Pairs of Lipschitz Normally Embedded Hölder Triangles:

Outer Lipschitz Classification

Andrei Gabrielov (Purdue University, West Lafayette, USA)
Joint work with Lev Birbrair (UFC, Fortaleza, Brazil)
60 LB Geometry and Singularities

Bedlewo, July 16-22, 2023

All sets and maps are definable in a polynomially bounded o-minimal structure over \mathbb{R} with the field of exponents \mathbb{F}, e.g., real semialgebraic or subanalytic with $\mathbb{F}=\mathbb{Q}$.

A set $X \subset \mathbb{R}^{n}$ inherits from \mathbb{R}^{n} two metrics:
the outer metric $\operatorname{dist}(x, y)=|y-x|$ and the inner metric $\operatorname{idist}(x, y)=$ length of the shortest path in X connecting x and y.

The set X is Lipschitz Normally Embedded (LNE) if these two metrics on X are equivalent.

A surface germ X is a closed two-dimensional germ at the origin. The link of X is its intersection with a small sphere $\{|x|=\delta\}$.

Surface germs X and Y are outer (inner) Lipschitz equivalent if there is an outer (inner) bi-Lipschitz homeomorphism $h: X \rightarrow Y$.

An arc $\gamma \subset X$ is the germ of a curve in X. The tangency order tord $\left(\gamma, \gamma^{\prime}\right) \in \mathbb{F} \cup\{\infty\}$ of two arcs is outer Lipschitz invariant.

A standard β-Hölder triangle, for $1 \leq \beta \in \mathbb{F}$, is the surface germ

$$
T_{\beta}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0,0 \leq y \leq x^{\beta}\right\} .
$$

The arcs $\{y=0\}$ and $\left\{y=x^{\beta}\right\}$ are the boundary arcs of T_{β}.

A standard β-Hölder triangle T_{β} (left) and its link (right).

A β-Hölder triangle $T=T\left(\gamma_{1}, \gamma_{2}\right)$ with boundary arcs γ_{1} and γ_{2} is a surface germ inner Lipschitz equivalent to T_{β}.

Lipschitz Normally Embedded (LNE) Hölder triangles are building blocks of surface germs:

Given $\beta \in \mathbb{F}$, all LNE β-Hölder triangles are Lipschitz equivalent.

Classification of surface germs with respect to inner Lipschitz equivalence (Birbrair 1999) was based on the Hölder complex: canonical decomposition of a surface germ into Hölder triangles.

Our goal: To understand the outer Lipschitz geometry of a pair (T, T^{\prime}) of Lipschitz Normally Embedded Hölder triangles.

We want to decompose a surface germ X into pizza slices, Hölder subtriangles with simple metric properties.

The main difficulty: Hard to select boundary arcs of pizza slices canonically, uniquely up to outer Lipschitz equivalence.

Only Lipschitz singular arcs in X can be easily selected.
An arc γ in a surface germ X is Lipschitz non-singular if it is an interior arc of a LNE Hölder triangle $T \subset X$, otherwise γ is Lipschitz singular.

There are finitely many Lipschitz singular arcs in X.
A Hölder triangle is non-singular if all its interior arcs are Lipschitz non-singular.

Because of the difficulty of selecting arcs in X, we have to work in the Valette link $V(X)$, the set of all arcs in X, instead of X itself.

The tangency order of arcs defines a non-archimedean metric on $V(X)$: The distance between arcs γ and γ^{\prime} is $1 / \operatorname{tord}\left(\gamma, \gamma^{\prime}\right)$.

There are plenty of outer Lipschitz invariant subsets in $V(X)$.

We are going to select outer Lipschitz invariant sets of arcs in $V(X)$, called perfect zones, so that any two choices of an arc in a perfect zone are outer Lipschitz equivalent.

