GDAŃSK-KRAKÓW-ŁÓDŹ-WARSZAWA WORKSHOP IN SINGULARITY THEOREY

A special session dedicated to the memory of STANISŁAW ŁOJASIEWICZ

A view of point for the 2-dimensional Jacobian conjecture

Nguyễn Thị Bích Thủy Ibilce/UNESP, São José do Rio Preto

December 16th, 2022

Real and Complex Jacobian Conjecture

Real and Complex Jacobian Conjecture

"Let $F = (F_1, \ldots, F_n) : \mathbb{K}^n \to \mathbb{K}^n$, where $n \ge 1$, $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, be a *polynomial map*. If

 $\det JF(p) \neq 0, \quad \forall p \in \mathbb{K}^n,$

then F is an automorphism." (Ott-Heinrich Keller, 1939)

- n = 1: the conjecture is true for both $\mathbb{K} = \mathbb{R}$ and $\mathbb{K} = \mathbb{C}$.
- *n* = 2:

• The conjecture is false for $\mathbb{K} = \mathbb{R}$ (Pinchuk, 1994)

2 The conjecture is still open for $\mathbb{K} = \mathbb{C}$.

An equivalent statement of the Jacobian conjecture

Let $F : \mathbb{K}^n \to \mathbb{K}^n$, where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , be a polynomial mapping. If det $JF(p) \neq 0$, $\forall p \in \mathbb{K}^n$, then F is proper.

- The map F is proper if and only if its asymptotic set S_F is empty.

 $S_F := \{a \in \mathbb{K}^n : \exists \{\xi_k\} \subset \mathbb{K}^n, |\xi_k| \to \infty, F(\xi_k) \to a\}.$

Motivation: *Study a subset (suficient large) of non-proper mappings and investigate the Condition of the Jacobian conjecture for this subset.*

Part 1. "Asymptotic set" approach (*2-dimensional Real and Complex cases*).

Part 2. Newton polygon approach and the 2-dimensional complex Jacobian conjecture.

Part 3. Intersection homology approach and a singular variety associated to a Pinchuk's map.

Part 1: "Asymptotic set" approach Consider a polynomial mapping $F : \mathbb{K}^2 \to \mathbb{K}^2$, where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

Purpose:

- Define a so-called "pertinent variables" in such a way that any mapping written under these variables (called "pertinent mappings") is non-proper.
- Clasify the pertinent mappings into two types: "dependent" type and "independent" type, such that for the "dependent" type, the pertinent mappings do not satisfy the condition of the Jacobian conjecture.

Definition

Let $u : \mathbb{K}^2 \to \mathbb{K}$ be a polynomial function. We say that the function u is a *pertinent variable* if there is a sequence $\{(x_k, y_k)\}_{k \in \mathbb{N}} \subset \mathbb{K}^2$ such that $\lim_{k \to \infty} ||(x_k, y_k)|| = \infty$ and $\lim_{k \to \infty} u(x_k, y_k) = c \in \mathbb{K}$.

Definition

A polynomial mapping $F : \mathbb{K}^2 \to \mathbb{K}^2$ is called *pertinent mapping* with respect to pertinent variables u_0, u_1, \ldots, u_n if there exists a polynomial mapping $H : \mathbb{K}^{n+1} \to \mathbb{K}^2$ such that $F(x, y) = H(u_0(x, y), u_1(x, y), \ldots, u_n(x, y)).$

Remark

A pertinent mapping is a non-proper mapping.

Example: Pinchuk map is a pertinent map satisfying the condition of the Jacobian conjecture for the *real* case.

Counter-example to the Real Jacobian Conjecture (Pinchuk, 1994).

Construction of the smallest degree Pinchuk's map: given $(x, y) \in \mathbb{R}^2$, denote t = xy - 1, h = t(xt + 1), $f = (xt + 1)^2(t^2 + y)$. The smallest degree (25) of Pinchuk's maps is the one $\mathcal{P} = (p, q) : \mathbb{R}^2 \to \mathbb{R}^2$, where p = f + h and $q = -t^2 - 6th(h + 1) - 170fh - 91h^2 - 195fh^2 - 69h^3 - 75fh^3 - \frac{75}{4}h^4$. Then det $(J\mathcal{P}(x, y)) > 0, \forall (x, y) \in \mathbb{R}^2$ but \mathcal{P} is not injective.

