Entire solutions of linear systems of moment differential equations and related asymptotic growth at infinity

Alberto Lastra, Universidad de Alcalá

Bedlewo, Poland. August 31st, 2023
CDDEII

Outline of the talk

(1) Introduction and motivation
(2) Kernel functions for generalized summability
(3) Solution of the main problem and asymptotic study
(4) Further advances

Introduction and motivation

Introduction and motivation

In [1], D. Matignon describes the stability properties of linear systems of fractional differential equations of the form

$$
\partial_{z}^{\alpha} y(z)=A y(z),
$$

where $A \in \mathbb{C}^{n \times n}$ is a constant matrix, ∂_{z}^{α} is a fractional derivative of order $\alpha>0$, $y(z)=\left(y_{1}, \ldots, y_{n}\right)^{T}$ stands for a vector of unknown functions.
[1] D. Matignon, Stability results for fractional differential equations with applications to control processing.
Proc. Comput. Eng. Syst. Appl. 2, 963-968 (1996)

Introduction and motivation

In [1], D. Matignon describes the stability properties of linear systems of fractional differential equations of the form

$$
\partial_{z}^{\alpha} y(z)=A y(z),
$$

where $A \in \mathbb{C}^{n \times n}$ is a constant matrix, ∂_{z}^{α} is a fractional derivative of order $\alpha>0$, $y(z)=\left(y_{1}, \ldots, y_{n}\right)^{T}$ stands for a vector of unknown functions.
[1] D. Matignon, Stability results for fractional differential equations with applications to control processing.
Proc. Comput. Eng. Syst. Appl. 2, 963-968 (1996)
The solutions of the previous system turn out to be asymptotically stable, i.e.

$$
\lim _{t \rightarrow \infty, t \in \mathbb{R}}\|y(t)\|=0
$$

iff $|\arg (\lambda)|>\alpha \frac{\pi}{2}$ for every eigenvalue λ of A.

Introduction and motivation

In [1], D. Matignon describes the stability properties of linear systems of fractional differential equations of the form

$$
\partial_{z}^{\alpha} y(z)=A y(z),
$$

where $A \in \mathbb{C}^{n \times n}$ is a constant matrix, ∂_{z}^{α} is a fractional derivative of order $\alpha>0$, $y(z)=\left(y_{1}, \ldots, y_{n}\right)^{T}$ stands for a vector of unknown functions.
[1] D. Matignon, Stability results for fractional differential equations with applications to control processing.
Proc. Comput. Eng. Syst. Appl. 2, 963-968 (1996)
The solutions of the previous system turn out to be asymptotically stable, i.e.

$$
\lim _{t \rightarrow \infty, t \in \mathbb{R}}\|y(t)\|=0
$$

iff $|\arg (\lambda)|>\alpha \frac{\pi}{2}$ for every eigenvalue λ of A.
In this situation, the solutions decay to 0 at infinity like $t^{-\alpha}, t \in \mathbb{R}_{+}$.

Introduction and motivation

Observe that in the case $\alpha=1$ one recovers the classical problem

$$
y^{\prime}=A y,
$$

whose general solution is written as a linear combination of functions

$$
z^{p} e^{\lambda z} v
$$

for $\lambda \in \operatorname{spec}(A), v$ an associated eigenvector, and for all $p=0,1, \ldots$

Introduction and motivation

Observe that in the case $\alpha=1$ one recovers the classical problem

$$
y^{\prime}=A y
$$

whose general solution is written as a linear combination of functions

$$
z^{p} e^{\lambda z} v
$$

for $\lambda \in \operatorname{spec}(A), v$ an associated eigenvector, and for all $p=0,1, \ldots$
The solutions are asymptotically stable iff $|\arg (\lambda)|>\frac{\pi}{2}$ for $\lambda \in \operatorname{spec}(A)$:
For $t>0$,

$$
\left|t^{p} e^{\lambda t}\right|=t^{p} \exp (|\lambda| t \cos (\arg (\lambda))) .
$$

Statement of the problem

Statement of the problem

Let $A \in \mathbb{C}^{n \times n}$ and let $m=(m(p))_{p \geq 0}$ denote some sequence of positive numbers under certain assumptions.

Statement of the problem

Let $A \in \mathbb{C}^{n \times n}$ and let $m=(m(p))_{p \geq 0}$ denote some sequence of positive numbers under certain assumptions.

We consider the linear system of moment differential equations with constant coefficients

$$
\partial_{m} y=A y
$$

$y=\left(y_{1}, \ldots, y_{n}\right)^{T}$ is a vector of unknown functions,
∂_{m} stands for the moment differential operator associated to m.

Introduction and motivation

Given a sequence of positive real numbers $\left(m_{p}\right)_{p \geq 0}$ one can (formally) define the operator

$$
\partial_{m}\left(\sum_{p \geq 0} \frac{a_{p}}{m_{p}} z^{p}\right)=\sum_{p \geq 0} \frac{a_{p+1}}{m_{p}} z^{p}
$$

acting on any formal power series with complex coefficients.

