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Introduction and motivation

In [1], D. Matignon describes the stability properties of linear systems of fractional
differential equations of the form

∂αz y(z) = Ay(z),

where A ∈ Cn×n is a constant matrix,
∂αz is a fractional derivative of order α > 0,
y(z) = (y1, . . . , yn)T stands for a vector of unknown functions.

[1] D. Matignon, Stability results for fractional differential equations with applications to control processing.

Proc. Comput. Eng. Syst. Appl. 2, 963–968 (1996)

The solutions of the previous system turn out to be asymptotically stable, i.e.

lim
t→∞,t∈R

‖y(t)‖ = 0,

iff | arg(λ)| > απ2 for every eigenvalue λ of A.
In this situation, the solutions decay to 0 at infinity like t−α, t ∈ R+.
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Introduction and motivation

Observe that in the case α = 1 one recovers the classical problem

y ′ = Ay ,

whose general solution is written as a linear combination of functions

zpeλzv

for λ ∈ spec(A), v an associated eigenvector, and for all p = 0, 1, . . .

The solutions are asymptotically stable iff | arg(λ)| > π
2 for λ ∈ spec(A):

For t > 0,
|tpeλt | = tp exp(|λ|t cos(arg(λ))).
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Statement of the problem

Let A ∈ Cn×n and let m = (m(p))p≥0 denote some sequence of positive numbers
under certain assumptions.

We consider the linear system of moment differential equations with constant
coefficients

∂my = Ay

y = (y1, . . . , yn)T is a vector of unknown functions,
∂m stands for the moment differential operator associated to m.
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Introduction and motivation

Given a sequence of positive real numbers (mp)p≥0 one can (formally) define the
operator

∂m

∑
p≥0

ap
mp

zp

 =
∑
p≥0

ap+1

mp
zp,

acting on any formal power series with complex coefficients.

∂m is known as the moment derivative operator.

∂m was firstly defined by W. Balser and M. Yoshino in [2].

[2] W. Balser, M. Yoshino, Gevrey order of formal power series solutions of inhomogeneous partial differential

equations with constant coefficients. Funkcial. Ekvac. 53, 411–434 (2010)
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Introduction and motivation

It holds that

∂m(xp) =

{
0 p = 0
mp

mp−1
xp−1 p ≥ 1

Some of the most important situations in applications are those in which
m = (mp)p≥0 is a sequence of moments associated to some measure.

I Case m = (p!)p≥0. ∂m coincides with usual derivation.

p! =

∫ ∞
0

xpe−xdx , p ≥ 0.

I Case m = (Γ(1 + αp))p≥0, for fixed α > 0. ∂m is directly linked with Caputo
fractional derivative.

Γ(1 + αp) =

∫ ∞
0

xp
1

α
x

1
α e−x

1
α dx .

The formal differential operator satisfies

(∂mf )(zα) = CDα
z (f (zα)), f ∈ C[[z ]],

where CDα
z stands for Caputo fractional derivative.
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Introduction and motivation

I Case m = ([p]q!)p≥0, where [p]q! stands for the q−factorial defined by
[0]q! := 1 and [p]q! := [p]q · [p − 1]q · . . . · [1]q for any positive integer p ≥ 1.
Here, q ∈ R+ \ {1}, and we write [p]q = 1 + q + . . .+ qp−1.

The q−derivative is defined by

Dq,z f (z) =
f (qz)− f (z)

qz − z
,

and coincides with ∂m,z , for m := ([p]q!)p≥0.

This last sequence is quite related (in terms of the growth of their
coefficients) to the sequence of moments (qp(p−1)/2)p≥0 associated to

√
2π ln(q) exp(

ln2(
√
qx)

2 ln(q)
) and also ln(q)/Θ1/q(x),

where Θ1/q stands for Jacobi Theta function

Θ1/q(z) =
∑
p∈Z

q−
p(p−1)

2 zp.
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Introduction and motivation

We are mainly working with m being a sequence of moderate growth. The growth
of (qp(p−1)/2)p≥0 and ([p]q!)p≥0 is not of moderate growth. Therefore, the results
presented do not apply in that setting, in principle.

