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Introduction and Motivation

Let’s consider the functional equation

Q(f (z)) = g(z), (1)

where f (z), g(z) are entire functions and Q(z) is a non-constant polynomial.

Question 1

Given that g(z) is periodic function of period c , what can be said about the

solutions f (z) of (1)?

Q(f (z + c)) = Q(f (z)).
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Introduction and Motivation

In 1965, Alfréd and Catherine Rényi gave an answer to this question.

Theorem (Rényi & Rényi, 1965)

Let Q(z) be an non-constant polynomial and f (z) be an entire function. If

Q(f (z)) is a periodic function, then f (z) must be periodic.

A. Rényi and C. Rényi, Some remarks on periodic entire functions. J. Anal.

Math. 14(1) (1965), 303–310.
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Introduction and Motivation

Consider now the differential equation

f (z)f ′′(z) = − sin2(z). (2)

Theorem (Titchmarsh, 1939)

The differential equation (2) has no real entire solutions of finite order other than

f (z) = ± sin(z).

Titchmarsh, E. C., The Theory of Functions, second edition. Oxford

University Press, Oxford, 1939.

Theorem (Li, Lü, Yang, 2019)

The differential equation (2) has no entire solutions other than f (z) = ± sin(z).
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Introduction and Motivation

f (z)f ′′(z) = − sin2(z) =⇒ f (z) = ± sin(z).

Yang’s Conjecture

Let f (z) be a transcendental entire function and k be a positive integer. If

f (z)f (k)(z) is a periodic function, then f (z) is also a periodic function.

Remark
Obviously, Yang’s Conjecture is also related to the difference equation

f (z)f (k)(z) = f (z + c)f (k)(z + c),
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Phenomenon of periodicity

Example

The periodic function f (z) = ez/4 + e−z/4 satisfies the differential equation

f (z)4 − 64f (z)f ′′(z) + 2 = ez + e−z .

Question 2

Can we replace the polynomial Q(z) in Rényi & Rényi’s results and f (z)f (k)(z) in

Yang’s conjecture with a general differential polynomial

P(z , f ) =
l∑

j=1

aj(z)f n0j (f ′)n1j . . . (f (k))n1j ?
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Too good to be true

Example

(1) The function f (z) = exp(e2πiz − z) is not periodic whereas the polynomial

P(z , f ) := e2z f (z)2 + ez f (z)

is periodic.

(2) The function f (z) = zez is not periodic whereas the differential polynomial

P(z , f ) := (f ′(z))2 − f (z)f ′′(z) = e2z

is periodic.
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Let’s Revise the Question

Therefore, the natural way to deal with the aforementioned question is to consider

the following problem, instead.

Problem

Under what conditions the periodicity of a differential polynomial P(z , f ) implies

that of f (z)?
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Nevanlinna’s theory

For every r ≥ 0, let n(r , f ) be the number of poles, counting multiplicity, of f

in the disc |z | ≤ r . Then define the integrated counting function by

N(r , f ) =

∫ r

0

(n(t, f )− n(0, f ))
dt

t
+ n(0, f ) log r .

Similarly,

N(r , 1/f ) =

∫ r

0

(n(t, 1/f )− n(0, 1/f ))
dt

t
+ n(0, 1/f ) log r

where n(r , 1/f ) is the number of zeros, counting multiplicity, of f in the disc

|z | ≤ r .
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Nevanlinna’s theory

Let log+ x = max{log x , 0}. Then, the proximity function is defined by

m(r , f ) =
1

2π

∫ 2π

0

log+
∣∣f (re iθ)∣∣ dθ.

Finally, define the Nevanlinna characteristic function by

T (r , f ) = m(r , f ) + N(r , f ).

We say that a(z) is small function of f if T (r , a) = S(r , f ), where

S(r , f ) = o(T (r , f )), r →∞

outside of a possible exceptional set of finite linear measure.
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Nevanlinna’s theory

First Main Theorem of Nevanlinna

For an arbitrary meromorphic function f (z) and for an arbitrary a ∈ C,

T

(
r ,

1

f − a

)
= T (r , f ) + O(1).