Introduction and motivation

Given a sequence of positive real numbers $\left(m_{p}\right)_{p \geq 0}$ one can (formally) define the operator

$$
\partial_{m}\left(\sum_{p \geq 0} \frac{a_{p}}{m_{p}} z^{p}\right)=\sum_{p \geq 0} \frac{a_{p+1}}{m_{p}} z^{p}
$$

acting on any formal power series with complex coefficients.
∂_{m} is known as the moment derivative operator.
∂_{m} was firstly defined by W . Balser and M . Yoshino in [2].
[2] W. Balser, M. Yoshino, Gevrey order of formal power series solutions of inhomogeneous partial differential equations with constant coefficients. Funkcial. Ekvac. 53, 411-434 (2010)

Introduction and motivation

It holds that

$$
\partial_{m}\left(x^{p}\right)= \begin{cases}0 & p=0 \\ \frac{m_{p}}{m_{p-1}} x^{p-1} & p \geq 1\end{cases}
$$

Introduction and motivation

It holds that

$$
\partial_{m}\left(x^{p}\right)= \begin{cases}0 & p=0 \\ \frac{m_{\rho}}{m_{p-1}} x^{p-1} & p \geq 1\end{cases}
$$

Some of the most important situations in applications are those in which $m=\left(m_{p}\right)_{p \geq 0}$ is a sequence of moments associated to some measure.

- Case $m=(p!)_{p \geq 0} . \partial_{m}$ coincides with usual derivation.

$$
p!=\int_{0}^{\infty} x^{p} e^{-x} d x, \quad p \geq 0 .
$$

Introduction and motivation

It holds that

$$
\partial_{m}\left(x^{p}\right)= \begin{cases}0 & p=0 \\ \frac{m_{\rho}}{m_{p-1}} x^{p-1} & p \geq 1\end{cases}
$$

Some of the most important situations in applications are those in which $m=\left(m_{p}\right)_{p \geq 0}$ is a sequence of moments associated to some measure.

- Case $m=(p!)_{p \geq 0} . \partial_{m}$ coincides with usual derivation.

$$
p!=\int_{0}^{\infty} x^{p} e^{-x} d x, \quad p \geq 0 .
$$

- Case $m=(\Gamma(1+\alpha p))_{p \geq 0}$, for fixed $\alpha>0 . \partial_{m}$ is directly linked with Caputo fractional derivative.

$$
\Gamma(1+\alpha p)=\int_{0}^{\infty} x^{p} \frac{1}{\alpha} x^{\frac{1}{\alpha}} e^{-x^{\frac{1}{\alpha}}} d x
$$

The formal differential operator satisfies

$$
\left(\partial_{m} f\right)\left(z^{\alpha}\right)={ }^{c} D_{z}^{\alpha}\left(f\left(z^{\alpha}\right)\right), \quad f \in \mathbb{C}[[z]],
$$

where ${ }^{C} D_{z}^{\alpha}$ stands for Caputo fractional derivative.

Introduction and motivation

- Case $m=\left([p]_{q}!\right)_{p \geq 0}$, where $[p]_{q}$! stands for the q-factorial defined by $[0]_{q}!:=1$ and $[p]_{q}!:=[p]_{q} \cdot[p-1]_{q} \cdot \ldots \cdot[1]_{q}$ for any positive integer $p \geq 1$. Here, $q \in \mathbb{R}_{+} \backslash\{1\}$, and we write $[p]_{q}=1+q+\ldots+q^{p-1}$.

Introduction and motivation

- Case $m=\left([p]_{q}!\right)_{p \geq 0}$, where $[p]_{q}$! stands for the q-factorial defined by $[0]_{q}!:=1$ and $[p]_{q}!:=[p]_{q} \cdot[p-1]_{q} \cdot \ldots \cdot[1]_{q}$ for any positive integer $p \geq 1$. Here, $q \in \mathbb{R}_{+} \backslash\{1\}$, and we write $[p]_{q}=1+q+\ldots+q^{p-1}$.

The q-derivative is defined by

$$
D_{q, z} f(z)=\frac{f(q z)-f(z)}{q z-z}
$$

and coincides with $\partial_{m, z}$, for $m:=\left([p]_{q}!\right)_{p \geq 0}$.

Introduction and motivation

- Case $m=\left([p]_{q}!\right)_{p \geq 0}$, where $[p]_{q}$! stands for the q-factorial defined by $[0]_{q}!:=1$ and $[p]_{q}!:=[p]_{q} \cdot[p-1]_{q} \cdot \ldots \cdot[1]_{q}$ for any positive integer $p \geq 1$. Here, $q \in \mathbb{R}_{+} \backslash\{1\}$, and we write $[p]_{q}=1+q+\ldots+q^{p-1}$.

The q-derivative is defined by

$$
D_{q, z} f(z)=\frac{f(q z)-f(z)}{q z-z}
$$

and coincides with $\partial_{m, z}$, for $m:=\left([p]_{q}!\right)_{p \geq 0}$.
This last sequence is quite related (in terms of the growth of their coefficients) to the sequence of moments $\left(q^{p(p-1) / 2}\right)_{p \geq 0}$ associated to

$$
\sqrt{2 \pi \ln (q)} \exp \left(\frac{\ln ^{2}(\sqrt{q} x)}{2 \ln (q)}\right) \quad \text { and also } \quad \ln (q) / \Theta_{1 / q}(x)
$$

where $\Theta_{1 / q}$ stands for Jacobi Theta function

$$
\Theta_{1 / q}(z)=\sum_{p \in \mathbb{Z}} q^{-\frac{p(p-1)}{2}} z^{p} .
$$

Introduction and motivation

We are mainly working with m being a sequence of moderate growth. The growth of $\left(q^{p(p-1) / 2}\right)_{p \geq 0}$ and $\left([p]_{q}!\right)_{p \geq 0}$ is not of moderate growth. Therefore, the results presented do not apply in that setting, in principle.

