true.
(3) (Nagata, 1985). If $\operatorname{deg}(f)$ or $\operatorname{deg}(g)$ is a product of at most two prime numbers, then the conjecture is true.

With a highly non-trivial proof, Moh proved:

## Theorem (Moh, 1983)

Let $F=(f, g): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a polynomial mapping. The 2-dimensional complex Jacobian conjecture is true for $\operatorname{deg}(F) \leq 100$.

## Question: What happens if $\operatorname{deg}(F) \geq 101$ ?

## Theorem

The 2-dimensional complex Jacobian conjecture is true for $\operatorname{deg}(F) \leq 104$.
Idea of Proof: Using the principal results obtained by Newton polygon approach and the following result of Żołądek obtained by the so-called Newton-Puiseux chart

## Theorem (Żołądek, 2008)

The Jacobian conjecture satisfies for maps with $\operatorname{gcd}(\operatorname{deg}(f), \operatorname{deg}(g)) \leq 16$ and for maps with $\operatorname{gcd}(\operatorname{deg}(f), \operatorname{deg}(g))$ equals to 2 times a prime.

For $\operatorname{deg}(F)=105$, we have:

## Proposition

If the conjecture satisfies for the cases where $(\operatorname{deg}(f), \operatorname{deg}(g))$ is

$$
(42,105), \quad(63,105), \quad(70,105), \quad(84,105)
$$

then the conjecture satisfies for polynomial maps of degree 105.

## Part 3:

## Intersection Homology Approach

## Intersection homology approach

A. Valette and G. Valette, Geometry of polynomial mappings at infinity via intersection homology, Ann. I. Fourier vol. 64, fascicule 5 (2014), 2147-2163.

## Theorem (Anna Valette and Guillaume Valette, 2010).

Let $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a polynomial mapping satisfying the condition of the Jacobian conjecture. Then there exist singular varieties $V_{F}$ (called Valette varieties) such that $F$ is a diffeomorphism iff the intersection homology $I H_{2}^{\bar{p}}\left(V_{F}, \mathbb{R}\right)=0$, for any perversity $\bar{p}$.

## Intersection homology approach

## - A generalization of Valettes's Result:

## Theorem (-, Anna Valette and Guillaume Valette, 2013)

The above theorem is still true for the general case $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, where $n \geq 2$, with the additional condition: "The parts at infinity of the fibres of $F$ are complete intersections."

Nguyen, T. B. T., A. Valette and G. Valette, On a singular variety associated to a polynomial mapping, Journal of Singularities volume 7 (2013), 190-204.

## Theorem

There exists a Valette variety $V_{\mathcal{P}}$ associated to the Pinchuk map $\mathcal{P}$ such that

$$
I H_{1}^{\overline{0}, \mathrm{c}}\left(V_{\mathcal{P}}\right)=I H_{1}^{\overline{0}, \mathrm{cl}}\left(V_{\mathcal{P}}\right)=0 .
$$

## Remark

The "real version" of Valettes' result is no longer true!

## A Valette variety associated to a Pinchuk's map

The asymptotic variety and the asymptotic flower of the Pinchuk's map (L. A. Campbell, 1996-2001).


The asymptotic flower


The asymptotic variety

## A Valette variety associated to a Pinchuk's map



## The case $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$

## Theorem (- , Maria Aparecida Soares Ruas, 2018)

Let $G=\left(G_{1}, \ldots, G_{n-1}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$, where $n \geq 3$, be a generic polynomial mapping such that $K_{0}(G)=\emptyset$ and the parts at infinity of the fibres of $G$ are complete intersections. Then there exist singular varieties $\mathcal{V}_{G}$ associated to $G$ such that if $I H_{2}^{\bar{t}}\left(\mathcal{V}_{G}, \mathbb{R}\right)$ is trivial then the bifurcation set $B(G)$ is empty (here $\bar{t}$ is the total perversity).

Nguyen, T.B.T. and Ruas, M.A.S., On singular varieties associated to a polynomial mapping from $\mathbb{C}^{n}$ to $\mathbb{C}^{n-1}$, Asian Journal of Mathematics, v.22, p.1157-1172, 2018.

## Theorem (Hà Huy Vui and Nguyễn Tất Thắng, 2011).

Let $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$, where $n \geq 2$, be a local submersion polynomial mapping. If the parts at infinity of the fibres of $G$ are complete intersections, then the bifurcation set $B(G)$ of $G$ is empty if and only if the Euler characteristic of $G^{-1}(t)$ is a constant for any $t \in \mathbb{C}^{n-1}$.
V. H. Ha, T. T. Nguyen On the topology of polynomial mappings from $\mathbb{C}^{n}$ to $\mathbb{C}^{n-1}$, International Journal of Mathematics, Vol. 22, No. 3 (2011) 435-448.
H. Ha, Nombres de Łojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Ser. I 311 (1990) 429-432.
V. H. Ha and L.D. Tráng, Sur la topologie des polynomes complexes, Acta Math. Vietnamica 9 (1984) 21-32.