Second Main Theorem of Nevanlinna

Let f (z) be a non-constant meromorphic function, let q ≥ 2, and let a1, . . . , aq be

distinct complex constants. Then

(q − 1)T (r , f ) ≤ N(r , f ) +

q∑
k=1

N

(
r ,

1

f − ak

)
+ S(r , f ).
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Nevanlinna’s theory

The order and the hyper-order of a meromorphic function f (z) are defined,

respectively, by

ρ(f ) = lim sup
r→∞

logT (r , f )

log r
, ρ2(f ) = lim sup

r→∞

log logT (r , f )

log r
,

The convergence exponent of a-points of f is defined as

λ(f − a) = lim sup
r→∞

logN
(
r , 1

f−a

)
log r

.

If ρ2(f ) < 1, then

T (r , f (z + c)) = T (r , f (z)) + S(r , f ),
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Some Previous Results

P(z , f ) = (f n(z))(k)

Theorem (Wang-Hu & Liu, 2019)

Let f (z) be a transcendental entire function and k be a positive integer. If

(f n(z))(k) is a periodic function, then f (z) is also a periodic function.

P(z , f ) = (Q(f ))(k), where Q(z) is a polynomial

Theorem (Wei, Liu & Liu, 2020)

Let f (z) be a transcendental entire function and k be a positive integer. If

(Q(f (z)))(k) is a periodic function and n ≥ 2, then f is also a periodic function.
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Some previous results

P(z , f ) = f n + L(z , f ), where L(z , f ) is a linear differential polynomial

Let

L(z , f ) = a1f
′(z) + · · ·+ ak f

(k)(z),

where a1, · · · , ak are constants.

Theorem (Lü & Zhang, 2020)

Let f (z) be a transcendental entire function. If f (z)n + L(z , f ) is a periodic

function with period c , and if one of the following conditions holds

(1) n = 2 or n ≥ 4,

(2) n = 3 and ρ2(f ) < 1,

then f (z) is periodic of period c or nc.
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Some previous results

P(z , f ) = f nf (k)

Picard exceptional value

We say a ∈ C is a Picard exceptional value of the entire function f (z) if the

f (z)− a doesn’t have zeros.

Theorem (Liu et al, 2019; Latreuch & Zemirni, 2022)

Let f (z) be a transcendental entire function and n, k be positive integers.

Suppose that f (z)nf (k)(z) is a periodic function with period c , and one of the

following holds:

(i) f (z) has the value 0 as a Picard exceptional value, and ρ2(f ) <∞.

(ii) f (z) has a nonzero Picard exceptional value.

Then f (z) is periodic of period c or (n + 1) c.
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Some Previous Results

Take

f (z) = (ez − 1)ee
z

+ d

λ(f − d) = λ(ez − 1) = 1 < ρ(f ) =∞.

Theorem (Lü & Zhang, 2020)

Let f (z) be a transcendental entire function with ρ2(f ) < 1 and n, k be positive

integers. If there is a constant d such that

λ(f − d) < ρ(f ) ≤ ∞

and f (z)nf (k)(z) is a periodic function, then f (z) is a periodic function as well.
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P(z , f ) is a differential monomial

A differential monomial M(z , f ) is defined by

M(z , f ) = f (z)λ0 (f ′(z))
λ1 · · ·

(
f (n)(z)

)λn

,

where λ0, . . . , λn are non-negative integers.

The quantities

γM := λ0 + · · ·+ λn and ΓM := λ1 + 2λ2 + · · ·+ nλn

are called the degree and the weight of M(z , f ), respectively.
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P(z , f ) is a differential monomial

Theorem (Zemirni, Laine & Latreuch, 2023)

Let f (z) be a transcendental entire function with λ(f ) < ρ(f ) ≤ ∞. If M(z , f ) is

a periodic function with period c , then the following holds:

1 If ρ2(f ) < 1, then f (z) = eaz+b, where a, b ∈ C \ {0} and eγMac = 1.

2 If 1 ≤ ρ2(f ) <∞ and λ(f ) < ρ2(f ), then f (z) is c-periodic.

Theorem (Zemirni, Laine & Latreuch, 2023)

Let f (z) be a transcendental entire function, and suppose there exists a constant

d 6= 0 such that λ(f − d) < ρ(f ) ≤ ∞. If M(z , f ) is a periodic function with

period c and λ0 > 0, then f (z) is c-periodic.
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Improving Rényi’s result once more

Let

Q(f ) =
l∑

s=1

ανs (z)f (z)νs , l ≥ 2, ν1 < · · · < νl ,

where ανs (z) are non-vanishing small functions.