Introduction and motivation

We are mainly working with m being a sequence of moderate growth. The growth of $\left(q^{p(p-1) / 2}\right)_{p \geq 0}$ and $\left([p]_{q}!\right)_{p \geq 0}$ is not of moderate growth. Therefore, the results presented do not apply in that setting, in principle.

Some remarks on this situation:

- The construction of the entire solutions explained in the talk can be adapted when considering an adequate kernel function.

Introduction and motivation

We are mainly working with m being a sequence of moderate growth. The growth of $\left(q^{p(p-1) / 2}\right)_{p \geq 0}$ and $\left([p]_{q}!\right)_{p \geq 0}$ is not of moderate growth. Therefore, the results presented do not apply in that setting, in principle.

Some remarks on this situation:

- The construction of the entire solutions explained in the talk can be adapted when considering an adequate kernel function.
- The asymptotic study of the entire solutions can also be adapted. However, this is well-known also in a more general framework [3].
[3] J. P. Ramis, About the growth of entire functions solutions of linear algebraic q-difference equations,
Annales de la faculté des sciences de Toulouse, 1, 53-94 (1992)

Introduction and motivation

Therefore, the study of moment differential equations can be particularized to differential equations, fractional differential equations, q-difference equations,...

Introduction and motivation

Therefore, the study of moment differential equations can be particularized to differential equations, fractional differential equations, q-difference equations,...

At first sight, only formal solutions can be handled.

Introduction and motivation

Therefore, the study of moment differential equations can be particularized to differential equations, fractional differential equations, q-difference equations,...

At first sight, only formal solutions can be handled.
A coherent definition of moment derivatives has successfully been developed for other families of functions.

- Moment derivation at $z_{0} \in \mathbb{C}$ of holomorphic functions defined on some open set containing z_{0} (Taylor expansion)

Introduction and motivation

Therefore, the study of moment differential equations can be particularized to differential equations, fractional differential equations, q-difference equations,...

At first sight, only formal solutions can be handled.
A coherent definition of moment derivatives has successfully been developed for other families of functions.

- Moment derivation at $z_{0} \in \mathbb{C}$ of holomorphic functions defined on some open set containing z_{0} (Taylor expansion)
- Holomorphic functions defined on sectors of the complex plane which are sums of formal power series [4],
[4] A. L., S. Michalik, M. Suwińska, Summability of formal solutions for some generalized moment partial differential equations. Result. Math. 76, No. 1 (2021) Paper No. 22.

Introduction and motivation

Therefore, the study of moment differential equations can be particularized to differential equations, fractional differential equations, q-difference equations,...

At first sight, only formal solutions can be handled.
A coherent definition of moment derivatives has successfully been developed for other families of functions.

- Moment derivation at $z_{0} \in \mathbb{C}$ of holomorphic functions defined on some open set containing z_{0} (Taylor expansion)
- Holomorphic functions defined on sectors of the complex plane which are sums of formal power series [4],
[4] A. L., S. Michalik, M. Suwińska, Summability of formal solutions for some generalized moment partial differential equations. Result. Math. 76, No. 1 (2021) Paper No. 22.
- Holomorphic functions defined on sectors of the complex plane which are multisums of formal power series [5].
[5] A. L., S. Michalik, M. Suwińska, Multisummability of formal solutions for a family of generalized singularly perturbed moment differential equations. Result. Math. 78, No. 2, Paper No. 49, 31 p. (2023).

Introduction and motivation

The procedure is linked to the summability theory of formal solutions of functional equations.

Introduction and motivation

The procedure is linked to the summability theory of formal solutions of functional equations.

An adaptation of the classical Borel-Laplace procedure has been put forward in this more general framework $[6,7]$.
[6] J. Sanz, Flat functions in Carleman ultraholomorphic classes via proximate orders. J. Math. Anal. Appl. 415(2), 623-643 (2014)
[7] A. L., S. Malek, J. Sanz, Summability in general Carleman ultraholomorphic classes. J. Math. Anal. Appl. 430, 1175-1206 (2015)

Introduction and motivation

The procedure is linked to the summability theory of formal solutions of functional equations.

An adaptation of the classical Borel-Laplace procedure has been put forward in this more general framework $[6,7]$.
[6] J. Sanz, Flat functions in Carleman ultraholomorphic classes via proximate orders. J. Math. Anal. Appl. 415(2), 623-643 (2014)
[7] A. L., S. Malek, J. Sanz, Summability in general Carleman ultraholomorphic classes. J. Math. Anal. Appl. 430, 1175-1206 (2015)

The solution of the main problem is based on the construction of the so-called pair of kernel functions for generalized summability, (e, E), associated to a strongly regular sequence \mathbb{M}.

Strongly regular sequences

Strongly regular sequences

Let $\mathbb{M}=\left(M_{p}\right)_{p \geq 0}$ be a sequence of positive real numbers. We assume $M_{0}=1$ and such that:
(Ic) $M_{p}^{2} \leq M_{p-1} M_{p+1}$, for all $p \geq 1$.
(mg) There exists $A_{1}>0$ such that $M_{p+q} \leq A_{1}^{p+q} M_{p} M_{q}$ for any $(p, q) \in \mathbb{N}_{0}^{2}$.
(snq) There exists $A_{2}>0$ such that

$$
\sum_{q \geq p} \frac{M_{q}}{(q+1) M_{q+1}} \leq A_{2} \frac{M_{p}}{M_{p+1}}, \quad p \geq 0
$$

\mathbb{M} is said to be a strongly regular sequence [8].
[8] V. Thilliez, Division by flat ultradifferentiable functions and sectorial extensions. Results. Math. 44, 169-188 (2003).