Zonology (AG, Souza, 2022)

A set of $\operatorname{arcs} Z \subset V(X)$ is a zone if, for any $\operatorname{arcs} \gamma \neq \gamma^{\prime}$ in Z, there is a non-singular Hölder triangle $T=T\left(\gamma, \gamma^{\prime}\right)$ such that $V(T) \subset Z$.

The order $\operatorname{ord}(Z)$ of a zone Z is infimum of the tangency orders of arcs in Z. A single arc $\{\gamma\}$ is a singular zone of order ∞.

An arc γ in a LNE β-Hölder triangle $T=T\left(\gamma_{1}, \gamma_{2}\right)$ is generic if $\operatorname{tord}\left(\gamma, \gamma_{1}\right)=\operatorname{tord}\left(\gamma, \gamma_{2}\right)=\beta$.

A zone $Z \subset V(X)$ is perfect if, for any two arcs γ and γ^{\prime} in Z, there is a Hölder triangle T, such that $V(T) \subset Z$ and both γ and γ^{\prime} are generic arcs of T. By definition, a singular zone $Z=\{\gamma\}$ is perfect.

Pizza Hut (Birbrair et al, 2017)

Let T^{\prime} be the graph of a non-negative Lipschitz function $f(x)$ on a LNE Hölder triangle T, such that $f(0)=0$.

For an arc $\gamma \in V(T)$, let $\operatorname{ord}_{\gamma} f=\operatorname{tord}\left(\gamma, \gamma^{\prime}\right)$ be the order of f on γ, where $\gamma^{\prime} \in V\left(T^{\prime}\right)$ is the graph of $\left.f\right|_{\gamma}$.

Let $Q(T) \subset \mathbb{F} \cup\{\infty\}$ be the set of exponents $\operatorname{ord}_{\gamma} f$ for all $\gamma \subset T$. Then $Q(T)$ is a closed interval in $\mathbb{F} \cup\{\infty\}$.

A Hölder triangle T is elementary if $Z_{q}=\left\{\gamma \subset T\right.$, ord $\left.d_{\gamma} f=q\right\}$ is a zone, for any $q \in Q(T)$. Let $\mu(q) \in \mathbb{F} \cup\{\infty\}$ be the order of Z_{q}. This defines a piecewise linear width function $\mu(q)$ on $Q(T)$.

All relations between exponents in a polynomially bounded o-minimal structure are piecewise linear. (van den Dries, 1997)

A Hölder triangle T is a pizza slice for f if $\mu(q)=a q+b$.

A pizza for a non-negative Lipschitz function f on T is a decomposition $\wedge=\left\{T_{j}\right\}$ of T into pizza slices $T_{j}=T\left(\lambda_{j-1}, \lambda_{j}\right)$, such that $T_{j} \cap T_{j+1}=\left\{\lambda_{j}\right\}$, with the following toppings:

- exponents β_{j} of T_{j},
- exponents $q_{j}=\operatorname{ord}_{\lambda_{j}} f$,
- closed intervals $Q_{j}=Q\left(T_{j}\right)=\left[q_{j-1}, q_{j}\right]$ in $\mathbb{F} \cup\{\infty\}$,
- linear width functions $\mu_{j}(q)$ on Q_{j} (an exponent μ_{j} if Q_{j} is a point).

A pizza is minimal if the union of any two adjacent pizza slices is not a pizza slice.

Two pizzas $\Lambda=\left\{T_{j}\right\}$ and $\Lambda^{\prime}=\left\{T_{j}^{\prime}\right\}$ with the same toppings are equivalent if there is a bi-Lipschitz homeomorphism h of T such that $h\left(T_{j}\right)=T_{j}^{\prime}$ for all j.

An abstract pizza is a combinatorial encoding of an equivalence class of minimal pizzas.

Theorem (Birbrair et al., 2017). For any Lipschitz function f defined on a LNE Hölder triangle T, a minimal pizza exists, and is unique up to equivalence. Minimal pizzas for two Lipschitz functions f and g on T are equivalent if, and only if, f and g are Lipschitz contact equivalent.