Theorem

Let f (z) be a transcendental entire function with N(r , 1/f ) = S(r , f ). If Q(f ) is a

periodic function of period c , then

1 The terms ανs (z)f (z)νs are periodic of period c .

2 For any distinct m, n ∈ {1, . . . , l} for which νmνn > 0, the functions

Fm,n(z) :=
ανm(z)νn

ανn(z)νm

are periodic of period c .
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Improving Rényi’s result once more

Proof.

Since Q(f ) is periodic of period c , it follows that

l∑
s=1

ανs (z + c)f νsc =
l∑

s=1

ανs (z)f νs , fc := f (z + c). (3)

T (r , fc) ∼ T (r , f ) as r →∞.

Dividing both sides of (3) by ανm(z)f (z)νm yields

l∑
s=1

ανs (z + c)

ανm(z)

f νsc

f νm
−

l∑
s=1
s 6=m

ανs (z)

ανm(z)
f νs−νm = 1.

Using Nevanlinna’s reasoning

ανm(z + c)

ανm(z)

(
fc
f

)νm
≡ 1, m ∈ {1, . . . , l}.
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Improving Rényi’s result once more

Corollary

Let f (z) be a transcendental entire function with N(r , 1/f ) = S(r , f ). If

Q(f ) =
∑l

s=1 ανs (z)f (z)νs is a periodic function of period c , then the statements

below are equivalent:

(i) One coefficient ανs (z) with νs > 0 is c-periodic;

(ii) All the coefficients are c-periodic;

(iii) f (z) is c-periodic.
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Another Key Lemma

Lemma

Let v(z) 6≡ 0 be a meromorphic function of order ρ(v) <∞, and g(z) be a

non-constant entire function. If F (z) = v(z)eg(z) is a periodic function of

period τ , then either

ρ(g) ≥ 1, or

g(z) is polynomial with
ρ(v) ≥ deg(g), if deg(g) ≥ 2;

v(z + τ)/v(z) is constant, if deg(g) = 1.
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Preparing for the proofs

Let f (z) be a transcendental entire function with λ(f − d) < ρ(f ).

Then,

f (z) = π(z)eh(z) + d

where h(z) is an entire function and π(z) is the canonical product of zeros

of f (z)− d with ρ(π) < ρ(f ).

Notice that(
π(z)eh(z)

)(k)

=
(
π(z)h′(z)k +Qk(π, h′)

)
eh(z), k ∈ N,

where Qk(π, h′) is a differential polynomial in π(z) and h′(z) with constant

coefficients.
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Preparing for the proofs

Substituting f (z) = π(z)eh(z) + d into M(z , f ) yields

M(z , f ) = H(z)

(
1 +

d

π(z)
e−h(z)

)λ0

eγMh(z).

H(z) = π(z)λ0

n∏
k=1

Lk(π, h′)λk

and Lk(π, h′) = π(z) h′(z)k +Qk(π, h′).
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Case d = 0

Here we have d = 0, and therefore M(z , f ) = H(z)eγMh(z),

If ρ2(f ) < 1, then h(z) = az + b, ρ(π) < 1 and

H(z) = π(z)λ0

n∏
k=1

Lk(π, h′)λk ≡ Cst

Notice that

Lk(π, h′) := π(k)(z) + ck−1π
(k−1)(z) + . . .+ c1π(z),

and ρ(Lk) ≤ ρ(π) < 1.

If now λ0 > 0, then π(z) is a constant. Otherwise,

π(k+1)(z) + ck−1π
(k)(z) + . . .+ c1π

′(z) = 0.
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Case d = 0

Suppose now that 1 ≤ ρ2(f ) <∞ and λ(f ) < ρ2(f ). Then ρ(π) < ∞, and

hence ρ(H) <∞.

eγMq(z) =
H(z)

H(z + c)
, q(z) = h(z + c)− h(z). (4)

q(z) is polynomial. If deg(q) = t ≥ 1, then

πc(z)γM = e−γMq(z)π(z)γM ,

which implies that fc(z)γM = f (z)γM . Hence, f (z) is periodic of period c or

γMc .

