On the Periodicity of Entire Functions and their

Differential Polynomials

Zinelaabidine LATREUCH

Jointly with: M-A. Zemirni and I. Laine

National Higher School of Mathematics (Algeria)

August 28, 2023
CDDE II, Bedlewo

Introduction and Motivation

Let's consider the functional equation

$$
\begin{equation*}
Q(f(z))=g(z) \tag{1}
\end{equation*}
$$

where $f(z), g(z)$ are entire functions and $Q(z)$ is a non-constant polynomial.

Introduction and Motivation

Let's consider the functional equation

$$
\begin{equation*}
Q(f(z))=g(z), \tag{1}
\end{equation*}
$$

where $f(z), g(z)$ are entire functions and $Q(z)$ is a non-constant polynomial.

Question 1

Given that $g(z)$ is periodic function of period c, what can be said about the solutions $f(z)$ of (1)?

Introduction and Motivation

Let's consider the functional equation

$$
\begin{equation*}
Q(f(z))=g(z), \tag{1}
\end{equation*}
$$

where $f(z), g(z)$ are entire functions and $Q(z)$ is a non-constant polynomial.

Question 1

Given that $g(z)$ is periodic function of period c, what can be said about the solutions $f(z)$ of (1)?

$$
Q(f(z+c))=Q(f(z))
$$

Introduction and Motivation

In 1965, Alfréd and Catherine Rényi gave an answer to this question.

Theorem (Rényi \& Rényi, 1965)

Let $Q(z)$ be an non-constant polynomial and $f(z)$ be an entire function. If $Q(f(z))$ is a periodic function, then $f(z)$ must be periodic.
R. Rényi and C. Rényi, Some remarks on periodic entire functions. J. Anal. Math. 14(1) (1965), 303-310.

Introduction and Motivation

Consider now the differential equation

$$
\begin{equation*}
f(z) f^{\prime \prime}(z)=-\sin ^{2}(z) \tag{2}
\end{equation*}
$$

Introduction and Motivation

Consider now the differential equation

$$
\begin{equation*}
f(z) f^{\prime \prime}(z)=-\sin ^{2}(z) \tag{2}
\end{equation*}
$$

Theorem (Titchmarsh, 1939)

The differential equation (2) has no real entire solutions of finite order other than $f(z)= \pm \sin (z)$.

国 Titchmarsh, E. C., The Theory of Functions, second edition. Oxford University Press, Oxford, 1939.

Introduction and Motivation

Consider now the differential equation

$$
\begin{equation*}
f(z) f^{\prime \prime}(z)=-\sin ^{2}(z) \tag{2}
\end{equation*}
$$

Theorem (Titchmarsh, 1939)

The differential equation (2) has no real entire solutions of finite order other than $f(z)= \pm \sin (z)$.

国 Titchmarsh, E. C., The Theory of Functions, second edition. Oxford University Press, Oxford, 1939.

Theorem (Li, Lü, Yang, 2019)

The differential equation (2) has no entire solutions other than $f(z)= \pm \sin (z)$.

Introduction and Motivation

$$
f(z) f^{\prime \prime}(z)=-\sin ^{2}(z) \Longrightarrow f(z)= \pm \sin (z)
$$

Introduction and Motivation

$$
f(z) f^{\prime \prime}(z)=-\sin ^{2}(z) \Longrightarrow f(z)= \pm \sin (z)
$$

Yang's Conjecture

Let $f(z)$ be a transcendental entire function and k be a positive integer. If $f(z) f^{(k)}(z)$ is a periodic function, then $f(z)$ is also a periodic function.

Introduction and Motivation

$$
f(z) f^{\prime \prime}(z)=-\sin ^{2}(z) \Longrightarrow f(z)= \pm \sin (z)
$$

Yang's Conjecture

Let $f(z)$ be a transcendental entire function and k be a positive integer. If $f(z) f^{(k)}(z)$ is a periodic function, then $f(z)$ is also a periodic function.

