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Main characters

Conflict Set

{Xi} - finitely many, disjoint, closed, subsets of Ω

Conf {Xi} :=

= {a ∈ Ω |∃i 6= j : d(a,Xi ) = d(a,Xj ) = d(a,
⋃

Xi )}

”Points with at least two closest sets in {Xi}.”

Medial Axis

X - closed, nonempty, subset of Ω

MA(X ) :=

= {a ∈ Ω | ∃x 6= y ∈ X : d(a, x) = d(a, y) = d(a,X )}

”Points with at least two closest points in X .”
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The tangent cone of a conflict set (extremely) local

Tangent Cone of a Conflict Set (Birbrair, Siersma)

For any a ∈ Conf {Xi},
CaConf {Xi} = Conf {mXi

(a)},

where mX (a) := {x ∈ X | d(a, x) = d(a,X )}.
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Problem:

The medial axis does not yield to the idea of Birbrair and Siersma’s proof.
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Yet they stabilise in a way

Definition (Kuratowski-Painlevé)

Let {Xt} be a family of closed sets; we say that

v ∈ lim supt→0 Xt if ∃tν → 0,∃xν ∈ Xtν : xν → v ,

v ∈ lim inft→0 Xt if ∀tν → 0,∃xν ∈ Xtν : xν → v .

X = limt→0 Xt if lim inf Xt = X = lim supXt .

Theorem (B, Denkowska, Denkowski)

Let {Xt}t∈R be a family of closed sets. If X0 = limt→0 Xt then

MA(X0) ⊂ lim inf
t→0

MA(Xt).

The family doesn’t have to be definable. The parameter space can be any topological space with a countable
base at 0. The ambient space can be a Riemannian manifold.
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Yet they stabilise in a way

Theorem (B, Denkowska, Denkowski)

Let {Xt}t∈R be a family of closed sets. If X0 = limt→0 Xt then

MA(X0) ⊂ lim inf
t→0

MA(Xt).

Corollary

In particular, setting Xt = 1
t
X , we get, for a definable X , MA(C0X ) ⊂ lim inf MA( 1

t
X ) = C0MA(X ).

Corollary

Assuming that C0(X ) is nonconvex we get 0 ∈ MA(C0(X )) and, consequently, 0 ∈ MA(X ) ∩ X .
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Adam Bia lożyt Tangent Cone of Medial Axis



Second problem

The tangent cone of X for p /∈ X is an empty set. So the previous theorem gives us a trivial inclusion

MA(CpX ) = MA(∅) = ∅ ⊂ C0MA(X ).

This result is less than satisfactory.
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A copy of the medial axis is hidden under the distance function graph

Lemma

Let Γd denote the graph of the distance function d(·,X ).
For any (x , y) ∈ Rn × R with y < d(x ,X ) we have (x , y) ∈ MA(Γd ) if and only if x ∈ MA(X ).
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The tangent cone of a medial axis is similar to the conflict set one

Theorem

Let X be a closed definable set, p ∈ MA(X ). Then

MA(m(p)) ⊂ CpMA(X ).

Due to the previous lemma, Lipschitzness of the distance function and the formula of its directional derivative.
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Moreovers

1 The equality CpMA(X ) = MA(m(p)) for generic points of a definable MA.

2 The equality CpMA(X ) = MA(m(p)) for definable plane subsets

3 Definable planar medial axes have no cusps.

4 Inequality dimMA(m(p)) ≤ dimp MA(X )

5 More surprisingly, it follows
dimp MA(X ) = min{codim m(a) | a ∈ MA(X ) ∩ U,U-neighbr. of p} − 1
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Takeaways

Three similar results for three similar objects

Tangent cones of conflict sets: Conf {mXi
(p)} = CpConf {Xi}

Tangent cones of medial axes at p /∈ X : MA(m(p)) ⊂ CpMA(X )
Tangent cones of medial axes at p ∈ X : MA(C0X ) ⊂ CpMA(X )

with three different noncompatible proofs!

Is there one to rule them all? To bring them all and bind them?
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Thank you for your attention.
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