Remark: For a non-negative Lipschitz function f on a LNE Hölder triangle T, the Lipschitz contact equivalence class of f is the same as the outer Lipschitz equivalence class of a pair (T, T^{\prime}), where T^{\prime} is the graph of f.

Normal pairs of Hölder Triangles

Given two Hölder triangles T and T^{\prime}, a pair of arcs $\gamma \subset T$ and $\gamma^{\prime} \subset T^{\prime}$, is normal if $\operatorname{tord}\left(\gamma, T^{\prime}\right)=\operatorname{tord}\left(\gamma, \gamma^{\prime}\right)=\operatorname{tord}\left(\gamma^{\prime}, T\right)$. A pair $\left(T, T^{\prime}\right)$ of LNE Hölder triangles $T=T\left(\gamma_{1}, \gamma_{2}\right)$ and $T^{\prime}=T\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right)$ is normal if both pairs $\left(\gamma_{1}, \gamma_{1}^{\prime}\right)$ and $\left(\gamma_{2}, \gamma_{2}^{\prime}\right)$ of their boundary arcs are normal.

For example, if T^{\prime} is a graph of a Lipschitz function f on T, then any pair of $\operatorname{arcs}\left(\gamma, \gamma^{\prime}\right)$, where $\gamma \subset T$ and $\gamma^{\prime} \subset T^{\prime}$ is the graph of $\left.f\right|_{\gamma}$, is normal, and the pair $\left(T, T^{\prime}\right)$ is normal.

Theorem (Birbrair, AG). Let (T, T^{\prime}) be a normal pair of Hölder triangles. If T is elementary with respect to $f(x)=\operatorname{dist}\left(x, T^{\prime}\right)$, then the pair (T, T^{\prime}) is outer Lipschitz equivalent to the pair $\left(T,\ulcorner)\right.$, where Γ is the graph of f. Moreover, T^{\prime} is elementary with respect to $g\left(x^{\prime}\right)=\operatorname{dist}\left(x^{\prime}, T\right)$, and a minimal pizza for g on T^{\prime} is equivalent to a minimal pizza for f on T.

If $\left(T, T^{\prime}\right)$ is a normal pair of Hölder triangles such that T is not elementary with respect to $f(x)=\operatorname{dist}\left(x, T^{\prime}\right)$, then $T \cup T^{\prime}$ may be not equivalent to the union of T and a graph of a function on T.

The link of a normal pair (T, T^{\prime}) of Hölder triangles.

Maximal exponent zones (maximum zones)

Let (T, T^{\prime}) be a normal pair of Hölder triangles $T=T\left(\gamma_{1}, \gamma_{2}\right)$ and $T^{\prime}=T\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right)$. Let $\left\{D_{\ell}\right\}_{\ell=0}^{p}$ be pizza zones in $V(T)$ of a minimal pizza for $f(x)=\operatorname{dist}\left(x, T^{\prime}\right)$, ordered from $D_{0}=\left\{\gamma_{1}\right\}$ to $D_{p}=\left\{\gamma_{2}\right\}$. The exponent $q_{\ell}=\operatorname{tord}\left(D_{\ell}, T^{\prime}\right)$ of the zone D_{ℓ} is defined as $\operatorname{ord}_{\gamma} f$ for $\gamma \in D_{\ell}$ (it is the same for all $\gamma \in D_{\ell}$).

A zone D_{ℓ} is a maximal exponent zone, or a maximum zone, if $0<\ell<p$ and $q_{\ell} \geq \max \left(q_{\ell-1}, q_{\ell+1}\right)$, or $\ell=0$ and $\beta<q_{0} \geq q_{1}$, or $\ell=p$ and $\beta<q_{p} \geq q_{p-1}$.