Remark

Obviously, Yang's Conjecture is also related to the difference equation

$$
f(z) f^{(k)}(z)=f(z+c) f^{(k)}(z+c)
$$

Phenomenon of periodicity

Example

The periodic function $f(z)=e^{z / 4}+e^{-z / 4}$ satisfies the differential equation

$$
f(z)^{4}-64 f(z) f^{\prime \prime}(z)+2=e^{z}+e^{-z} .
$$

Phenomenon of periodicity

Example

The periodic function $f(z)=e^{z / 4}+e^{-z / 4}$ satisfies the differential equation

$$
f(z)^{4}-64 f(z) f^{\prime \prime}(z)+2=e^{z}+e^{-z} .
$$

Question 2

Can we replace the polynomial $Q(z)$ in Rényi \& Rényi's results and $f(z) f^{(k)}(z)$ in Yang's conjecture with a general differential polynomial

$$
P(z, f)=\sum_{j=1}^{l} a_{j}(z) f^{n_{0 j}}\left(f^{\prime}\right)^{n_{1 j}} \ldots\left(f^{(k)}\right)^{n_{1 j}} ?
$$

Too good to be true

Example

(1) The function $f(z)=\exp \left(e^{2 \pi i z}-z\right)$ is not periodic whereas the polynomial

$$
P(z, f):=e^{2 z} f(z)^{2}+e^{z} f(z)
$$

is periodic.

Too good to be true

Example

(1) The function $f(z)=\exp \left(e^{2 \pi i z}-z\right)$ is not periodic whereas the polynomial

$$
P(z, f):=e^{2 z} f(z)^{2}+e^{z} f(z)
$$

is periodic.
(2) The function $f(z)=z e^{z}$ is not periodic whereas the differential polynomial

$$
P(z, f):=\left(f^{\prime}(z)\right)^{2}-f(z) f^{\prime \prime}(z)=e^{2 z}
$$

is periodic.

Let's Revise the Question

Therefore, the natural way to deal with the aforementioned question is to consider the following problem, instead.

Problem

Under what conditions the periodicity of a differential polynomial $P(z, f)$ implies that of $f(z)$?

Nevanlinna's theory

- For every $r \geq 0$, let $n(r, f)$ be the number of poles, counting multiplicity, of f in the disc $|z| \leq r$. Then define the integrated counting function by

Nevanlinna's theory

- For every $r \geq 0$, let $n(r, f)$ be the number of poles, counting multiplicity, of f in the disc $|z| \leq r$. Then define the integrated counting function by

$$
N(r, f)=\int_{0}^{r}(n(t, f)-n(0, f)) \frac{d t}{t}+n(0, f) \log r .
$$

Nevanlinna's theory

- For every $r \geq 0$, let $n(r, f)$ be the number of poles, counting multiplicity, of f in the disc $|z| \leq r$. Then define the integrated counting function by

$$
N(r, f)=\int_{0}^{r}(n(t, f)-n(0, f)) \frac{d t}{t}+n(0, f) \log r .
$$

- Similarly,

$$
N(r, 1 / f)=\int_{0}^{r}(n(t, 1 / f)-n(0,1 / f)) \frac{d t}{t}+n(0,1 / f) \log r
$$

where $n(r, 1 / f)$ is the number of zeros, counting multiplicity, of f in the disc $|z| \leq r$.

Nevanlinna's theory

- Let $\log ^{+} x=\max \{\log x, 0\}$. Then, the proximity function is defined by

$$
m(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

Nevanlinna's theory

- Let $\log ^{+} x=\max \{\log x, 0\}$. Then, the proximity function is defined by

$$
m(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

- Finally, define the Nevanlinna characteristic function by

Nevanlinna's theory

- Let $\log ^{+} x=\max \{\log x, 0\}$. Then, the proximity function is defined by

$$
m(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

- Finally, define the Nevanlinna characteristic function by

$$
T(r, f)=m(r, f)+N(r, f) .
$$

Nevanlinna's theory

- Let $\log ^{+} x=\max \{\log x, 0\}$. Then, the proximity function is defined by

$$
m(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

- Finally, define the Nevanlinna characteristic function by

$$
T(r, f)=m(r, f)+N(r, f) .
$$

- We say that $a(z)$ is small function of f if $T(r, a)=S(r, f)$, where

$$
S(r, f)=o(T(r, f)), \quad r \rightarrow \infty
$$

outside of a possible exceptional set of finite linear measure.

