Contributions of Lev Birbrair to the Lipschitz Geometry of Singularities

Alexandre Fernandes UFC

LB60 Conference Bedlewo-Poland, July/2023

bi-Lipschitz equivalence

Definition:

Let A and B be metric spaces with the respective metrics distance functions d_{A} and d_{B}. A mapping $F: A \rightarrow B$ is called Lipschitz if:

bi-Lipschitz equivalence

Definition:
Let A and B be metric spaces with the respective metrics distance functions d_{A} and d_{B}. A mapping $F: A \rightarrow B$ is called Lipschitz if:

$$
\exists \lambda>0 ; d_{B}(F(x), F(y)) \leq \lambda d_{A}(x, y) \quad \forall x, y \in A .
$$

If $F^{-1}: B \rightarrow A$ exists and it is also Lipschitz, we say F is bi-Lipschitz.

bi-Lipschitz equivalence

Definition:

Let A and B be metric spaces with the respective metrics distance functions d_{A} and d_{B}. A mapping $F: A \rightarrow B$ is called Lipschitz if:

$$
\exists \lambda>0 ; d_{B}(F(x), F(y)) \leq \lambda d_{A}(x, y) \quad \forall x, y \in A
$$

If $F^{-1}: B \rightarrow A$ exists and it is also Lipschitz, we say F is bi-Lipschitz.

Outer Metric. $X \subset \mathbb{R}^{n}, d_{\text {out }}(x, y)=\|x-y\| \quad \forall x, y \in X$.

bi-Lipschitz equivalence

Definition:
Let A and B be metric spaces with the respective metrics distance functions d_{A} and d_{B}. A mapping $F: A \rightarrow B$ is called Lipschitz if:

$$
\exists \lambda>0 ; d_{B}(F(x), F(y)) \leq \lambda d_{A}(x, y) \quad \forall x, y \in A
$$

If $F^{-1}: B \rightarrow A$ exists and it is also Lipschitz, we say F is bi-Lipschitz.

Outer Metric. $X \subset \mathbb{R}^{n}, d_{\text {out }}(x, y)=\|x-y\| \quad \forall x, y \in X$.
Inner Metric: $d_{\text {inn }}(x, y):=\inf \{$ length $(\gamma): \gamma$ is a path on X connecting x to $y\}$ $\forall x, y \in X$.

bi-Lipschitz equivalence

Definition:
Let A and B be metric spaces with the respective metrics distance functions d_{A} and d_{B}. A mapping $F: A \rightarrow B$ is called Lipschitz if:

$$
\exists \lambda>0 ; d_{B}(F(x), F(y)) \leq \lambda d_{A}(x, y) \quad \forall x, y \in A
$$

If $F^{-1}: B \rightarrow A$ exists and it is also Lipschitz, we say F is bi-Lipschitz.

Outer Metric. $X \subset \mathbb{R}^{n}, d_{\text {out }}(x, y)=\|x-y\| \quad \forall x, y \in X$.
Inner Metric: $\boldsymbol{d}_{\text {inn }}(x, y):=\inf \{$ length $(\gamma): \gamma$ is a path on X connecting x to $y\}$ $\forall x, y \in X$.

Definition:
(X, p) and (Y, q) are called bi-Lipschitz homeomorphic if there exist neighborhoods U of p in X and V of q in Y such that U and V are bi-Lipschitz homeomorphic.

Lipschitz Geometry of Singularities: Study of germs (X, p) up to bi-Lipschitz homeomorphisms ($X \subset \mathbb{R}^{n}$ semialgebraic/subanalytic or $X \subset \mathbb{C}^{n}$ algebraic or analytic).

Real surface singularities

Real surface singularities

Theorem: (Birbrair 1999)
If (X, p) is a real $2 D$ isolated singularity with connected link, then there exists a unique rational number $\beta \geq 1$ such that (X, p) is inner bi-Lipschitz homeomorphic to the germ of the β-horn

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2 \beta} ; z \geq 0\right\}
$$

at the origin $0 \in \mathbb{R}^{3}$.

Real surface singularities

Theorem: (Birbrair 1999)
If (X, p) is a real $2 D$ isolated singularity with connected link, then there exists a unique rational number $\beta \geq 1$ such that (X, p) is inner bi-Lipschitz homeomorphic to the germ of the β-horn

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2 \beta} ; z \geq 0\right\}
$$

at the origin $0 \in \mathbb{R}^{3}$.

Real surface singularities

Real surface singularities

What about the classification of real $2 D$ singularities up to outer bi-Lipschitz homeomorphisms?

Real surface singularities

What about the classification of real $2 D$ singularities up to outer bi-Lipschitz homeomorphisms?

- (Birbrair, Gabrielov, Grandjean, F. 2017) Lipschitz contact equivalence of function germs in \mathbb{R}^{2}.

Real surface singularities

What about the classification of real $2 D$ singularities up to outer bi-Lipschitz homeomorphisms?