Maximum zones in $V\left(T^{\prime}\right)$ are some of the pizza zones D_{ℓ}^{\prime} of a minimal pizza for $g\left(x^{\prime}\right)=\operatorname{dist}\left(x^{\prime}, T\right)$, defined exchanging T and T^{\prime}.

Theorem (Birbrair, AG). Let (T, T^{\prime}) be a normal pair of Hölder triangles.

Let $\left\{M_{i}\right\}_{i=1}^{m}$ and $\left\{M_{j}^{\prime}\right\}_{j=1}^{n}$ be maximum zones in $V(T)$ and $V\left(T^{\prime}\right)$. Let $\bar{q}_{i}=\operatorname{tord}\left(M_{i}, T^{\prime}\right)$ and $\bar{q}_{j}^{\prime}=\operatorname{tord}\left(M_{j}^{\prime}, T\right)$.

Then $m=n$, and there is a canonical permutation

$$
\sigma:[1, \ldots, m] \rightarrow[1, \ldots, m]
$$

such that $\operatorname{ord}\left(M_{i}\right)=\operatorname{ord}\left(M_{\sigma(i)}^{\prime}\right)$ and $\operatorname{tord}\left(M_{i}, M_{\sigma(i)}^{\prime}\right)=\bar{q}_{i}=\bar{q}_{\sigma(i)}^{\prime}$.
If $\left\{\gamma_{1}\right\}=M_{1}$ is a maximum zone, then $\left\{\gamma_{1}^{\prime}\right\}=M_{1}^{\prime}$ and $\sigma(1)=1$.
If $\left\{\gamma_{2}\right\}=M_{m}$ is a maximum zone, then $\left\{\gamma_{2}^{\prime}\right\}=M_{m}^{\prime}$ and $\sigma(m)=m$.

A normal pair (T, T^{\prime}) of Hölder triangles with four pairs of maximum zones and $\sigma=(1,3,2,4)$.

Transversal and coherent Hölder triangles and pizza slices

Two LNE Hölder triangles T and T^{\prime} are transversal if there is a boundary arc $\tilde{\gamma}$ of T and a boundary arc $\tilde{\gamma}^{\prime}$ of T^{\prime}, such that $\operatorname{tord}\left(\gamma, T^{\prime}\right)=\operatorname{tord}\left(\gamma, \tilde{\gamma}^{\prime}\right)$ for any arc γ of T and $\operatorname{tord}\left(\gamma^{\prime}, T\right)=\operatorname{tord}\left(\gamma^{\prime}, \tilde{\gamma}\right)$ for any arc γ^{\prime} of T^{\prime}.

Let $\left\{T_{j}\right\}$ be a pizza decomposition of a LNE Hölder triangle T for a Lipschitz function f on T. Then a pizza slice T_{j} is called transversal if T_{j} and the graph of $\left.f\right|_{T_{j}}$ are transversal and coherent otherwise.

Alternatively, a pizza slice T_{j} with exponent β_{j} is transversal if either $Q_{j}=\left\{q_{j}\right\}$ where $q_{j} \leq \beta_{j}$, or $\mu_{j}(q) \equiv q$, where $\mu_{j}: Q_{j} \rightarrow \mathbb{F} \cup\{\infty\}$ is the width function on Q_{j}.

Theorem (Birbrair, AG). Let (T, T^{\prime}) be a normal pair of Hölder triangles. Let $\left\{T_{i}\right\}_{i=1}^{p}$ and $\left\{T_{j}^{\prime}\right\}_{j=1}^{s}$ be minimal pizza decompositions of T and T^{\prime} for the distance functions $f(x)=\operatorname{dist}\left(x, T^{\prime}\right)$ and $g\left(x^{\prime}\right)=\operatorname{dist}\left(x^{\prime}, T\right)$.