Some remarks on this situation:

- The construction of the entire solutions explained in the talk can be adapted
when considering an adequate kernel function.

- The asymptotic study of the entire solutions can also be adapted. However,
this is well-known also in a more general framework [3].

[3] J. P. Ramis, About the growth of entire functions solutions of linear algebraic q−difference equations,

Annales de la faculté des sciences de Toulouse, 1, 53–94 (1992)
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Introduction and motivation

Therefore, the study of moment differential equations can be particularized to
differential equations, fractional differential equations, q−difference equations,...

At first sight, only formal solutions can be handled.

A coherent definition of moment derivatives has successfully been developed for
other families of functions.

I Moment derivation at z0 ∈ C of holomorphic functions defined on some open
set containing z0 (Taylor expansion)

I Holomorphic functions defined on sectors of the complex plane which are
sums of formal power series [4],
[4] A. L., S. Michalik, M. Suwińska, Summability of formal solutions for some generalized moment

partial differential equations. Result. Math. 76, No. 1 (2021) Paper No. 22.

I Holomorphic functions defined on sectors of the complex plane which are
multisums of formal power series [5].
[5] A. L., S. Michalik, M. Suwińska, Multisummability of formal solutions for a family of generalized

singularly perturbed moment differential equations. Result. Math. 78, No. 2, Paper No. 49, 31 p.

(2023).
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Introduction and motivation

The procedure is linked to the summability theory of formal solutions of functional
equations.

An adaptation of the classical Borel-Laplace procedure has been put forward in
this more general framework [6,7].

[6] J. Sanz, Flat functions in Carleman ultraholomorphic classes via proximate orders. J. Math. Anal. Appl.
415(2), 623–643 (2014)

[7] A. L., S. Malek, J. Sanz, Summability in general Carleman ultraholomorphic classes. J. Math. Anal. Appl.

430, 1175–1206 (2015)

The solution of the main problem is based on the construction of the so-called
pair of kernel functions for generalized summability, (e,E ), associated to a
strongly regular sequence M.
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Strongly regular sequences

Let M = (Mp)p≥0 be a sequence of positive real numbers. We assume M0 = 1
and such that:

(lc) M2
p ≤ Mp−1Mp+1, for all p ≥ 1.

(mg) There exists A1 > 0 such that Mp+q ≤ Ap+q
1 MpMq for any (p, q) ∈ N2

0.

(snq) There exists A2 > 0 such that∑
q≥p

Mq

(q + 1)Mq+1
≤ A2

Mp

Mp+1
, p ≥ 0.

M is said to be a strongly regular sequence [8].

[8] V. Thilliez, Division by flat ultradifferentiable functions and sectorial extensions. Results. Math. 44,

169–188 (2003).

The previous properties determine good properties of ultraholomorphic and
ultradifferentiable function spaces such as closure with respect to product and
composition, and the existence of flat functions.
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Kernel functions for generalized summability

Let M = (Mp)p≥0 be a sequence of positive real numbers. We assume

X M is a strongly regular sequence.

Let M : [0,∞)→ [0,∞) be M(0) = 0 and

M(x) := sup
p≥0

log

(
xp

Mp

)
, x > 0,

and also ω(M) > 0 with

ω(M) :=

(
lim sup
r→∞

max

{
0,

log(M(r))

log(r)

})−1

.

X ω(M) < 2.

X M admits a nonzero proximate order. (prof. Okada’s talk)

Example:

(
p!α

p∏
m=0

logβ(e + m)

)
p≥0

for every choice of 0 < α < 2 and β ∈ R,

modifying the first terms in case β < 0.
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Kernel functions for generalized summability

Let M = (Mp)p≥0 be a sequence of positive real numbers which is a strongly
regular sequence admitting a proximate order, and with ω(M) < 2.