Affirmation: The variables t, h, f are pertinent.

Definition

Let $u_0, u_1, \ldots, u_n : \mathbb{K}^2 \to \mathbb{K}$ be pertinent variables. We say that they are *dependent pertinent variables* if there exists $z \in \mathbb{K}^2$ such that the two vectors

$$\begin{pmatrix} \frac{\partial u_0}{\partial x}(z), \frac{\partial u_1}{\partial x}(z), \dots, \frac{\partial u_n}{\partial x}(z) \end{pmatrix}, \\ \begin{pmatrix} \frac{\partial u_0}{\partial y}(z), \frac{\partial u_1}{\partial y}(z), \dots, \frac{\partial u_n}{\partial y}(z) \end{pmatrix}$$

are *linearly dependent* in \mathbb{K}^{n+1} . Otherwise, the pertinent variables u_0, u_1, \ldots, u_n are *independent pertinent variables*.

Example:

Proposition

The Pinchuk pertinent variables:

$$t = xy - 1$$
, $h = t(xt + 1)$, $f = (xt + 1)^2(t^2 + y)$

are independent in both real and complex cases.

Notice that the Pinchuk map is not a counter-example in the complex case.

Proposition

If u_0, u_1, \ldots, u_n are dependent then any pertinent maping $F(u_0, u_1, \ldots, u_n)$ does not satisfy the condition of the Jacobian conjecture.

Theorem

Consider the set of pertinent variables from \mathbb{K}^2 to \mathbb{K} :

$$u_0 = y, u_1 = x - bx^r y^s, \dots, u_n = x - bx^{nr} y^{ns}, \quad (b \in \mathbb{K}, r, s > 0)$$

Then the variables u_0, u_1, \ldots, u_n are pertinent and

- **1** If r = 1, then the pertinent variables u_0, u_1, \ldots, u_n are dependent.
- If r > 1, then for a fixed natural number n ≥ 2, the pertinent variables u₀, u₁,..., u_n are independent.

Denote by C the class of pertinent mappings $F(u_0, u_1, \ldots, u_n)$ and write:

$$\mathcal{C} = \bigcup_{r=1}^{\infty} \mathcal{C}_r$$

• If C_1 is a class where Jacobian conjectrue is true;

• If there exists a counter-example to Jacobian conjecture, this one belongs to some class C_r with $r \ge 2$.

Part 2: Newton polygon and 2-dimensional complex Jacobian conjecture

Definition

Let $f : \mathbb{C}^2 \to \mathbb{C}$ be a polynomial of two variables x and y, *i.e.*, f can be written as a finite sum:

$$f = \sum_{i,j} a_{ij} x^i y^j.$$

The *support* of *f*, denoted by Supp*f*, is defined by:

$$\operatorname{Supp} f = \{(i,j) : a_{ij} \neq 0\}.$$

The Newton polygon of f, denoted by N(f), is the convex hull of the origin and Suppf:

$$N(f) = \operatorname{Conv} \left(\{ (0,0) \} \cup \{ (i,j) : a_{ij} \neq 0 \} \right).$$

The Newton polygon approach was studied by Abhyankar in the book S. S. Abhyankar, *Expansion Techniques in Algebraic Geometry*, Tata Institute of Fundamental Research, 1977

to study the 2-dimensional Jacobian conjecture in the complex case.

Some principal results by Newton polygon approach

Let $F = (f,g) : \mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial mapping.

- (Abhyankar, 1977). If deg(f) divide deg(g) or deg(g) divide deg(f) then the conjecture is true.
- (Appelgate, Onishi, Nagata, 1985). Let

 $d := \gcd(\deg(f), \deg(g))$, the greatest common divisor of degrees of f and g. Then If $d \le 8$ or d is a prime number then the conjecture is true.

(Nagata, 1985). If deg(f) or deg(g) is a product of at most two prime numbers, then the conjecture is true.

With a highly non-trivial proof, Moh proved:

Theorem (Moh, 1983)

Let $F = (f,g) : \mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial mapping. The 2-dimensional complex Jacobian conjecture is true for deg $(F) \leq 100$.