Nevanlinna's theory

First Main Theorem of Nevanlinna

For an arbitrary meromorphic function $f(z)$ and for an arbitrary $a \in \mathbb{C}$,

$$
T\left(r, \frac{1}{f-a}\right)=T(r, f)+O(1) .
$$

Nevanlinna's theory

First Main Theorem of Nevanlinna

For an arbitrary meromorphic function $f(z)$ and for an arbitrary $a \in \mathbb{C}$,

$$
T\left(r, \frac{1}{f-a}\right)=T(r, f)+O(1)
$$

Second Main Theorem of Nevanlinna

Let $f(z)$ be a non-constant meromorphic function, let $q \geq 2$, and let a_{1}, \ldots, a_{q} be distinct complex constants. Then

$$
(q-1) T(r, f) \leq N(r, f)+\sum_{k=1}^{q} N\left(r, \frac{1}{f-a_{k}}\right)+S(r, f) .
$$

Nevanlinna's theory

- The order and the hyper-order of a meromorphic function $f(z)$ are defined, respectively, by

$$
\rho(f)=\underset{r \rightarrow \infty}{\limsup } \frac{\log T(r, f)}{\log r}, \quad \rho_{2}(f)=\limsup _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r},
$$

Nevanlinna's theory

- The order and the hyper-order of a meromorphic function $f(z)$ are defined, respectively, by

$$
\rho(f)=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}, \quad \rho_{2}(f)=\limsup _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r},
$$

- The convergence exponent of a-points of f is defined as

$$
\lambda(f-a)=\limsup _{r \rightarrow \infty} \frac{\log N\left(r, \frac{1}{f-a}\right)}{\log r} .
$$

Nevanlinna's theory

- The order and the hyper-order of a meromorphic function $f(z)$ are defined, respectively, by

$$
\rho(f)=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}, \quad \rho_{2}(f)=\limsup _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r},
$$

- The convergence exponent of a-points of f is defined as

$$
\lambda(f-a)=\limsup _{r \rightarrow \infty} \frac{\log N\left(r, \frac{1}{f-\mathrm{a}}\right)}{\log r} .
$$

- If $\rho_{2}(f)<1$, then

$$
T(r, f(z+c))=T(r, f(z))+S(r, f),
$$

Some Previous Results

- $P(z, f)=\left(f^{n}(z)\right)^{(k)}$

Theorem (Wang-Hu \& Liu, 2019)

Let $f(z)$ be a transcendental entire function and k be a positive integer. If $\left(f^{n}(z)\right)^{(k)}$ is a periodic function, then $f(z)$ is also a periodic function.

Some Previous Results

- $P(z, f)=\left(f^{n}(z)\right)^{(k)}$

Theorem (Wang-Hu \& Liu, 2019)

Let $f(z)$ be a transcendental entire function and k be a positive integer. If $\left(f^{n}(z)\right)^{(k)}$ is a periodic function, then $f(z)$ is also a periodic function.

- $P(z, f)=(Q(f))^{(k)}$, where $Q(z)$ is a polynomial

Theorem (Wei, Liu \& Liu, 2020)

Let $f(z)$ be a transcendental entire function and k be a positive integer. If $(Q(f(z)))^{(k)}$ is a periodic function and $n \geq 2$, then f is also a periodic function.