- (Birbrair, Gabrielov, Grandjean, F. 2017) Lipschitz contact equivalence of function germs in \mathbb{R}^{2}.
- (Birbrair, Gabrielov 2023) Lipschitz geometry of pairs of normally embedded Hölder triangles.

Higher dimension singularities $/ \mathbb{R}$

Beginning of 2000s

Beginning of 2000s

Birbrair and Brasselet - Metric Homology

Beginning of 2000s
Birbrair and Brasselet - Metric Homology
Local Metric Homology of (X, p).

Beginning of 2000s
Birbrair and Brasselet - Metric Homology
Local Metric Homology of (X, p).
(Isolated singularity case).

Beginning of 2000s

Birbrair and Brasselet - Metric Homology

Local Metric Homology of (X, p).
(Isolated singularity case).Let $\epsilon>0$ small.

Beginning of 2000s

Birbrair and Brasselet - Metric Homology

Local Metric Homology of (X, p).
(Isolated singularity case).Let $\epsilon>0$ small. Consider semialgebraic singular simplices $\xi: \Delta_{k} \rightarrow X \cap B(p, \epsilon)$

Beginning of 2000s

Birbrair and Brasselet - Metric Homology

Local Metric Homology of (X, p).
(Isolated singularity case).Let $\epsilon>0$ small. Consider semialgebraic singular simplices $\xi: \Delta_{k} \rightarrow X \cap B(p, \epsilon)$ such that the volume growth number of $\operatorname{supp}(\xi)$ and $\operatorname{supp}(\partial \xi)$ at p are at least ν (fixed positive real number).

Beginning of 2000s

Birbrair and Brasselet - Metric Homology

Local Metric Homology of (X, p).
(Isolated singularity case).Let $\epsilon>0$ small. Consider semialgebraic singular simplices $\xi: \Delta_{k} \rightarrow X \cap B(p, \epsilon)$ such that the volume growth number of $\operatorname{supp}(\xi)$ and $\operatorname{supp}(\partial \xi)$ at p are at least ν (fixed positive real number). The homology of the respective chain complex, denoted by $\mathrm{MH}_{k}^{\nu}(X, p)$, is the so-called Local Metric Homology of (X, p)

Beginning of 2000s

Birbrair and Brasselet - Metric Homology

Local Metric Homology of (X, p).
(Isolated singularity case).Let $\epsilon>0$ small. Consider semialgebraic singular simplices $\xi: \Delta_{k} \rightarrow X \cap B(p, \epsilon)$ such that the volume growth number of $\operatorname{supp}(\xi)$ and $\operatorname{supp}(\partial \xi)$ at p are at least ν (fixed positive real number). The homology of the respective chain complex, denoted by $\mathrm{MH}_{k}^{\nu}(X, p)$, is the so-called Local Metric Homology of (X, p); it is an inner (semialgebraic) bi-Lipschitz invariant of singularities.

Beginning of 2000s

Birbrair and Brasselet - Metric Homology

Local Metric Homology of (X, p).
(Isolated singularity case).Let $\epsilon>0$ small. Consider semialgebraic singular simplices $\xi: \Delta_{k} \rightarrow X \cap B(p, \epsilon)$ such that the volume growth number of $\operatorname{supp}(\xi)$ and $\operatorname{supp}(\partial \xi)$ at p are at least ν (fixed positive real number). The homology of the respective chain complex, denoted by $\mathrm{MH}_{k}^{\nu}(X, p)$, is the so-called Local Metric Homology of (X, p); it is an inner (semialgebraic) bi-Lipschitz invariant of singularities.

Figure: Link of $(X, \mathbf{0})$.

Higher dimension singularities $/ \mathbb{R}$

Higher dimension singularities $/ \mathbb{R}$

Example

Let $\beta>2$. Let $X \subset \mathbb{R}^{4}$ be defined by

$$
\left[(z-t)^{2}+x^{2}+y^{2}-t^{2}\right] \cdot\left[(z+t)^{2}+x^{2}+y^{2}-t^{2}\right]=t^{2 \beta} ; t \geq 0 .
$$

The point $\mathbf{0}=(0,0,0,0)$ is an isolated singular point of X which the link is homeomorphic to the sphere \mathbb{S}^{3}.

Higher dimension singularities $/ \mathbb{R}$

Example

Let $\beta>2$. Let $X \subset \mathbb{R}^{4}$ be defined by

$$
\left[(z-t)^{2}+x^{2}+y^{2}-t^{2}\right] \cdot\left[(z+t)^{2}+x^{2}+y^{2}-t^{2}\right]=t^{2 \beta} ; t \geq 0 .
$$

The point $\mathbf{0}=(0,0,0,0)$ is an isolated singular point of X which the link is homeomorphic to the sphere \mathbb{S}^{3}.