Strongly regular sequences

Let $\mathbb{M}=\left(M_{p}\right)_{p \geq 0}$ be a sequence of positive real numbers. We assume $M_{0}=1$ and such that:
(Ic) $M_{p}^{2} \leq M_{p-1} M_{p+1}$, for all $p \geq 1$.
(mg) There exists $A_{1}>0$ such that $M_{p+q} \leq A_{1}^{p+q} M_{p} M_{q}$ for any $(p, q) \in \mathbb{N}_{0}^{2}$.
(snq) There exists $A_{2}>0$ such that

$$
\sum_{q \geq p} \frac{M_{q}}{(q+1) M_{q+1}} \leq A_{2} \frac{M_{p}}{M_{p+1}}, \quad p \geq 0
$$

\mathbb{M} is said to be a strongly regular sequence [8].
[8] V. Thilliez, Division by flat ultradifferentiable functions and sectorial extensions. Results. Math. 44, 169-188 (2003).

The previous properties determine good properties of ultraholomorphic and ultradifferentiable function spaces such as closure with respect to product and composition, and the existence of flat functions.

Kernel functions for generalized summability

Kernel functions for generalized summability

Let $\mathbb{M}=\left(M_{p}\right)_{p \geq 0}$ be a sequence of positive real numbers. We assume
$\checkmark \mathbb{M}$ is a strongly regular sequence.

Kernel functions for generalized summability

Let $\mathbb{M}=\left(M_{p}\right)_{p \geq 0}$ be a sequence of positive real numbers. We assume $\checkmark \mathbb{M}$ is a strongly regular sequence.

Let $M:[0, \infty) \rightarrow[0, \infty)$ be $M(0)=0$ and

$$
M(x):=\sup _{p \geq 0} \log \left(\frac{x^{p}}{M_{p}}\right), \quad x>0
$$

and also $\omega(\mathbb{M})>0$ with

$$
\omega(\mathbb{M}):=\left(\limsup _{r \rightarrow \infty} \max \left\{0, \frac{\log (M(r))}{\log (r)}\right\}\right)^{-1} .
$$

$\checkmark \omega(\mathbb{M})<2$.

Kernel functions for generalized summability

Let $\mathbb{M}=\left(M_{p}\right)_{p \geq 0}$ be a sequence of positive real numbers. We assume $\checkmark \mathbb{M}$ is a strongly regular sequence.

Let $M:[0, \infty) \rightarrow[0, \infty)$ be $M(0)=0$ and

$$
M(x):=\sup _{p \geq 0} \log \left(\frac{x^{p}}{M_{p}}\right), \quad x>0
$$

and also $\omega(\mathbb{M})>0$ with

$$
\omega(\mathbb{M}):=\left(\limsup _{r \rightarrow \infty} \max \left\{0, \frac{\log (M(r))}{\log (r)}\right\}\right)^{-1}
$$

$\checkmark \omega(\mathbb{M})<2$.
$\checkmark \mathbb{M}$ admits a nonzero proximate order. (prof. Okada's talk)
Example: $\left(p!^{\alpha} \prod_{m=0}^{p} \log ^{\beta}(e+m)\right)_{p \geq 0}$ for every choice of $0<\alpha<2$ and $\beta \in \mathbb{R}$, modifying the first terms in case $\beta<0$.

Kernel functions for generalized summability

Let $\mathbb{M}=\left(M_{p}\right)_{p \geq 0}$ be a sequence of positive real numbers which is a strongly regular sequence admitting a proximate order, and with $\omega(\mathbb{M})<2$.

Kernel functions for generalized summability

Let $\mathbb{M}=\left(M_{p}\right)_{p \geq 0}$ be a sequence of positive real numbers which is a strongly regular sequence admitting a proximate order, and with $\omega(\mathbb{M})<2$.

Then, following [6], there exists a pair of kernel functions for generalized sumability (e, E) such that

- $e \in \mathcal{O}\left(S_{0}(\omega(\mathbb{M}) \pi)\right)$, and $e(z) / z$ is locally uniformly integrable at the origin. Moreover, for every $\epsilon>0$ there exist $c, k>0$ such that

$$
|e(z)| \leq c \exp (-M(|z| / k)), \quad z \in S_{0}(\omega(\mathbb{M}) \pi-\epsilon),
$$

Kernel functions for generalized summability

- $E \in \mathcal{O}(\mathbb{C})$, and there exist $\tilde{c}, \tilde{k}>0$ such that

$$
|E(z)| \leq \tilde{c} \exp (M(|z| / \tilde{k})), \quad z \in \mathbb{C} .
$$

Kernel functions for generalized summability

- There exists $\beta>0$ such that for all $0<\tilde{\theta}<2 \pi-\omega(\mathbb{M}) \pi$ and $M_{E}>0$, there exist $\tilde{c}_{2}>0$ with

$$
|E(z)| \leq \tilde{c}_{2} /|z|^{\beta}, \quad z \in S_{\pi}(\tilde{\theta}) \backslash D\left(0, M_{E}\right)
$$

Kernel functions for generalized summability

The pair of kernel functions generalize the exponential function.