Some previous results

- $P(z, f)=f^{n}+L(z, f)$, where $L(z, f)$ is a linear differential polynomial Let

$$
L(z, f)=a_{1} f^{\prime}(z)+\cdots+a_{k} f^{(k)}(z)
$$

where a_{1}, \cdots, a_{k} are constants.

Theorem (Lü \& Zhang, 2020)

Let $f(z)$ be a transcendental entire function. If $f(z)^{n}+L(z, f)$ is a periodic function with period c, and if one of the following conditions holds
(1) $n=2$ or $n \geq 4$,
(2) $n=3$ and $\rho_{2}(f)<1$,
then $f(z)$ is periodic of period c or nc.

Some previous results

- $P(z, f)=f^{n} f^{(k)}$

Picard exceptional value

We say $a \in \mathbb{C}$ is a Picard exceptional value of the entire function $f(z)$ if the $f(z)$ - a doesn't have zeros.

Some previous results

- $P(z, f)=f^{n} f^{(k)}$

Picard exceptional value

We say $a \in \mathbb{C}$ is a Picard exceptional value of the entire function $f(z)$ if the $f(z)$ - a doesn't have zeros.

Theorem (Liu et al, 2019; Latreuch \& Zemirni, 2022)

Let $f(z)$ be a transcendental entire function and n, k be positive integers. Suppose that $f(z)^{n} f^{(k)}(z)$ is a periodic function with period c, and one of the following holds:
(i) $f(z)$ has the value 0 as a Picard exceptional value, and $\rho_{2}(f)<\infty$.
(ii) $f(z)$ has a nonzero Picard exceptional value.

Then $f(z)$ is periodic of period c or $(n+1) c$.

Some Previous Results

Take

$$
f(z)=\left(e^{z}-1\right) e^{e^{2}}+d
$$

Some Previous Results

Take

$$
\begin{gathered}
f(z)=\left(e^{z}-1\right) e^{e^{z}}+d \\
\lambda(f-d)=\lambda\left(e^{z}-1\right)=1<\rho(f)=\infty .
\end{gathered}
$$

Some Previous Results

Take

$$
f(z)=\left(e^{z}-1\right) e^{e^{z}}+d
$$

$$
\lambda(f-d)=\lambda\left(e^{z}-1\right)=1<\rho(f)=\infty .
$$

Theorem (Lü \& Zhang, 2020)

Let $f(z)$ be a transcendental entire function with $\rho_{2}(f)<1$ and n, k be positive integers. If there is a constant d such that

$$
\lambda(f-d)<\rho(f) \leq \infty
$$

and $f(z)^{n} f^{(k)}(z)$ is a periodic function, then $f(z)$ is a periodic function as well.

$P(z, f)$ is a differential monomial

A differential monomial $M(z, f)$ is defined by

$$
M(z, f)=f(z)^{\lambda_{0}}\left(f^{\prime}(z)\right)^{\lambda_{1}} \cdots\left(f^{(n)}(z)\right)^{\lambda_{n}}
$$

where $\lambda_{0}, \ldots, \lambda_{n}$ are non-negative integers.

$P(z, f)$ is a differential monomial

A differential monomial $M(z, f)$ is defined by

$$
M(z, f)=f(z)^{\lambda_{0}}\left(f^{\prime}(z)\right)^{\lambda_{1}} \cdots\left(f^{(n)}(z)\right)^{\lambda_{n}}
$$

where $\lambda_{0}, \ldots, \lambda_{n}$ are non-negative integers. The quantities

$$
\gamma_{M}:=\lambda_{0}+\cdots+\lambda_{n} \quad \text { and } \quad \Gamma_{M}:=\lambda_{1}+2 \lambda_{2}+\cdots+n \lambda_{n}
$$

are called the degree and the weight of $M(z, f)$, respectively.