Higher dimension singularities $/ \mathbb{R}$

Example

Let $\beta>2$. Let $X \subset \mathbb{R}^{4}$ be defined by

$$
\left[(z-t)^{2}+x^{2}+y^{2}-t^{2}\right] \cdot\left[(z+t)^{2}+x^{2}+y^{2}-t^{2}\right]=t^{2 \beta} ; t \geq 0 .
$$

The point $\mathbf{0}=(0,0,0,0)$ is an isolated singular point of X which the link is homeomorphic to the sphere \mathbb{S}^{3}.

If $3<\nu<\beta+1$, then $M_{2}^{\nu}(X, \mathbf{0})$ (with coefficient in \mathbb{R}) contains a vector space isomorphic to \mathbb{R}^{2}.

Higher dimension singularities $/ \mathbb{R}$

Higher dimension singularities / \mathbb{R}

Theorem: (Birbrair, Brasselet 2002)
Let $X \subset \mathbb{R}^{n}$ be a semialgebraic closed subset with isolated singularity at $p \in X$.

Higher dimension singularities $/ \mathbb{R}$

Theorem: (Birbrair, Brasselet 2002)
Let $X \subset \mathbb{R}^{n}$ be a semialgebraic closed subset with isolated singularity at $p \in X$. If (X, p) is semialgebraically inner bi-Lipschitz homeomorphic to the cone $p * \operatorname{Link}(X, p)$ and $k+1<\nu$, then

Higher dimension singularities $/ \mathbb{R}$

Theorem: (Birbrair, Brasselet 2002)
Let $X \subset \mathbb{R}^{n}$ be a semialgebraic closed subset with isolated singularity at $p \in X$. If (X, p) is semialgebraically inner bi-Lipschitz homeomorphic to the cone $p * \operatorname{Link}(X, p)$ and $k+1<\nu$, then $M H_{k}^{\nu}(X, p)$ is isomorphic to the singular homology group $H_{k}(\operatorname{Link}(X, p))$.

Higher dimension singularities $/ \mathbb{R}$

Theorem: (Birbrair, Brasselet 2002)
Let $X \subset \mathbb{R}^{n}$ be a semialgebraic closed subset with isolated singularity at $p \in X$. If (X, p) is semialgebraically inner bi-Lipschitz homeomorphic to the cone $p * \operatorname{Link}(X, p)$ and $k+1<\nu$, then $M H_{k}^{\nu}(X, p)$ is isomorphic to the singular homology group $H_{k}(\operatorname{Link}(X, p))$. Otherwise, $M H_{k}^{v}(X, p)=0$.

Higher dimension singularities $/ \mathbb{R}$

Theorem: (Birbrair, Brasselet 2002)
Let $X \subset \mathbb{R}^{n}$ be a semialgebraic closed subset with isolated singularity at $p \in X$. If (X, p) is semialgebraically inner bi-Lipschitz homeomorphic to the cone $p * \operatorname{Link}(X, p)$ and $k+1<\nu$, then $M H_{k}^{\nu}(X, p)$ is isomorphic to the singular homology group $H_{k}(\operatorname{Link}(X, p))$. Otherwise, $M H_{k}^{v}(X, p)=0$.

The singularity in the previous example is not semialgebraically inner bi-Lipschitz conical.

Theorem: (Birbrair, Brasselet, Cano 2002-2005)

Let $X \subset \mathbb{R}^{n}$ be a semialgebraic closed subset and $p \in X$.

Theorem: (Birbrair, Brasselet, Cano 2002-2005)
Let $X \subset \mathbb{R}^{n}$ be a semialgebraic closed subset and $p \in X$.For each integer number $0<k<\operatorname{dim}_{p} X$, there exists a real number $\lambda_{k} \geq k+1$ such that:

Theorem: (Birbrair, Brasselet, Cano 2002-2005)
Let $X \subset \mathbb{R}^{n}$ be a semialgebraic closed subset and $p \in X$.For each integer number $0<k<\operatorname{dim}_{p} X$, there exists a real number $\lambda_{k} \geq k+1$ such that: For any small neighborhood U of p in X, if ξ is a k-dimensional semialgebraic cycle in $U \backslash p$ such that ξ is a boundary of a $(k+1)$-dimensional semialgebraic chain in U which its volume growth number at p is greater than λ_{k}, than $[\xi]=0$ in $H_{k}(U \backslash p)$.

Theorem: (Birbrair, Brasselet, Cano 2002-2005)
Let $X \subset \mathbb{R}^{n}$ be a semialgebraic closed subset and $p \in X$.For each integer number $0<k<\operatorname{dim}_{p} X$, there exists a real number $\lambda_{k} \geq k+1$ such that: For any small neighborhood U of p in X, if ξ is a k-dimensional semialgebraic cycle in $U \backslash p$ such that ξ is a boundary of a $(k+1)$-dimensional semialgebraic chain in U which its volume growth number at p is greater than λ_{k}, than $[\xi]=0$ in $H_{k}(U \backslash p)$.
k-dimensional characteristic exponent of (X, p) : Infimun of the $\lambda_{k^{\prime} s}$ numbers as above.