Then, following [6], there exists a pair of kernel functions for generalized
sumability (e,E ) such that
I e ∈ O(S0(ω(M)π)), and e(z)/z is locally uniformly integrable at the origin.

Moreover, for every ε > 0 there exist c , k > 0 such that

|e(z)| ≤ c exp (−M(|z |/k)) , z ∈ S0(ω(M)π − ε),
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Then, following [6], there exists a pair of kernel functions for generalized
sumability (e,E ) such that
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Kernel functions for generalized summability

I E ∈ O(C), and there exist c̃ , k̃ > 0 such that

|E (z)| ≤ c̃ exp
(
M(|z |/k̃)

)
, z ∈ C.



Kernel functions for generalized summability

I There exists β > 0 such that for all 0 < θ̃ < 2π − ω(M)π and ME > 0, there
exist c̃2 > 0 with

|E (z)| ≤ c̃2/|z |β , z ∈ Sπ(θ̃) \ D(0,ME ).



Kernel functions for generalized summability

The pair of kernel functions generalize the exponential function.

They are the cornerstone for the construction of Laplace-like operators involved in
the mentioned generalized theory of summability of formal solutions to functional
equations in the complex domain, showing good properties with respect to
moment differential operators.

Mellin transform of e determines the moment function

m(z) :=

∫ ∞
0

tz−1e(x)dx ,

with m ∈ O({z ∈ C : Re(z) > 0}) and continuous up to its boundary.

The kernel function E is represented in the form

E (z) =
∑
p≥0

zp

m(p)
, z ∈ C.
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Kernel functions for generalized summability

Classical Kernels Generalized Kernels

e−z e(z)

p! =
∫∞

0
xpe−xdx m(p) =

∫∞
0

xpe(x)dx

ez =
∑

p≥0
zp

p! E (z) =
∑

p≥0
zp

m(p)

∂z ∂m



Some words on q−Gevrey settings

Although the sequences (q
n(n−1)

2 )p≥0 and ([p]q!)p≥0 are not strongly regular
sequences, the construction of kernel functions in the q−Gevrey settings can
follow the parallel theory of q−Gevrey asymptotic expansions by means of a
q−Laplace transform in the sense of [9].

[9] C. Zhang, Transformations de q−Borel-Laplace au moyen de la fonction thêta de Jacobi. C. R. Acad. Sci.

Paris, t. 331, Série 1, 31–34 (2000)

q
n(n−1)

2 =
q

ln(q)

∫ ∞(d)

0

tn

Θ1/q(qt)
dt.
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The problem

Let A ∈ Cn×n and m = (m(p))p≥0 denote the sequence of moments associated to
the pair of kernel functions (e,E ).

We consider the linear system of moment differential equations with constant
coefficients

∂my = Ay

It is natural to ask the following questions:

What is the form of its solutions?

How do solutions behave?
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The solution

Lemma

Let (z0, y0) ∈ C1+n. The Cauchy problem{
∂my = Ay
y(z0) = y0

admits a unique solution which is a vector of entire functions.

Lemma

The set of solutions to ∂my = Ay is a subspace of (O(C))n of dimension n.

Lemma

Let λ ∈ C be an eigenvalue of A ∈ Cn×n with associated eigenvector v ∈ Cn. The
following properties hold:

I If λ 6= 0, then the function y(z) = E (λz)v is an entire solution of ∂my = Ay .

I If λ = 0, then the constant function y(z) = v is a solution of ∂my = Ay .



The solution

Lemma

Let (z0, y0) ∈ C1+n. The Cauchy problem{
∂my = Ay
y(z0) = y0

admits a unique solution which is a vector of entire functions.

Lemma

The set of solutions to ∂my = Ay is a subspace of (O(C))n of dimension n.

Lemma

Let λ ∈ C be an eigenvalue of A ∈ Cn×n with associated eigenvector v ∈ Cn. The
following properties hold:

I If λ 6= 0, then the function y(z) = E (λz)v is an entire solution of ∂my = Ay .

I If λ = 0, then the constant function y(z) = v is a solution of ∂my = Ay .