$P(z, f)$ is a differential monomial

Theorem (Zemirni, Laine \& Latreuch, 2023)

Let $f(z)$ be a transcendental entire function with $\lambda(f)<\rho(f) \leq \infty$. If $M(z, f)$ is a periodic function with period c, then the following holds:
(1) If $\rho_{2}(f)<1$, then $f(z)=e^{a z+b}$, where $a, b \in \mathbb{C} \backslash\{0\}$ and $e^{\gamma м a c}=1$.
(3) If $1 \leq \rho_{2}(f)<\infty$ and $\lambda(f)<\rho_{2}(f)$, then $f(z)$ is c-periodic.

$P(z, f)$ is a differential monomial

Theorem (Zemirni, Laine \& Latreuch, 2023)

Let $f(z)$ be a transcendental entire function with $\lambda(f)<\rho(f) \leq \infty$. If $M(z, f)$ is a periodic function with period c, then the following holds:
(1) If $\rho_{2}(f)<1$, then $f(z)=e^{a z+b}$, where $a, b \in \mathbb{C} \backslash\{0\}$ and $e^{\gamma м а с}=1$.
(2) If $1 \leq \rho_{2}(f)<\infty$ and $\lambda(f)<\rho_{2}(f)$, then $f(z)$ is c-periodic.

Theorem (Zemirni, Laine \& Latreuch, 2023)

Let $f(z)$ be a transcendental entire function, and suppose there exists a constant $d \neq 0$ such that $\lambda(f-d)<\rho(f) \leq \infty$. If $M(z, f)$ is a periodic function with period c and $\lambda_{0}>0$, then $f(z)$ is c-periodic.

Improving Rényi's result once more

Let

$$
Q(f)=\sum_{s=1}^{l} \alpha_{\nu_{s}}(z) f(z)^{\nu_{s}}, \quad l \geq 2, \nu_{1}<\cdots<\nu_{l}
$$

where $\alpha_{\nu_{s}}(z)$ are non-vanishing small functions.

Improving Rényi's result once more

Let

$$
Q(f)=\sum_{s=1}^{l} \alpha_{\nu_{s}}(z) f(z)^{\nu_{s}}, \quad l \geq 2, \nu_{1}<\cdots<\nu_{l}
$$

where $\alpha_{\nu_{s}}(z)$ are non-vanishing small functions.

Theorem

Let $f(z)$ be a transcendental entire function with $N(r, 1 / f)=S(r, f)$. If $Q(f)$ is a periodic function of period c, then
(1) The terms $\alpha_{\nu_{s}}(z) f(z)^{\nu_{s}}$ are periodic of period c.

Improving Rényi's result once more

Let

$$
Q(f)=\sum_{s=1}^{l} \alpha_{\nu_{s}}(z) f(z)^{\nu_{s}}, \quad l \geq 2, \nu_{1}<\cdots<\nu_{l}
$$

where $\alpha_{\nu_{s}}(z)$ are non-vanishing small functions.

Theorem

Let $f(z)$ be a transcendental entire function with $N(r, 1 / f)=S(r, f)$. If $Q(f)$ is a periodic function of period c, then
(1) The terms $\alpha_{\nu_{s}}(z) f(z)^{\nu_{s}}$ are periodic of period c.
(2) For any distinct $m, n \in\{1, \ldots, I\}$ for which $\nu_{m} \nu_{n}>0$, the functions

$$
F_{m, n}(z):=\frac{\alpha_{\nu_{m}}(z)^{\nu_{n}}}{\alpha_{\nu_{n}}(z)^{\nu_{m}}}
$$

are periodic of period c.

Improving Rényi's result once more

Proof.

- Since $Q(f)$ is periodic of period c, it follows that

$$
\begin{equation*}
\sum_{s=1}^{1} \alpha_{\nu_{s}}(z+c) f_{c}^{\nu_{s}}=\sum_{s=1}^{1} \alpha_{\nu_{s}}(z) f^{\nu_{s}}, \quad f_{c}:=f(z+c) \tag{3}
\end{equation*}
$$

Improving Rényi's result once more

Proof.