Theorem: (Birbrair, Brasselet, Cano 2002-2005)
Let $X \subset \mathbb{R}^{n}$ be a semialgebraic closed subset and $p \in X$.For each integer number $0<k<\operatorname{dim}_{p} X$, there exists a real number $\lambda_{k} \geq k+1$ such that: For any small neighborhood U of p in X, if ξ is a k-dimensional semialgebraic cycle in $U \backslash p$ such that ξ is a boundary of a $(k+1)$-dimensional semialgebraic chain in U which its volume growth number at p is greater than λ_{k}, than $[\xi]=0$ in $H_{k}(U \backslash p)$.
k-dimensional characteristic exponent of (X, p) : Infimun of the $\lambda_{k^{\prime} s}$ numbers as above.

If (X, p) is semialgebraically inner bi-Lipschitz conical, then $\lambda_{k}=k+1$.

Influence of the Local Metric Homology

Influence of the Local Metric Homology

- Vanishing homology developed by G. Valette (2010);

Influence of the Local Metric Homology

- Vanishing homology developed by G. Valette (2010);
- Moderately Discontinuous Homology developed by J. de Bobadilla, S. Heinze, M. Pe Pereira and E. Sampaio (2022);

Influence of the Local Metric Homology

- Vanishing homology developed by G. Valette (2010);
- Moderately Discontinuous Homology developed by J. de Bobadilla, S. Heinze, M. Pe Pereira and E. Sampaio (2022);
- Moderately Discontinuous Homotopy developed by J. de Bobadilla, S. Heinze and M. Pe-Pereira (2022).

Influence of the Local Metric Homology

- Vanishing homology developed by G. Valette (2010);
- Moderately Discontinuous Homology developed by J. de Bobadilla, S. Heinze, M. Pe Pereira and E. Sampaio (2022);
- Moderately Discontinuous Homotopy developed by J. de Bobadilla, S. Heinze and M. Pe-Pereira (2022).

Complex surface singularities

Complex surface singularities

~ 2006

Complex surface singularities

~ 2006
Example (Birbrair-F. 2008)
Let $X \subset \mathbb{C}^{3}$: be defined by $x y=z^{2 k}$ and let $\mathbf{0}=(0,0,0)$.

Complex surface singularities

~ 2006
Example (Birbrair-F. 2008)
Let $X \subset \mathbb{C}^{3}$: be defined by $x y=z^{2 k}$ and let $\mathbf{0}=(0,0,0)$. If k is greater 6 , then $(X, \mathbf{0})$ is an isolated singularity such that

Complex surface singularities

~ 2006
Example (Birbrair-F. 2008)
Let $X \subset \mathbb{C}^{3}$: be defined by $x y=z^{2 k}$ and let $\mathbf{0}=(0,0,0)$. If k is greater 6 , then $(X, \mathbf{0})$ is an isolated singularity such that (for some $\nu>0$) the local metric homology $\mathrm{MH}_{3}^{\nu}(X, \mathbf{0})$ contains a vector subspace isomorphic to \mathbb{R}^{2}.

Complex surface singularities

~ 2006
Example (Birbrair-F. 2008)
Let $X \subset \mathbb{C}^{3}$: be defined by $x y=z^{2 k}$ and let $\mathbf{0}=(0,0,0)$. If k is greater 6 , then $(X, \mathbf{0})$ is an isolated singularity such that (for some $\nu>0$) the local metric homology $\mathrm{MH}_{3}^{\nu}(X, \mathbf{0})$ contains a vector subspace isomorphic to \mathbb{R}^{2}.

Figure: $A:|x| \geq|y|$ and $B:|x| \leq|y|$ and $Y:|x|=|y|$

Complex surface singularities

Complex surface singularities

Separating sets. $Y \subset X$ rectifiable with real dimension $\operatorname{dim}_{p} X-1$ is said a local separating set of X at p if, for some $\epsilon>0$:

Complex surface singularities

Separating sets. $Y \subset X$ rectifiable with real dimension $\operatorname{dim}_{p} X-1$ is said a local separating set of X at p if, for some $\epsilon>0$:
a. Y divides $X \cap B(p, \epsilon)$ in at least two connected pieces A and B;

Complex surface singularities

Separating sets. $Y \subset X$ rectifiable with real dimension $\operatorname{dim}_{p} X-1$ is said a local separating set of X at p if, for some $\epsilon>0$:
a. Y divides $X \cap B(p, \epsilon)$ in at least two connected pieces A and B;
b. Y has null density at p;

Complex surface singularities

Separating sets. $Y \subset X$ rectifiable with real dimension $\operatorname{dim}_{p} X-1$ is said a local separating set of X at p if, for some $\epsilon>0$:
a. Y divides $X \cap B(p, \epsilon)$ in at least two connected pieces A and B;
b. Y has null density at p;
c. A and B have positive inferior density at p.