Kernel functions for generalized summability

The pair of kernel functions generalize the exponential function.
They are the cornerstone for the construction of Laplace-like operators involved in the mentioned generalized theory of summability of formal solutions to functional equations in the complex domain, showing good properties with respect to moment differential operators.

Kernel functions for generalized summability

The pair of kernel functions generalize the exponential function.
They are the cornerstone for the construction of Laplace-like operators involved in the mentioned generalized theory of summability of formal solutions to functional equations in the complex domain, showing good properties with respect to moment differential operators.

Mellin transform of e determines the moment function

$$
m(z):=\int_{0}^{\infty} t^{z-1} e(x) d x
$$

with $m \in \mathcal{O}(\{z \in \mathbb{C}: \operatorname{Re}(z)>0\})$ and continuous up to its boundary.

Kernel functions for generalized summability

The pair of kernel functions generalize the exponential function.
They are the cornerstone for the construction of Laplace-like operators involved in the mentioned generalized theory of summability of formal solutions to functional equations in the complex domain, showing good properties with respect to moment differential operators.

Mellin transform of e determines the moment function

$$
m(z):=\int_{0}^{\infty} t^{z-1} e(x) d x
$$

with $m \in \mathcal{O}(\{z \in \mathbb{C}: \operatorname{Re}(z)>0\})$ and continuous up to its boundary.
The kernel function E is represented in the form

$$
E(z)=\sum_{p \geq 0} \frac{z^{p}}{m(p)}, \quad z \in \mathbb{C}
$$

Kernel functions for generalized summability

Classical Kernels	Generalized Kernels
e^{-z}	$e(z)$
$p!=\int_{0}^{\infty} x^{p} e^{-x} d x$	$m(p)=\int_{0}^{\infty} x^{p} e(x) d x$
$e^{z}=\sum_{p \geq 0} \frac{z^{p}}{p!}$	$E(z)=\sum_{p \geq 0} \frac{z^{p}}{m(p)}$
∂_{z}	∂_{m}

Some words on q-Gevrey settings

Although the sequences $\left(q^{\frac{q(n-1)}{2}}\right)_{p \geq 0}$ and $\left([p]_{q}!\right)_{p \geq 0}$ are not strongly regular sequences, the construction of kernel functions in the q-Gevrey settings can follow the parallel theory of q-Gevrey asymptotic expansions by means of a q-Laplace transform in the sense of [9].
[9] C. Zhang, Transformations de q-Borel-Laplace au moyen de la fonction thêta de Jacobi. C. R. Acad. Sci.
Paris, t. 331, Série 1, 31-34 (2000)

Some words on q-Gevrey settings

Although the sequences $\left(q^{\left.\frac{n(n-1)}{2}\right)}\right)_{p \geq 0}$ and $\left([p]_{q}!\right)_{p \geq 0}$ are not strongly regular sequences, the construction of kernel functions in the q-Gevrey settings can follow the parallel theory of q-Gevrey asymptotic expansions by means of a q-Laplace transform in the sense of [9].
[9] C. Zhang, Transformations de q-Borel-Laplace au moyen de la fonction thêta de Jacobi. C. R. Acad. Sci. Paris, t. 331, Série 1, 31-34 (2000)

$$
q^{\frac{n(n-1)}{2}}=\frac{q}{\ln (q)} \int_{0}^{\infty(d)} \frac{t^{n}}{\Theta_{1 / q}(q t)} d t
$$

The problem

Let $A \in \mathbb{C}^{n \times n}$ and $m=(m(p))_{p \geq 0}$ denote the sequence of moments associated to the pair of kernel functions (e, E).

The problem

Let $A \in \mathbb{C}^{n \times n}$ and $m=(m(p))_{p \geq 0}$ denote the sequence of moments associated to the pair of kernel functions (e, E).

We consider the linear system of moment differential equations with constant coefficients

$$
\partial_{m} y=A y
$$

The problem

Let $A \in \mathbb{C}^{n \times n}$ and $m=(m(p))_{p \geq 0}$ denote the sequence of moments associated to the pair of kernel functions (e, E).

We consider the linear system of moment differential equations with constant coefficients

$$
\partial_{m} y=A y
$$

It is natural to ask the following questions:

- What is the form of its solutions?
- How do solutions behave?

The solution

The solution

Lemma

Let $\left(z_{0}, y_{0}\right) \in \mathbb{C}^{1+n}$. The Cauchy problem

$$
\left\{\begin{aligned}
\partial_{m} y & =A y \\
y\left(z_{0}\right) & =y_{0}
\end{aligned}\right.
$$

admits a unique solution which is a vector of entire functions.

The solution

Lemma

Let $\left(z_{0}, y_{0}\right) \in \mathbb{C}^{1+n}$. The Cauchy problem

$$
\left\{\begin{aligned}
\partial_{m} y & =A y \\
y\left(z_{0}\right) & =y_{0}
\end{aligned}\right.
$$

admits a unique solution which is a vector of entire functions.

Lemma

The set of solutions to $\partial_{m} y=A y$ is a subspace of $(\mathcal{O}(\mathbb{C}))^{n}$ of dimension n.