- Since $Q(f)$ is periodic of period c, it follows that

$$
\begin{equation*}
\sum_{s=1}^{1} \alpha_{\nu_{s}}(z+c) f_{c}^{\nu_{s}}=\sum_{s=1}^{1} \alpha_{\nu_{s}}(z) f^{\nu_{s}}, \quad f_{c}:=f(z+c) \tag{3}
\end{equation*}
$$

- $T\left(r, f_{c}\right) \sim T(r, f)$ as $r \rightarrow \infty$.

Improving Rényi's result once more

Proof.

- Since $Q(f)$ is periodic of period c, it follows that

$$
\begin{equation*}
\sum_{s=1}^{1} \alpha_{\nu_{s}}(z+c) f_{c}^{\nu_{s}}=\sum_{s=1}^{1} \alpha_{\nu_{s}}(z) f^{\nu_{s}}, \quad f_{c}:=f(z+c) \tag{3}
\end{equation*}
$$

- $T\left(r, f_{c}\right) \sim T(r, f)$ as $r \rightarrow \infty$.
- Dividing both sides of (3) by $\alpha_{\nu_{m}}(z) f(z)^{\nu_{m}}$ yields

$$
\sum_{s=1}^{1} \frac{\alpha_{\nu_{s}}(z+c)}{\alpha_{\nu_{m}}(z)} \frac{f_{c}^{\nu_{s}}}{f^{\nu_{m}}}-\sum_{\substack{s=1 \\ s \neq m}}^{1} \frac{\alpha_{\nu_{s}}(z)}{\alpha_{\nu_{m}}(z)} f^{\nu_{s}-\nu_{m}}=1 .
$$

Improving Rényi's result once more

Proof.

- Since $Q(f)$ is periodic of period c, it follows that

$$
\begin{equation*}
\sum_{s=1}^{1} \alpha_{\nu_{s}}(z+c) f_{c}^{\nu_{s}}=\sum_{s=1}^{1} \alpha_{\nu_{s}}(z) f^{\nu_{s}}, \quad f_{c}:=f(z+c) \tag{3}
\end{equation*}
$$

- $T\left(r, f_{c}\right) \sim T(r, f)$ as $r \rightarrow \infty$.
- Dividing both sides of (3) by $\alpha_{\nu_{m}}(z) f(z)^{\nu_{m}}$ yields

$$
\sum_{s=1}^{1} \frac{\alpha_{\nu_{s}}(z+c)}{\alpha_{\nu_{m}}(z)} \frac{f_{c}^{\nu_{s}}}{f^{\nu_{m}}}-\sum_{\substack{s=1 \\ s \neq m}}^{1} \frac{\alpha_{\nu_{s}}(z)}{\alpha_{\nu_{m}}(z)} f^{\nu_{s}-\nu_{m}}=1 .
$$

- Using Nevanlinna's reasoning

$$
\frac{\alpha_{\nu_{m}}(z+c)}{\alpha_{\nu_{m}}(z)}\left(\frac{f_{c}}{f}\right)^{\nu_{m}} \equiv 1, \quad m \in\{1, \ldots, l\}
$$

Improving Rényi's result once more

Corollary

Let $f(z)$ be a transcendental entire function with $N(r, 1 / f)=S(r, f)$. If $Q(f)=\sum_{s=1}^{l} \alpha_{\nu_{s}}(z) f(z)^{\nu_{s}}$ is a periodic function of period c, then the statements below are equivalent:
(i) One coefficient $\alpha_{\nu_{s}}(z)$ with $\nu_{s}>0$ is c-periodic;
(ii) All the coefficients are c-periodic;
(iii) $f(z)$ is c-periodic.