Complex surface singularities

Separating sets. $Y \subset X$ rectifiable with real dimension $\operatorname{dim}_{p} X-1$ is said a local separating set of X at p if, for some $\epsilon>0$:
a. Y divides $X \cap B(p, \epsilon)$ in at least two connected pieces A and B;
b. Y has null density at p;
c. A and B have positive inferior density at p.

Theorem: (Birbrair, F., Neumann 2010)
Existence of a local separating set is an inner bi-Lipschitz invariant of subanalytic singularities.

Complex surface singularities

Separating sets. $Y \subset X$ rectifiable with real dimension $\operatorname{dim}_{p} X-1$ is said a local separating set of X at p if, for some $\epsilon>0$:
a. Y divides $X \cap B(p, \epsilon)$ in at least two connected pieces A and B;
b. Y has null density at p;
c. A and B have positive inferior density at p.

Theorem: (Birbrair, F., Neumann 2010)
Existence of a local separating set is an inner bi-Lipschitz invariant of subanalytic singularities. Moreover, if a subanalytic isolated singularity has a local separating set, then it is not inner bi-Lipschitz conical.

Complex surface singularities

Separating sets. $Y \subset X$ rectifiable with real dimension $\operatorname{dim}_{p} X-1$ is said a local separating set of X at p if, for some $\epsilon>0$:
a. Y divides $X \cap B(p, \epsilon)$ in at least two connected pieces A and B;
b. Y has null density at p;
c. A and B have positive inferior density at p.

Theorem: (Birbrair, F., Neumann 2010)
Existence of a local separating set is an inner bi-Lipschitz invariant of subanalytic singularities. Moreover, if a subanalytic isolated singularity has a local separating set, then it is not inner bi-Lipschitz conical.

Let $X \subset \mathbb{C}^{3}$: be defined by $x y=z^{2 k}$ and let $\mathbf{0}=(0,0,0)$.

Separating sets. $Y \subset X$ rectifiable with real dimension $\operatorname{dim}_{p} X-1$ is said a local separating set of X at p if, for some $\epsilon>0$:
a. Y divides $X \cap B(p, \epsilon)$ in at least two connected pieces A and B;
b. Y has null density at p;
c. A and B have positive inferior density at p.

Theorem: (Birbrair, F., Neumann 2010)
Existence of a local separating set is an inner bi-Lipschitz invariant of subanalytic singularities. Moreover, if a subanalytic isolated singularity has a local separating set, then it is not inner bi-Lipschitz conical.

Let $X \subset \mathbb{C}^{3}$: be defined by $x y=z^{2 k}$ and let $\mathbf{0}=(0,0,0)$. If $k>1$, then $(X, \mathbf{0})$ is an isolated singularity which is not inner bi-Lipschitz conical.

Complex surface singularities

Complex surface singularities

α-Fast loops. Let (X, p) be a singularity. A loop of (X, p) is a (Lipschitz) map $\gamma: \mathbb{S}^{1} \rightarrow X \backslash p ; X$ is a small representative of (X, p).

Complex surface singularities

α-Fast loops. Let (X, p) be a singularity. A loop of (X, p) is a (Lipschitz) map $\gamma: \mathbb{S}^{1} \rightarrow X \backslash p ; X$ is a small representative of (X, p). It is said a trivial loop of (X, p) if it is null-homotopic in $X \backslash p$.

Complex surface singularities

α-Fast loops. Let (X, p) be a singularity. A loop of (X, p) is a (Lipschitz) map $\gamma: \mathbb{S}^{1} \rightarrow X \backslash p ; X$ is a small representative of (X, p). It is said a trivial loop of (X, p) if it is null-homotopic in $X \backslash p$.
Let $\alpha \geq 1$.

Complex surface singularities

α-Fast loops. Let (X, p) be a singularity. A loop of (X, p) is a (Lipschitz) map $\gamma: \mathbb{S}^{1} \rightarrow X \backslash p ; X$ is a small representative of (X, p). It is said a trivial loop of (X, p) if it is null-homotopic in $X \backslash p$.
Let $\alpha \geq 1$.
A loop γ of (X, p) is said α-fast if there is a homotopy $\gamma_{t}: \mathbb{S}^{1} \rightarrow X(0 \leq t \leq 1)$, that deforms $\gamma \rightarrow p$, such that:

Complex surface singularities

α-Fast loops. Let (X, p) be a singularity. A loop of (X, p) is a (Lipschitz) map $\gamma: \mathbb{S}^{1} \rightarrow X \backslash p ; X$ is a small representative of (X, p). It is said a trivial loop of (X, p) if it is null-homotopic in $X \backslash p$.
Let $\alpha \geq 1$.
A loop γ of (X, p) is said α-fast if there is a homotopy $\gamma_{t}: \mathbb{S}^{1} \rightarrow X(0 \leq t \leq 1)$, that deforms $\gamma \rightarrow p$, such that:

- $\left\{\gamma_{t}\right\}_{t>0}$ is a family of loops of (X, p).