The solution

Lemma

Let $\left(z_{0}, y_{0}\right) \in \mathbb{C}^{1+n}$. The Cauchy problem

$$
\left\{\begin{aligned}
\partial_{m} y & =A y \\
y\left(z_{0}\right) & =y_{0}
\end{aligned}\right.
$$

admits a unique solution which is a vector of entire functions.

Lemma

The set of solutions to $\partial_{m} y=A y$ is a subspace of $(\mathcal{O}(\mathbb{C}))^{n}$ of dimension n.

Lemma

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$ with associated eigenvector $v \in \mathbb{C}^{n}$. The following properties hold:

- If $\lambda \neq 0$, then the function $y(z)=E(\lambda z) v$ is an entire solution of $\partial_{m} y=A y$.
- If $\lambda=0$, then the constant function $y(z)=v$ is a solution of $\partial_{m} y=A y$.

The solution

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a diagonalizable matrix.
Let $\left\{\lambda_{j}\right\}_{1 \leq j \leq k}$, for some $1 \leq k \leq n$ be the set of eigenvalues of A, and let $\left\{v_{j, 1}, \ldots, v_{j, \ell_{j}}\right\}$ be a basis of $\operatorname{Ker}\left(A-\lambda_{j} I_{n}\right)$ for every $1 \leq j \leq k$, and some $\ell_{j} \geq 1$.

Then, the general solution of $\partial_{m} y=A y$ is given by

$$
y(z)=\sum_{j=1}^{k} \sum_{p=1}^{\ell_{j}} C_{j, p} E\left(\lambda_{j} z\right) v_{j, p},
$$

with $C_{j, p}$ being arbitrary constants.

The solution

Theorem

Let $\left\{\lambda_{j}\right\}_{1 \leq j \leq k}$ for some $1 \leq k \leq n$ be the set of eigenvalues of A. Assume that λ_{j} is an eigenvalue of algebraic multiplicity $m_{j} \geq 1$, for every $1 \leq j \leq k$. Then, the general solution of $\partial_{m} y=A y$ can be written in the form

$$
y(z)=\sum_{j=1}^{k} \sum_{p=1}^{m_{j}} C_{j, p} y_{j, p}(z),
$$

where $C_{j, p}$ are arbitrary constants.

The solution

Theorem

Let $\left\{\lambda_{j}\right\}_{1 \leq j \leq k}$ for some $1 \leq k \leq n$ be the set of eigenvalues of A. Assume that λ_{j} is an eigenvalue of algebraic multiplicity $m_{j} \geq 1$, for every $1 \leq j \leq k$. Then, the general solution of $\partial_{m} y=A y$ can be written in the form

$$
y(z)=\sum_{j=1}^{k} \sum_{p=1}^{m_{j}} C_{j, p} y_{j, p}(z),
$$

where $C_{j, p}$ are arbitrary constants.

- $y_{j, p}$ are entire functions determined from the Jordan decomposition of A.

The solution

Theorem

Let $\left\{\lambda_{j}\right\}_{1 \leq j \leq k}$ for some $1 \leq k \leq n$ be the set of eigenvalues of A. Assume that λ_{j} is an eigenvalue of algebraic multiplicity $m_{j} \geq 1$, for every $1 \leq j \leq k$. Then, the general solution of $\partial_{m} y=A y$ can be written in the form

$$
y(z)=\sum_{j=1}^{k} \sum_{p=1}^{m_{j}} C_{j, p} y_{j, p}(z),
$$

where $C_{j, p}$ are arbitrary constants.

- $y_{j, p}$ are entire functions determined from the Jordan decomposition of A.
- In this procedure, the entire functions

$$
\Delta_{h} E(\lambda, z)=\sum_{p \geq h}\binom{p}{h} \frac{\lambda^{p-h} z^{p}}{m(p)}
$$

appear in their construction. These functions satisfy

$$
\left(\partial_{m}-\lambda\right)\left(\Delta_{h} E(\lambda, z)\right)=\Delta_{h-1} E(\lambda, z) .
$$

The solution

In the classical case, $m=(p!)_{p \geq 0}$, one has that

$$
\Delta_{h} E(\lambda, z)=\frac{z^{h}}{h!} \exp (\lambda z),
$$

recovering the classical construction of the solution in terms of generalized eigenvectors of A and the Jordan decomposition of A.

The solution

In the classical case, $m=(p!)_{p \geq 0}$, one has that

$$
\Delta_{h} E(\lambda, z)=\frac{z^{h}}{h!} \exp (\lambda z)
$$

recovering the classical construction of the solution in terms of generalized eigenvectors of A and the Jordan decomposition of A.

In the case of Caputo fractional derivatives, $m=\left(\Gamma\left(1+\frac{p}{k}\right)\right)_{p \geq 0}$, one has that

$$
h!\Delta_{h} E\left(\lambda, t^{1 / k}\right)=t^{h / k}\left(\frac{d^{h}}{d z^{h}} E_{1 / k}\right)\left(\lambda t^{1 / k}\right),
$$

for all $h \geq 0$, where $E_{1 / k}(z)$ is Mittag-Leffler function

$$
E_{1 / k}(z)=\sum_{p \geq 0} \frac{z^{p}}{\Gamma(1+p / k)} .
$$

Asymptotic study of the solution

Asymptotic study of the solution

Based on the relation between growth of an entire function and growth rate of its Taylor coefficients, [10], one has the following result:
[10] H. Komatsu, Ultradistributions. I: Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. I A 20 ,25-105 (1973)