Another Key Lemma

Lemma

Let $v(z) \not \equiv 0$ be a meromorphic function of order $\rho(v)<\infty$, and $g(z)$ be a non-constant entire function. If $F(z)=v(z) e^{g(z)}$ is a periodic function of period τ, then either

- $\rho(g) \geq 1$, or

Another Key Lemma

Lemma

Let $v(z) \not \equiv 0$ be a meromorphic function of order $\rho(v)<\infty$, and $g(z)$ be a non-constant entire function. If $F(z)=v(z) e^{g(z)}$ is a periodic function of period τ, then either

- $\rho(g) \geq 1$, or
- $g(z)$ is polynomial with

$$
\begin{cases}\rho(v) \geq \operatorname{deg}(g), & \text { if } \operatorname{deg}(g) \geq 2 \\ v(z+\tau) / v(z) \text { is constant, } & \text { if } \operatorname{deg}(g)=1\end{cases}
$$

Preparing for the proofs

- Let $f(z)$ be a transcendental entire function with $\lambda(f-d)<\rho(f)$.

Preparing for the proofs

- Let $f(z)$ be a transcendental entire function with $\lambda(f-d)<\rho(f)$.
- Then,

$$
f(z)=\pi(z) e^{h(z)}+d
$$

where $h(z)$ is an entire function and $\pi(z)$ is the canonical product of zeros of $f(z)-d$ with $\rho(\pi)<\rho(f)$.

Preparing for the proofs

- Let $f(z)$ be a transcendental entire function with $\lambda(f-d)<\rho(f)$.
- Then,

$$
f(z)=\pi(z) e^{h(z)}+d
$$

where $h(z)$ is an entire function and $\pi(z)$ is the canonical product of zeros of $f(z)-d$ with $\rho(\pi)<\rho(f)$.

- Notice that

$$
\left(\pi(z) e^{h(z)}\right)^{(k)}=\left(\pi(z) h^{\prime}(z)^{k}+\mathcal{Q}_{k}\left(\pi, h^{\prime}\right)\right) e^{h(z)}, \quad k \in \mathbb{N},
$$

where $\mathcal{Q}_{k}\left(\pi, h^{\prime}\right)$ is a differential polynomial in $\pi(z)$ and $h^{\prime}(z)$ with constant coefficients.

Preparing for the proofs

- Substituting $f(z)=\pi(z) e^{h(z)}+d$ into $M(z, f)$ yields

$$
M(z, f)=H(z)\left(1+\frac{d}{\pi(z)} e^{-h(z)}\right)^{\lambda_{0}} e^{\gamma_{M} h(z)} .
$$

Preparing for the proofs

- Substituting $f(z)=\pi(z) e^{h(z)}+d$ into $M(z, f)$ yields

$$
\begin{gathered}
M(z, f)=H(z)\left(1+\frac{d}{\pi(z)} e^{-h(z)}\right)^{\lambda_{0}} e^{\gamma_{M} h(z)} \\
H(z)=\pi(z)^{\lambda_{0}} \prod_{k=1}^{n} \mathcal{L}_{k}\left(\pi, h^{\prime}\right)^{\lambda_{k}}
\end{gathered}
$$

and $\mathcal{L}_{k}\left(\pi, h^{\prime}\right)=\pi(z) h^{\prime}(z)^{k}+\mathcal{Q}_{k}\left(\pi, h^{\prime}\right)$.

Case $d=0$

- Here we have $d=0$, and therefore $M(z, f)=H(z) e^{\gamma_{M} h(z)}$,

Case $d=0$

- Here we have $d=0$, and therefore $M(z, f)=H(z) e^{\gamma_{M} h(z)}$,
- If $\rho_{2}(f)<1$, then $h(z)=a z+b, \rho(\pi)<1$ and

$$
H(z)=\pi(z)^{\lambda_{0}} \prod_{k=1}^{n} \mathcal{L}_{k}\left(\pi, h^{\prime}\right)^{\lambda_{k}} \equiv C s t
$$

Case $d=0$

- Here we have $d=0$, and therefore $M(z, f)=H(z) e^{\gamma_{M} h(z)}$,
- If $\rho_{2}(f)<1$, then $h(z)=a z+b, \rho(\pi)<1$ and

$$
H(z)=\pi(z)^{\lambda_{0}} \prod_{k=1}^{n} \mathcal{L}_{k}\left(\pi, h^{\prime}\right)^{\lambda_{k}} \equiv C s t
$$

- Notice that

$$
\mathcal{L}_{k}\left(\pi, h^{\prime}\right):=\pi^{(k)}(z)+c_{k-1} \pi^{(k-1)}(z)+\ldots+c_{1} \pi(z),
$$

and $\rho\left(\mathcal{L}_{k}\right) \leq \rho(\pi)<1$.