Complex surface singularities

α-Fast loops. Let (X, p) be a singularity. A loop of (X, p) is a (Lipschitz) map $\gamma: \mathbb{S}^{1} \rightarrow X \backslash p ; X$ is a small representative of (X, p). It is said a trivial loop of (X, p) if it is null-homotopic in $X \backslash p$.
Let $\alpha \geq 1$.
A loop γ of (X, p) is said α-fast if there is a homotopy $\gamma_{t}: \mathbb{S}^{1} \rightarrow X(0 \leq t \leq 1)$, that deforms $\gamma \rightarrow p$, such that:

- $\left\{\gamma_{t}\right\}_{t>0}$ is a family of loops of (X, p).
- $\operatorname{dist}\left(\gamma_{t}, p\right) \approx t$ as $t \rightarrow 0^{+}$.

Complex surface singularities

α-Fast loops. Let (X, p) be a singularity. A loop of (X, p) is a (Lipschitz) map $\gamma: \mathbb{S}^{1} \rightarrow X \backslash p ; X$ is a small representative of (X, p). It is said a trivial loop of (X, p) if it is null-homotopic in $X \backslash p$.
Let $\alpha \geq 1$.
A loop γ of (X, p) is said α-fast if there is a homotopy $\gamma_{t}: \mathbb{S}^{1} \rightarrow X(0 \leq t \leq 1)$, that deforms $\gamma \rightarrow p$, such that:

- $\left\{\gamma_{t}\right\}_{t>0}$ is a family of loops of (X, p).
- $\operatorname{dist}\left(\gamma_{t}, p\right) \approx t$ as $t \rightarrow 0^{+}$.
- length $\left(\gamma_{t}\right) \ll t^{a}$ as $t \rightarrow 0^{+}$, for any $0 \leq a<\alpha$.

Complex surface singularities

α-Fast loops. Let (X, p) be a singularity. A loop of (X, p) is a (Lipschitz) map $\gamma: \mathbb{S}^{1} \rightarrow X \backslash p ; X$ is a small representative of (X, p). It is said a trivial loop of (X, p) if it is null-homotopic in $X \backslash p$.
Let $\alpha \geq 1$.
A loop γ of (X, p) is said α-fast if there is a homotopy $\gamma_{t}: \mathbb{S}^{1} \rightarrow X(0 \leq t \leq 1)$, that deforms $\gamma \rightarrow p$, such that:

- $\left\{\gamma_{t}\right\}_{t>0}$ is a family of loops of (X, p).
- $\operatorname{dist}\left(\gamma_{t}, p\right) \approx t$ as $t \rightarrow 0^{+}$.
- length $\left(\gamma_{t}\right) \ll t^{a}$ as $t \rightarrow 0^{+}$, for any $0 \leq a<\alpha$.

Figure: An α-fast loop; $\alpha>1$.

Complex surface singularities

Theorem: (Birbrair, F., Neumann 2008)
Existence of α-fast loops is an inner bi-Lipschitz invariant of singularities.

Complex surface singularities

Theorem: (Birbrair, F., Neumann 2008)

Existence of α-fast loops is an inner bi-Lipschitz invariant of singularities. Moreover, if a subanalytic singularity has an nontrivial α-fast loop for some $\alpha>1$, then it is not inner bi-Lipschitz conical.

Complex surface singularities

Theorem: (Birbrair, F., Neumann 2008)
Existence of α-fast loops is an inner bi-Lipschitz invariant of singularities. Moreover, if a subanalytic singularity has an nontrivial α-fast loop for some $\alpha>1$, then it is not inner bi-Lipschitz conical.

Example
Let $X \subset \mathbb{C}^{3}$: be defined by $x^{2}+y^{2}=z^{3}$ and let $\mathbf{0}=(0,0,0)$.

Complex surface singularities

Theorem: (Birbrair, F., Neumann 2008)
Existence of α-fast loops is an inner bi-Lipschitz invariant of singularities. Moreover, if a subanalytic singularity has an nontrivial α-fast loop for some $\alpha>1$, then it is not inner bi-Lipschitz conical.

Example
Let $X \subset \mathbb{C}^{3}$: be defined by $x^{2}+y^{2}=z^{3}$ and let $\mathbf{0}=(0,0,0)$. The singularity
$(X, \mathbf{0})$ has a nontrivial $\frac{3}{2}$-fast loop

Complex surface singularities

Theorem: (Birbrair, F., Neumann 2008)
Existence of α-fast loops is an inner bi-Lipschitz invariant of singularities.
Moreover, if a subanalytic singularity has an nontrivial α-fast loop for some $\alpha>1$, then it is not inner bi-Lipschitz conical.