The solution

Lemma

Let (z0, y0) ∈ C1+n. The Cauchy problem{
∂my = Ay
y(z0) = y0

admits a unique solution which is a vector of entire functions.

Lemma

The set of solutions to ∂my = Ay is a subspace of (O(C))n of dimension n.

Lemma

Let λ ∈ C be an eigenvalue of A ∈ Cn×n with associated eigenvector v ∈ Cn. The
following properties hold:

I If λ 6= 0, then the function y(z) = E (λz)v is an entire solution of ∂my = Ay .

I If λ = 0, then the constant function y(z) = v is a solution of ∂my = Ay .



The solution

Lemma

Let (z0, y0) ∈ C1+n. The Cauchy problem{
∂my = Ay
y(z0) = y0

admits a unique solution which is a vector of entire functions.

Lemma

The set of solutions to ∂my = Ay is a subspace of (O(C))n of dimension n.

Lemma

Let λ ∈ C be an eigenvalue of A ∈ Cn×n with associated eigenvector v ∈ Cn. The
following properties hold:

I If λ 6= 0, then the function y(z) = E (λz)v is an entire solution of ∂my = Ay .

I If λ = 0, then the constant function y(z) = v is a solution of ∂my = Ay .



The solution

Theorem

Let A ∈ Cn×n be a diagonalizable matrix.

Let {λj}1≤j≤k , for some 1 ≤ k ≤ n be the set of eigenvalues of A, and let
{vj,1, . . . , vj,`j} be a basis of Ker(A− λj In) for every 1 ≤ j ≤ k, and some `j ≥ 1.

Then, the general solution of ∂my = Ay is given by

y(z) =
k∑

j=1

`j∑
p=1

Cj,pE (λjz)vj,p,

with Cj,p being arbitrary constants.



The solution

Theorem

Let {λj}1≤j≤k for some 1 ≤ k ≤ n be the set of eigenvalues of A.
Assume that λj is an eigenvalue of algebraic multiplicity mj ≥ 1, for every
1 ≤ j ≤ k. Then, the general solution of ∂my = Ay can be written in the form

y(z) =
k∑

j=1

mj∑
p=1

Cj,pyj,p(z),

where Cj,p are arbitrary constants.

I yj,p are entire functions determined from the Jordan decomposition of A.
I In this procedure, the entire functions

∆hE (λ, z) =
∑
p≥h

(
p

h

)
λp−hzp

m(p)

appear in their construction. These functions satisfy

(∂m − λ)(∆hE (λ, z)) = ∆h−1E (λ, z).
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The solution

In the classical case, m = (p!)p≥0, one has that

∆hE (λ, z) =
zh

h!
exp(λz),

recovering the classical construction of the solution in terms of generalized
eigenvectors of A and the Jordan decomposition of A.

In the case of Caputo fractional derivatives, m = (Γ(1 + p
k ))p≥0, one has that

h!∆hE (λ, t1/k) = th/k
(

dh

dzh
E1/k

)
(λt1/k),

for all h ≥ 0, where E1/k(z) is Mittag-Leffler function

E1/k(z) =
∑
p≥0

zp

Γ(1 + p/k)
.
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Asymptotic study of the solution

Based on the relation between growth of an entire function and growth rate of its
Taylor coefficients, [10], one has the following result:

[10] H. Komatsu, Ultradistributions. I: Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo,

Sect. I A 20 ,25–105 (1973)

Theorem

Let y(z) = (y1(z), . . . , yn(z)) be the solution of any Cauchy problem associated to
equation ∂my = Ay . Then,

I There exist C1,C2 > 0 such that

|yj(z)| ≤ C1 exp(M(C2|z |)), 1 ≤ j ≤ n, z ∈ C.

I If λ = 0 is the only eigenvalue of A, then y(z) has a polynomial growth at
infinity. In addition to this, there exists C > 0 such that

|yj(z)| ≤ C |z |n−1, 1 ≤ j ≤ n, z ∈ C.
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Asymptotic study of the solution

The growth of the solution at infinity is also measured by means of the order and
type.