There is a canonical one-to-one correspondence $j=\tau(i)$ between coherent pizza slices T_{i} of T and coherent pizza slices T_{j}^{\prime} of T^{\prime}, such that each pair (T_{i}, T_{j}^{\prime}), where $j=\tau(i)$, is outer Lipschitz equivalent to (T_{i}, Γ_{i}), where Γ_{i} is the graph of $\left.f\right|_{T_{i}}$, and to $\left(T_{j}^{\prime}, \Gamma_{j}^{\prime}\right)$, where Γ_{j}^{\prime} is the graph of $\left.g\right|_{T_{j}^{\prime}}$.

A normal pair of Hölder triangles with four pairs of coherent pizza slices, $\tau(1)=1, \tau(2)=3, \tau(3)=2, \tau(4)=4$.

A pair (T, T^{\prime}) of Hölder triangles with 3 pizza slices of $T, 4$ pizza slices of T^{\prime}, two pairs of coherent pizza slices, $\tau(1)=1, \tau(2)=3$.

A normal pair (T, T^{\prime}) of Hölder triangles with 3 pizza slices of T, 2 pizza slices of T^{\prime}, one pair of coherent pizza slices, $\tau(2)=1$.

Theorem (Birbrair, AG). If two normal pairs (T, T^{\prime}) and (S, S^{\prime}) of Hölder triangles are outer Lipschitz equivalent, then

1. Minimal pizzas on T and T^{\prime} for the distance functions $f(x)=\operatorname{dist}\left(x, T^{\prime}\right)$ and $g\left(x^{\prime}\right)=\operatorname{dist}\left(x^{\prime}, T\right)$ are equivalent to minimal pizzas on S and S^{\prime} for the distance functions $\phi(y)=\operatorname{dist}\left(y, S^{\prime}\right)$ and $\psi\left(y^{\prime}\right)=\operatorname{dist}\left(y^{\prime}, S\right)$, respectively.
2. The numbers of maximum zones for the pairs (T, T^{\prime}) and (S, S^{\prime}) are equal, and the permutations σ of these zones, are the same.
3. The numbers of coherent pizza slices for the pairs (T, T^{\prime}) and (S, S^{\prime}) are equal, and the correspondences τ between these pizza slices, are the same.

Conversely, if the items 1, 2, 3 are satisfied, then the pairs (T, T^{\prime}) and (S, S^{\prime}) are outer Lipschitz equivalent.

Thus the two pizzas, together with the permutation σ and the correspondence τ, constitute a complete invariant of the outer Lipschitz equivalence class of normal pairs of Hölder triangles.

Moreover, given any one of the two pizzas, and given the permutation σ and correspondence τ satisfying some explicit admissibility conditions, the normal pair (T, T^{\prime}) exists and is unique up to outer Lipschitz equivalence.

Blocks

Let π be a permutation of the set $[n]=\{0, \ldots, n-1\}$ of n elements. A segment of $[n]$ is a non-empty set of consecutive indices $\{i, \ldots, k\}$. A segment B of $[n]$ is a block of π if $\pi(B)$ is also a segment of $[n]$ (not necessarily in increased order). Each non-empty subset J of [n] is contained in a unique minimal block $B_{\pi}(J)$ of π.

Given a set $\lambda_{0}, \ldots, \lambda_{n-1}$ of n arcs in an oriented Hölder triangle T, ordered according to orientation of T, a permutation π of $[n]$ is admissible if $\operatorname{tor} d\left(\lambda_{i}, \lambda_{j}\right) \leq \operatorname{tord}\left(\lambda_{i}, \lambda_{k}\right)$ for any indices $i \neq j$ in $[n]$ and all $k \in B_{\pi}(\{i, j\})$.

This relation between combinatorial and metric properties of a normal pair of Hölder triangles, applied to permutations related to the $\sigma \tau$-invariant, is an important part of the existence and uniqueness conditions for the normal pairs of Hölder triangles.

Example. A normal pair of Hölder triangles with the permutation

$$
\pi=(0,3,1,4,2,5)
$$

HAPPY BIRTHDAY, LEV!