Example
Let $X \subset \mathbb{C}^{3}$: be defined by $x^{2}+y^{2}=z^{3}$ and let $\mathbf{0}=(0,0,0)$. The singularity
$(X, \mathbf{0})$ has a nontrivial $\frac{3}{2}$-fast loop \therefore it is an isolated singularity which is not inner bi-Lipschitz conical.

λ-invariant.

Complex surface singularities

Theorem: (Birbrair, F., Neumann 2008)
Existence of α-fast loops is an inner bi-Lipschitz invariant of singularities.
Moreover, if a subanalytic singularity has an nontrivial α-fast loop for some $\alpha>1$, then it is not inner bi-Lipschitz conical.

Example
Let $X \subset \mathbb{C}^{3}$: be defined by $x^{2}+y^{2}=z^{3}$ and let $\mathbf{0}=(0,0,0)$. The singularity
$(X, \mathbf{0})$ has a nontrivial $\frac{3}{2}$-fast loop \therefore it is an isolated singularity which is not inner bi-Lipschitz conical.
λ-invariant. For any singularity (X, p) there is a distinguished vanishing speed ($\alpha_{0} \geq 1$) associated to its fast loops in the following sense:

Complex surface singularities

Theorem: (Birbrair, F., Neumann 2008)
Existence of α-fast loops is an inner bi-Lipschitz invariant of singularities. Moreover, if a subanalytic singularity has an nontrivial α-fast loop for some $\alpha>1$, then it is not inner bi-Lipschitz conical.

Example
Let $X \subset \mathbb{C}^{3}$: be defined by $x^{2}+y^{2}=z^{3}$ and let $\mathbf{0}=(0,0,0)$. The singularity
$(X, \mathbf{0})$ has a nontrivial $\frac{3}{2}$-fast loop \therefore it is an isolated singularity which is not inner bi-Lipschitz conical.
λ-invariant. For any singularity (X, p) there is a distinguished vanishing speed $\left(\alpha_{0} \geq 1\right)$ associated to its fast loops in the following sense: any α-fast loop of (X, p), with $\alpha>\alpha_{0}$, is a trivial loop of $\left(X, x_{0}\right)$.

Complex surface singularities

Theorem: (Birbrair, F., Neumann 2008)
Existence of α-fast loops is an inner bi-Lipschitz invariant of singularities. Moreover, if a subanalytic singularity has an nontrivial α-fast loop for some $\alpha>1$, then it is not inner bi-Lipschitz conical.

Example
Let $X \subset \mathbb{C}^{3}$: be defined by $x^{2}+y^{2}=z^{3}$ and let $\mathbf{0}=(0,0,0)$. The singularity
$(X, \mathbf{0})$ has a nontrivial $\frac{3}{2}$-fast loop \therefore it is an isolated singularity which is not inner bi-Lipschitz conical.
λ-invariant. For any singularity (X, p) there is a distinguished vanishing speed $\left(\alpha_{0} \geq 1\right)$ associated to its fast loops in the following sense: any α-fast loop of (X, p), with $\alpha>\alpha_{0}$, is a trivial loop of $\left(X, x_{0}\right)$.

$$
\lambda(\mathbf{X}, \mathbf{p})=\inf \left\{\alpha_{0}: \alpha_{0} \quad \text { is distinguished }\right\} .
$$

Complex surface singularities

Theorem: (Birbrair, F., Neumann 2008)
Existence of α-fast loops is an inner bi-Lipschitz invariant of singularities. Moreover, if a subanalytic singularity has an nontrivial α-fast loop for some $\alpha>1$, then it is not inner bi-Lipschitz conical.

Example
Let $X \subset \mathbb{C}^{3}$: be defined by $x^{2}+y^{2}=z^{3}$ and let $\mathbf{0}=(0,0,0)$. The singularity
$(X, \mathbf{0})$ has a nontrivial $\frac{3}{2}$-fast loop \therefore it is an isolated singularity which is not inner bi-Lipschitz conical.
λ-invariant. For any singularity (X, p) there is a distinguished vanishing speed ($\alpha_{0} \geq 1$) associated to its fast loops in the following sense: any α-fast loop of (X, p), with $\alpha>\alpha_{0}$, is a trivial loop of $\left(X, x_{0}\right)$.

$$
\lambda(\mathbf{X}, \mathbf{p})=\inf \left\{\alpha_{0}: \alpha_{0} \quad \text { is distinguished }\right\}
$$

λ is an inner bi-Lipschitz invariant of singularities.