If deg(q) = t = 0 we apply he same arguments as for the case t ≥ 1.
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Case d 6= 0

Since λ0 > 0, it follows that

M(z , f ) = H(z)
λ0∑
i=0

(
λ0

i

)(
d

π(z)

)i

e(γM−i)h(z). (5)

T (r , π) = S(r , eh) and consequently T (r ,H) = S(r , eh).

Thus, M(z , f ) can be regarded as a polynomial in eh(z) with small

coefficients. Hence

H(z + c)eγMhc (z) = H(z)eγMh(z)

and
H(z + c)

πc(z)
e(γM−1)hc (z) =

H(z)

π(z)
e(γM−1)h(z).

we get that π(z)eh(z) is periodic of period c . Thus f (z) is c-periodic.
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P(z , f ) is a differential polynomial with at least two terms

P(z , f ) =
m∑
j=1

αjMj(z , f ).

Mj(z , f ) = f (z)λ0j (f ′(z))
λ1j · · ·

(
f (n)(z)

)λnj

, λ0j , . . . , λnj ∈ N.

The total degree γP and total weight ΓP of P(z , f ) are defined by

γP = max
1≤j≤m

γj and ΓP = max
1≤j≤m

Γj .
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More Terms, more Challenges

Example

The function f (z) = ez
2

is not periodic and

P(z , f ) = f ′(z)2f (z)− f ′′(z)f (z)2 + 2f (z)3 ≡ 0.

Example

The function f (z) = zez + d , where d is a constant, is not periodic whereas the

differential polynomial

P(z , f ) := (f ′(z))2 − f (z)f ′′(z) + df (z) = (ez − d)2

is periodic.
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New Notations

Define the sequence of positive integers δ1, δ2, . . . , δl as follows:

δ1 = min
j
γj ,

δ2 = min
j
{γj : γj 6= δ1},

...

δl = min
j
{γj : γj 6= δi , i = 1, . . . , l − 1} = γP .

We denote by Λ(δi ) the set that contains the indices of the terms in

P(z , f ) =
m∑
j=1

αjMj(z , f ).

with the highest weights among those of degree δi .

ΛP =

δi :
∑

k∈Λ(δi )

αk 6= 0

 ⊂ {δ1, δ2, . . . , δl}.
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New notations

Example

Let P(z , f ) =
∑n

i=0 f
(i)(z).

That is,

P(z , f ) = f (z)︸︷︷︸
(γ=1,Γ=0)

+ f ′(z)︸ ︷︷ ︸
(γ=1,Γ=1)

+ f ′′(z)︸ ︷︷ ︸
(γ=1,Γ=2)

+ . . .+ f (n)(z)︸ ︷︷ ︸
(γ=1,Γ=n)

.

γ1 = γP = δ1 = 1 and Γi = i =⇒ Λ(δ1) = {n} =⇒
∑

k∈Λ(δ1)

αk = 1.

ΛP = {δ1} = {1}.
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(γ=1,Γ=2)

+ . . .+ f (n)(z)︸ ︷︷ ︸
(γ=1,Γ=n)

.

γ1 = γP = δ1 = 1 and Γi = i =⇒ Λ(δ1) = {n} =⇒
∑

k∈Λ(δ1)

αk = 1.

ΛP = {δ1} = {1}.

Z. Latreuch (NHSM) Periodicity of Entire Functions August 28, 2023 CDDE II, Bedlewo 31 / 37



New notations

Example

Let P(z , f ) =
∑n

i=0 f
(i)(z).That is,

P(z , f ) = f (z)︸︷︷︸
(γ=1,Γ=0)

+ f ′(z)︸ ︷︷ ︸
(γ=1,Γ=1)

+ f ′′(z)︸ ︷︷ ︸
(γ=1,Γ=2)

+ . . .+ f (n)(z)︸ ︷︷ ︸
(γ=1,Γ=n)

.

γ1 = γP = δ1 = 1 and Γi = i =⇒ Λ(δ1) = {n} =⇒
∑

k∈Λ(δ1)

αk = 1.

ΛP = {δ1} = {1}.