Asymptotic study of the solution

Based on the relation between growth of an entire function and growth rate of its Taylor coefficients, [10], one has the following result:
[10] H. Komatsu, Ultradistributions. I: Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. I A $20,25-105$ (1973)

Theorem

Let $y(z)=\left(y_{1}(z), \ldots, y_{n}(z)\right)$ be the solution of any Cauchy problem associated to equation $\partial_{m} y=A y$. Then,

- There exist $C_{1}, C_{2}>0$ such that

$$
\left|y_{j}(z)\right| \leq C_{1} \exp \left(M\left(C_{2}|z|\right)\right), \quad 1 \leq j \leq n, \quad z \in \mathbb{C}
$$

- If $\lambda=0$ is the only eigenvalue of A, then $y(z)$ has a polynomial growth at infinity. In addition to this, there exists $C>0$ such that

$$
\left|y_{j}(z)\right| \leq C|z|^{n-1}, \quad 1 \leq j \leq n, \quad z \in \mathbb{C} .
$$

Asymptotic study of the solution

The growth of the solution at infinity is also measured by means of the order and type.

Asymptotic study of the solution

The growth of the solution at infinity is also measured by means of the order and type.

Let $f \in \mathcal{O}(\mathbb{C})$ and define $M_{f}(r):=\max \{|f(z)|:|z|=r\}$ for every $r \geq 0$.

Asymptotic study of the solution

The growth of the solution at infinity is also measured by means of the order and type.

Let $f \in \mathcal{O}(\mathbb{C})$ and define $M_{f}(r):=\max \{|f(z)|:|z|=r\}$ for every $r \geq 0$.
The order of f :

$$
\rho=\rho_{f}:=\underset{r \rightarrow \infty}{\limsup } \frac{\ln ^{+}\left(\ln ^{+}\left(M_{f}(r)\right)\right)}{\ln (r)} .
$$

Given $f \in \mathcal{O}(\mathbb{C})$ of order $\rho \in \mathbb{R}$, the type of f is defined by

$$
\sigma=\sigma_{f}:=\underset{r \rightarrow \infty}{\limsup } \frac{\ln ^{+}\left(M_{f}(r)\right)}{r^{\rho}} .
$$

Asymptotic study of the solution

The growth of the solution at infinity is also measured by means of the order and type.

Let $f \in \mathcal{O}(\mathbb{C})$ and define $M_{f}(r):=\max \{|f(z)|:|z|=r\}$ for every $r \geq 0$.
The order of f :

$$
\rho=\rho_{f}:=\underset{r \rightarrow \infty}{\limsup } \frac{\ln ^{+}\left(\ln ^{+}\left(M_{f}(r)\right)\right)}{\ln (r)} .
$$

Given $f \in \mathcal{O}(\mathbb{C})$ of order $\rho \in \mathbb{R}$, the type of f is defined by

$$
\sigma=\sigma_{f}:=\underset{r \rightarrow \infty}{\limsup } \frac{\ln ^{+}\left(M_{f}(r)\right)}{r^{\rho}} .
$$

For $f(z)=\exp \left(\sigma z^{\rho}\right), \rho, \sigma>0$,

$$
\begin{gathered}
M_{f}(r)=\max \left\{\exp \left(\sigma r^{\rho} \cos (\rho \theta)\right): \theta \in \mathbb{R}\right\}=\exp \left(\sigma r^{\rho}\right), \\
\rho_{f}=\lim _{r \rightarrow \infty} \frac{\ln ^{+}\left(\sigma r^{\rho}\right)}{\ln (r)}=\rho, \quad \sigma_{f}=\lim _{r \rightarrow \infty} \frac{\sigma r^{\rho}}{r^{\rho}}=\sigma .
\end{gathered}
$$

Asymptotic study of the solution

Theorem

Let \mathbb{M} be a strongly regular sequence which admits a nonzero proximate order, say $\rho(t) \rightarrow \rho>0$, for $t \rightarrow \infty$. Let $y=y(z)$ be a solution of $\partial_{m} y=A y$. Then,

- if A admits a nonzero eigenvalue, then y is an entire function of order ρ and type upper bounded by $\sigma:=\max \left\{|\lambda|^{\rho}: \lambda \in \operatorname{spec}(A)\right\}$, or an entire function of order 0 .
- if 0 is the only eigenvalue of A, then y is a polynomial. Therefore, its order is zero.

Asymptotic study of the solution

Theorem

Let \mathbb{M} be a strongly regular sequence which admits a nonzero proximate order, say $\rho(t) \rightarrow \rho>0$, for $t \rightarrow \infty$. Let $y=y(z)$ be a solution of $\partial_{m} y=A y$. Then,

- if A admits a nonzero eigenvalue, then y is an entire function of order ρ and type upper bounded by $\sigma:=\max \left\{|\lambda|^{\rho}: \lambda \in \operatorname{spec}(A)\right\}$, or an entire function of order 0 .
- if 0 is the only eigenvalue of A, then y is a polynomial. Therefore, its order is zero.

A result on the radial growth of the solution in the case of a diagonalizable matrix A has also been achieved [11].
[11] A.L., Entire solutions of linear systems of moment differential equations and related asymptotic growth at infinity. Differ. Equ. Dyn. Syst. (2022)

Asymptotic study of the solution

Theorem

Let \mathbb{M} be a strongly regular sequence which admits a nonzero proximate order, say $\rho(t) \rightarrow \rho>0$, for $t \rightarrow \infty$. Let $y=y(z)$ be a solution of $\partial_{m} y=A y$. Then,

- if A admits a nonzero eigenvalue, then y is an entire function of order ρ and type upper bounded by $\sigma:=\max \left\{|\lambda|^{\rho}: \lambda \in \operatorname{spec}(A)\right\}$, or an entire function of order 0 .
- if 0 is the only eigenvalue of A, then y is a polynomial. Therefore, its order is zero.