Complex surface singularities

Theorem: (Birbrair, F., Neumann 2008)
Let $(X, \mathbf{0})$ be a weighted homogeneous complex isolated singularity in \mathbb{C}^{3}. If the weights of $(X, \mathbf{0})$ are ordered by $w_{1} \geq w_{2} \geq w_{3}$, then

$$
\frac{w_{2}}{w_{3}} \leq \lambda(X, \mathbf{0}) \leq \frac{w_{1}}{w_{3}} .
$$

Complex surface singularities

Theorem: (Birbrair, F., Neumann 2008)
Let $(X, \mathbf{0})$ be a weighted homogeneous complex isolated singularity in \mathbb{C}^{3}. If the weights of $(X, 0)$ are ordered by $w_{1} \geq w_{2} \geq w_{3}$, then

$$
\frac{w_{2}}{w_{3}} \leq \lambda(X, \mathbf{0}) \leq \frac{w_{1}}{w_{3}} .
$$

Example
Let X and Y be the weighted homogeneous algebraic surfaces in \mathbb{C}^{3} given below:

$$
X: x^{2}+y^{51}+z^{102}=0 \quad \text { and } \quad Y: x^{12}+y^{15}+z^{20}=0 .
$$

Then, $(X, \mathbf{0})$ and $(Y, \mathbf{0})$ are homeomorphic but they are not inner bi-Lipschitz homeomorphic.

Complex surface singularities

Theorem: (Birbrair, F., Neumann 2008)
Let $(X, \mathbf{0})$ be a weighted homogeneous complex isolated singularity in \mathbb{C}^{3}. If the weights of $(X, \mathbf{0})$ are ordered by $w_{1} \geq w_{2} \geq w_{3}$, then

$$
\frac{w_{2}}{w_{3}} \leq \lambda(X, \mathbf{0}) \leq \frac{w_{1}}{w_{3}} .
$$

Example
Let X and Y be the weighted homogeneous algebraic surfaces in \mathbb{C}^{3} given below:

$$
X: x^{2}+y^{51}+z^{102}=0 \quad \text { and } \quad Y: x^{12}+y^{15}+z^{20}=0 .
$$

Then, $(X, \mathbf{0})$ and $(Y, \mathbf{0})$ are homeomorphic but they are not inner bi-Lipschitz homeomorphic.

The links of $(X, \mathbf{0})$ and $(Y, \mathbf{0})$ are orientable 3-dimensional manifolds which are circle bundle over a orientable surface of genus $g=25$ and both have Euler Class equal to 1 .

Complex surface singularities

Theorem: (Birbrair, F., Neumann 2008)
Let $(X, \mathbf{0})$ be a weighted homogeneous complex isolated singularity in \mathbb{C}^{3}. If the weights of $(X, \mathbf{0})$ are ordered by $w_{1} \geq w_{2} \geq w_{3}$, then

$$
\frac{w_{2}}{w_{3}} \leq \lambda(X, \mathbf{0}) \leq \frac{w_{1}}{w_{3}} .
$$

Example
Let X and Y be the weighted homogeneous algebraic surfaces in \mathbb{C}^{3} given below:

$$
X: x^{2}+y^{51}+z^{102}=0 \quad \text { and } \quad Y: x^{12}+y^{15}+z^{20}=0 .
$$

Then, $(X, \mathbf{0})$ and $(Y, \mathbf{0})$ are homeomorphic but they are not inner bi-Lipschitz homeomorphic.

The links of $(X, \mathbf{0})$ and $(Y, \mathbf{0})$ are orientable 3-dimensional manifolds which are circle bundle over a orientable surface of genus $g=25$ and both have Euler Class equal to 1 . On the other hand, $\frac{4}{3} \leq \lambda(Y, \mathbf{0}) \leq \frac{5}{3}<2 \leq \lambda(X, \mathbf{0}) \leq 51$.

Complex surface singularities

Complex surface singularities

For normal complex algebraic surfaces singularities (X, p), by using their fast loops and separating sets, Birbrair, Neumann and Pichon found a canonical geometric decomposition of them which can be codified by a combinatoric objet depending on the vanishing speed of the respective fast loops.

Complex surface singularities

For normal complex algebraic surfaces singularities (X, p), by using their fast loops and separating sets, Birbrair, Neumann and Pichon found a canonical geometric decomposition of them which can be codified by a combinatoric objet depending on the vanishing speed of the respective fast loops.

Thin-Thick Decomposition. Inner bi-Lipschitz invariant created by L. Birbrair, W. Neumann, A. Pichon (Acta Math 2014).

Complex surface singularities

For normal complex algebraic surfaces singularities (X, p), by using their fast loops and separating sets, Birbrair, Neumann and Pichon found a canonical geometric decomposition of them which can be codified by a combinatoric objet depending on the vanishing speed of the respective fast loops.

Thin-Thick Decomposition. Inner bi-Lipschitz invariant created by L. Birbrair, W. Neumann, A. Pichon (Acta Math 2014).

Theorem: (Birbrair, Neumann, Pichon 2014)
Two normal complex algebraic surface singularities are inner bi-Lipschitz homeomorphic if, and only if, they have combinatorial isomorphic thin-thick decomposition.

Lipschitz Normal Embedding

HAPPY BIRTHDAY

Prof. Lev Birbrair

Many thanks for your attention