Z. Latreuch (NHSM) Periodicity of Entire Functions August 28, 2023 CDDE II, Bedlewo 31 / 37



New notations

Example

Let P(z , f ) =
∑n

i=0 f
(i)(z).That is,

P(z , f ) = f (z)︸︷︷︸
(γ=1,Γ=0)

+ f ′(z)︸ ︷︷ ︸
(γ=1,Γ=1)

+ f ′′(z)︸ ︷︷ ︸
(γ=1,Γ=2)

+ . . .+ f (n)(z)︸ ︷︷ ︸
(γ=1,Γ=n)

.

γ1 = γP = δ1 = 1 and Γi = i =⇒ Λ(δ1) = {n} =⇒
∑

k∈Λ(δ1)

αk = 1.

ΛP = {δ1} = {1}.

Z. Latreuch (NHSM) Periodicity of Entire Functions August 28, 2023 CDDE II, Bedlewo 31 / 37



New notations

Example

Consider now

P(z , f ) = f ′′(z)f (z)2︸ ︷︷ ︸
(γ=3,Γ=2)

− 2(f ′(z))2f (z)︸ ︷︷ ︸
(γ=3,Γ=2)

− f ′(z)f (z)2︸ ︷︷ ︸
(γ=3,Γ=1)

+f ′′(z)f (z)︸ ︷︷ ︸
(γ=2,Γ=2)

− (f ′(z))2︸ ︷︷ ︸
(γ=2,Γ=2)

+ f ′′(z)︸ ︷︷ ︸
(γ=1,Γ=2)

+ f ′(z)︸ ︷︷ ︸
(γ=1,Γ=1)

,

where δ1 = 1, δ2 = 2 and δ3 = γP = 3.∑
k∈Λ(1)

αk = 1,
∑

k∈Λ(2)

αk = 1− 1 = 0 and
∑

k∈Λ(3)

αk = 1− 2 = −1.

Thus, we have

ΛP = {1, 3}.
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Why ΛP?

The function f (z) = zez + 1 is not periodic whereas the differential polynomial

P(z , f ) = (f ′(z))2 − f (z)f ′′(z) + f (z) = (ez − 1)2

is periodic.

Note that

P(z , f ) = (f ′(z))2︸ ︷︷ ︸
(γ=2,Γ=2)

− f (z)f ′′(z)︸ ︷︷ ︸
(γ=2,Γ=2)

+ f (z)︸︷︷︸
(γ=1,Γ=0)

,

where δ1 = 1 and δ2 = γP = 2.

γP 6∈ ΛP = {δ1}
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Our results

P(z , f ) =
m∑
j=1

αj f (z)λ0j (f ′(z))
λ1j · · ·

(
f (n)(z)

)λnj

.

Theorem (Zemirni, Laine & Latreuch, 2023)

Let f (z) be a transcendental entire function with ρ2(f ) < 1, and suppose that

there exists d ∈ C such that λ(f − d) < ρ(f ) ≤ ∞. Suppose that P(z , f ) 6≡ 0 is

periodic with period c , λ0j > 0 for every j ∈ {1, . . . ,m} and one of the following

holds

(i) d = 0,

(ii) d 6= 0 and λ01 = · · · = λ0m = λ > 0,

(iii) d 6= 0 and γP ∈ ΛP .

Then f (z) is c-periodic.
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Our Results

Corollary

Let f (z) be a transcendental entire function with a finite Picard exceptional value

d and ρ2(f ) < 1. Suppose that P(z , f ) 6≡ 0 is a periodic function with period c .

Then f (z) is c-periodic.
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Our Results

Theorem (Zemirni, Laine & Latreuch, 2023)

Let f (z) be a transcendental entire function with 1 ≤ ρ2(f ) <∞, and suppose

that there exists d ∈ C such that λ(f − d) < ρ2(f ). Suppose that P(z , f ) is a

periodic function with period c , ΛP 6= ∅ and one of the following holds:

(i) d = 0;

(ii) d 6= 0 and γP ∈ ΛP .

Then f (z) is c-periodic.

Remark

The function f (z) = esin z satisfies λ(f ) = 0 < 1 = ρ2(f ) and

P(z , f ) = (f ′(z))2 − f ′′(z)f (z) = e2 sin z sin z .

Here, P(z , f ) and f (z) are both periodic while ΛP = ∅.
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Thank You & Good Night!
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