Question: What happens if deg $(F) \ge 101$?

Theorem

The 2-dimensional complex Jacobian conjecture is true for deg $(F) \leq 104$.

Idea of Proof: Using the principal results obtained by Newton polygon approach and the following result of Żołądek obtained by the so-called Newton-Puiseux chart

Theorem (Żołądek, 2008)

The Jacobian conjecture satisfies for maps with $gcd(deg(f), deg(g)) \le 16$ and for maps with gcd(deg(f), deg(g)) equals to 2 times a prime.

For deg (F) = 105, we have:

Proposition

If the conjecture satisfies for the cases where $(\deg(f), \deg(g))$ is

(42, 105), (63, 105), (70, 105), (84, 105)

then the conjecture satisfies for polynomial maps of degree 105.

Part 3: Intersection Homology Approach

A. Valette and G. Valette, *Geometry of polynomial mappings at infinity via intersection homology*, Ann. I. Fourier vol. 64, fascicule 5 (2014), 2147-2163.

Theorem (Anna Valette and Guillaume Valette, 2010).

Let $F : \mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial mapping satisfying the condition of the Jacobian conjecture. Then there exist singular varieties V_F (called *Valette varieties*) such that F is a diffeomorphism iff the intersection homology $IH_2^{\overline{p}}(V_F, \mathbb{R}) = 0$, for any perversity \overline{p} .

Intersection homology approach

• A generalization of Valettes's Result:

Theorem (-, Anna Valette and Guillaume Valette, 2013)

The above theorem is still true for the general case $F : \mathbb{C}^n \to \mathbb{C}^n$, where $n \ge 2$, with the additional condition: "The parts at infinity of the fibres of F are complete intersections."

Nguyen, T. B. T., A. Valette and G. Valette, *On a singular variety associated to a polynomial mapping*, Journal of Singularities volume 7 (2013), 190-204.

Theorem

There exists a Valette variety $V_{\mathcal{P}}$ associated to the Pinchuk map \mathcal{P} such that

$$IH_1^{\overline{0},c}(V_{\mathcal{P}})=IH_1^{\overline{0},cl}(V_{\mathcal{P}})=0.$$

Remark

The "real version" of Valettes' result is no longer true!

A Valette variety associated to a Pinchuk's map

The asymptotic variety and the asymptotic flower of the Pinchuk's map (L. A. Campbell, 1996-2001).

A Valette variety associated to a Pinchuk's map

Theorem (-, Maria Aparecida Soares Ruas, 2018)

Let $G = (G_1, \ldots, G_{n-1}) : \mathbb{C}^n \to \mathbb{C}^{n-1}$, where $n \ge 3$, be a generic polynomial mapping such that $K_0(G) = \emptyset$ and the parts at infinity of the fibres of G are complete intersections. Then there exist singular varieties \mathcal{V}_G associated to G such that if $IH_2^{\overline{t}}(\mathcal{V}_G, \mathbb{R})$ is trivial then the bifurcation set B(G) is empty (here \overline{t} is the total perversity).

Nguyen, T.B.T. and Ruas, M.A.S., On singular varieties associated to a polynomial mapping from \mathbb{C}^n to \mathbb{C}^{n-1} , Asian Journal of Mathematics, v.22, p.1157-1172, 2018.

Theorem (Hà Huy Vui and Nguyễn Tất Thắng, 2011).

Let $G : \mathbb{C}^n \to \mathbb{C}^{n-1}$, where $n \ge 2$, be a *local submersion* polynomial mapping. If the parts at infinity of the fibres of G are complete intersections, then the bifurcation set B(G) of G is empty if and only if the Euler characteristic of $G^{-1}(t)$ is a constant for any $t \in \mathbb{C}^{n-1}$.

V. H. Ha, T. T. Nguyen On the topology of polynomial mappings from \mathbb{C}^n to \mathbb{C}^{n-1} , International Journal of Mathematics, Vol. 22, No. 3 (2011) 435-448.

H. Ha, Nombres de Łojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Ser. I **311** (1990) 429-432.

V. H. Ha and L.D. Tráng, *Sur la topologie des polynomes complexes*, Acta Math. Vietnamica **9** (1984) 21-32.