A result on the radial growth of the solution in the case of a diagonalizable matrix A has also been achieved [11].
[11] A.L., Entire solutions of linear systems of moment differential equations and related asymptotic growth at infinity. Differ. Equ. Dyn. Syst. (2022)

A general study remains open.

Asymptotic study of the solution

Proposition

Let \mathbb{M} be a strongly regular sequence which admits a nonzero proximate order, say $\rho(t) \rightarrow \rho>0$, for $t \rightarrow \infty$. Let $y=y(z)$ be a solution of $\partial_{m} y=A y$, where A is a diagonalizable matrix. Then,

$$
\left\|y\left(r e^{i \theta}\right)\right\| \leq \frac{C}{r^{\beta}}, \quad r \geq R_{0},
$$

for some $C, \beta, R_{0}>0$, provided that θ belongs to the set

$$
\bigcap_{j=1}^{k}\left\{\theta \in \mathbb{R}: \frac{\omega(\mathbb{M}) \pi}{2}<\theta+\arg \left(\lambda_{j}\right)<2 \pi-\frac{\omega(\mathbb{M}) \pi}{2}\right\}
$$

whenever this set is not empty.

Asymptotic study of the solution

Let the indicator of $f \in \mathcal{O}(\mathbb{C})$ be $h_{f}(\theta)=\lim \sup _{r \rightarrow \infty} \frac{\ln \left|f\left(r^{i \theta}\right)\right|}{r \rho(r)}$.

Proposition

Under the previous assumptions, one has that

$$
h_{y}(\theta) \leq \max \left\{\left|\lambda_{j}\right|^{\rho} h_{E}\left(\theta+\arg \left(\lambda_{j}\right)\right): \lambda_{j} \in \operatorname{spec}(A)\right\} .
$$

Further advances

Further advances

Moment matrix exponential

Further advances

Moment matrix exponential
Given $m=(m(p))_{p \geq 0}$ as before, one can formally define the m-exponential of the matrix A by

$$
E(A):=E_{m}(A)=\sum_{p \geq 0} \frac{1}{m(p)} A^{p} \in \mathbb{C}[[A]] .
$$

[12] A.L., C. Prisuelos-Arribas, Solutions of linear systems of moment differential equations via generalized matrix exponentials. To appear in J. Differ. Equ. (2023)

Further advances

Moment matrix exponential

Given $m=(m(p))_{p \geq 0}$ as before, one can formally define the m-exponential of the matrix A by

$$
E(A):=E_{m}(A)=\sum_{p \geq 0} \frac{1}{m(p)} A^{p} \in \mathbb{C}[[A]] .
$$

[12] A.L., C. Prisuelos-Arribas, Solutions of linear systems of moment differential equations via generalized

 matrix exponentials. To appear in J. Differ. Equ. (2023)It holds that

- If $C \in \mathbb{C}^{n \times n}$ is invertible, and $A=C B C^{-1}$, then $E(A)=C E(B) C^{-1}$.
- $E(A+B) \neq E(A) E(B)$, in general. It is also false when A and B commute.
- $E\left(\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right)=\operatorname{diag}\left(E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$.
- $\partial_{m} E(A z)=A E(A z)$.

Further advances

If

$$
\lim _{\inf _{p \rightarrow \infty}}(m(p))^{1 / p}=+\infty
$$

holds, then $E(A z)$ defines an entire function (with values in the Banach space $\mathbb{C}^{n \times n}$).

Further advances

If

$$
\lim _{p \rightarrow \infty} \inf _{p \rightarrow \infty}(m(p))^{1 / p}=+\infty
$$

holds, then $E(A z)$ defines an entire function (with values in the Banach space $\left.\mathbb{C}^{n \times n}\right)$. Also, $\partial_{m} E(A z)$ determines an entire function.

Further advances

If

$$
\lim _{\inf _{p \rightarrow \infty}}(m(p))^{1 / p}=+\infty
$$

holds, then $E(A z)$ defines an entire function (with values in the Banach space $\left.\mathbb{C}^{n \times n}\right)$. Also, $\partial_{m} E(A z)$ determines an entire function.

This is a natural assumption as any (IC) sequence with

$$
\sup _{p \geq 1} m_{p}^{1 / p}<\infty
$$

determines a class of ultradifferentiable functions which is contained in the class of analytic functions.

Further advances

Theorem

Let $A \in \mathbb{C}^{n \times n}$. The general solution of $\partial_{m} y=A y$ is

$$
y(z)=E(A z) c,
$$

where c is an n-dimensional constant column vector.

Further advances

Theorem

Let $A \in \mathbb{C}^{n \times n}$. The general solution of $\partial_{m} y=A y$ is

$$
y(z)=E(A z) c,
$$

where c is an n-dimensional constant column vector.

As a consequence, given any fundamental matrix $X(z) \in(\mathcal{O}(\mathbb{C}))^{n \times n}$ associated to $\partial_{m} y=A y$, then

$$
E(A z)=X(z) X(0)^{-1}
$$