Let f ∈ O(C) and define Mf (r) := max{|f (z)| : |z | = r} for every r ≥ 0.

The order of f :

ρ = ρf := lim sup
r→∞

ln+(ln+(Mf (r)))

ln(r)
.

Given f ∈ O(C) of order ρ ∈ R, the type of f is defined by

σ = σf := lim sup
r→∞

ln+(Mf (r))

rρ
.

For f (z) = exp(σzρ), ρ, σ > 0,

Mf (r) = max{exp(σrρ cos(ρθ)) : θ ∈ R} = exp(σrρ),

ρf = lim
r→∞

ln+(σrρ)

ln(r)
= ρ, σf = lim

r→∞

σrρ

rρ
= σ.
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Asymptotic study of the solution

Theorem
Let M be a strongly regular sequence which admits a nonzero proximate order, say
ρ(t)→ ρ > 0, for t →∞. Let y = y(z) be a solution of ∂my = Ay . Then,

if A admits a nonzero eigenvalue, then y is an entire function of order ρ and
type upper bounded by σ := max{|λ|ρ : λ ∈ spec(A)}, or an entire function
of order 0.

if 0 is the only eigenvalue of A, then y is a polynomial. Therefore, its order is
zero.

A result on the radial growth of the solution in the case of a diagonalizable matrix
A has also been achieved [11].

[11] A.L., Entire solutions of linear systems of moment differential equations and related asymptotic growth at

infinity. Differ. Equ. Dyn. Syst. (2022)

A general study remains open.
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Asymptotic study of the solution

Proposition

Let M be a strongly regular sequence which admits a nonzero proximate order, say
ρ(t)→ ρ > 0, for t →∞. Let y = y(z) be a solution of ∂my = Ay , where A is a
diagonalizable matrix. Then,∥∥y(re iθ)

∥∥ ≤ C

rβ
, r ≥ R0,

for some C , β,R0 > 0, provided that θ belongs to the set

k⋂
j=1

{
θ ∈ R :

ω(M)π

2
< θ + arg(λj) < 2π − ω(M)π

2

}
,

whenever this set is not empty.



Asymptotic study of the solution

Let the indicator of f ∈ O(C) be hf (θ) = lim supr→∞
ln |f (re iθ)|

rρ(r) .

Proposition

Under the previous assumptions, one has that

hy (θ) ≤ max{|λj |ρhE (θ + arg(λj)) : λj ∈ spec(A)}.



Further advances

Moment matrix exponential

Given m = (m(p))p≥0 as before, one can formally define the m-exponential of the
matrix A by

E (A) := Em(A) =
∑
p≥0

1

m(p)
Ap ∈ C[[A]].

[12] A.L., C. Prisuelos-Arribas, Solutions of linear systems of moment differential equations via generalized

matrix exponentials. To appear in J. Differ. Equ. (2023)

It holds that

If C ∈ Cn×n is invertible, and A = CBC−1, then E (A) = CE (B)C−1.

E (A + B) 6= E (A)E (B), in general. It is also false when A and B commute.

E (diag(λ1, . . . , λn)) = diag(E (λ1), . . . ,E (λn)).

∂mE (Az) = AE (Az).
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Further advances

If
lim inf

p→∞
(m(p))1/p = +∞

holds, then E (Az) defines an entire function (with values in the Banach space
Cn×n).

Also, ∂mE (Az) determines an entire function.

This is a natural assumption as any (lc) sequence with

supp≥1m
1/p
p <∞

determines a class of ultradifferentiable functions which is contained in the class of
analytic functions.
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Further advances

Theorem

Let A ∈ Cn×n. The general solution of ∂my = Ay is

y(z) = E (Az)c ,

where c is an n-dimensional constant column vector.

As a consequence, given any fundamental matrix X (z) ∈ (O(C))n×n associated to
∂my = Ay , then

E (Az) = X (z)X (0)−1.
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