Case $d=0$

- Here we have $d=0$, and therefore $M(z, f)=H(z) e^{\gamma_{M} h(z)}$,
- If $\rho_{2}(f)<1$, then $h(z)=a z+b, \rho(\pi)<1$ and

$$
H(z)=\pi(z)^{\lambda_{0}} \prod_{k=1}^{n} \mathcal{L}_{k}\left(\pi, h^{\prime}\right)^{\lambda_{k}} \equiv C s t
$$

- Notice that

$$
\mathcal{L}_{k}\left(\pi, h^{\prime}\right):=\pi^{(k)}(z)+c_{k-1} \pi^{(k-1)}(z)+\ldots+c_{1} \pi(z)
$$

and $\rho\left(\mathcal{L}_{k}\right) \leq \rho(\pi)<1$.

- If now $\lambda_{0}>0$, then $\pi(z)$ is a constant. Otherwise,

$$
\pi^{(k+1)}(z)+c_{k-1} \pi^{(k)}(z)+\ldots+c_{1} \pi^{\prime}(z)=0
$$

Case $d=0$

- Suppose now that $1 \leq \rho_{2}(f)<\infty$ and $\lambda(f)<\rho_{2}(f)$. Then $\rho(\pi)<\infty$, and hence $\rho(H)<\infty$.

$$
\begin{equation*}
e^{\gamma M q(z)}=\frac{H(z)}{H(z+c)}, \quad q(z)=h(z+c)-h(z) . \tag{4}
\end{equation*}
$$

Case $d=0$

- Suppose now that $1 \leq \rho_{2}(f)<\infty$ and $\lambda(f)<\rho_{2}(f)$. Then $\rho(\pi)<\infty$, and hence $\rho(H)<\infty$.

$$
\begin{equation*}
e^{\gamma M q(z)}=\frac{H(z)}{H(z+c)}, \quad q(z)=h(z+c)-h(z) . \tag{4}
\end{equation*}
$$

- $q(z)$ is polynomial. If $\operatorname{deg}(q)=t \geq 1$, then

$$
\pi_{c}(z)^{\gamma_{M}}=e^{-\gamma_{M} q(z)} \pi(z)^{\gamma_{M}}
$$

which implies that $f_{c}(z)^{\gamma_{M}}=f(z)^{\gamma_{M}}$. Hence, $f(z)$ is periodic of period c or $\gamma_{M} C$.

Case $d=0$

- Suppose now that $1 \leq \rho_{2}(f)<\infty$ and $\lambda(f)<\rho_{2}(f)$. Then $\rho(\pi)<\infty$, and hence $\rho(H)<\infty$.

$$
\begin{equation*}
e^{\gamma_{M} q(z)}=\frac{H(z)}{H(z+c)}, \quad q(z)=h(z+c)-h(z) . \tag{4}
\end{equation*}
$$

- $q(z)$ is polynomial. If $\operatorname{deg}(q)=t \geq 1$, then

$$
\pi_{c}(z)^{\gamma_{M}}=e^{-\gamma_{M} q(z)} \pi(z)^{\gamma_{M}},
$$

which implies that $f_{c}(z)^{\gamma_{M}}=f(z)^{\gamma_{M}}$. Hence, $f(z)$ is periodic of period c or $\gamma_{M} C$.

- If $\operatorname{deg}(q)=t=0$ we apply he same arguments as for the case $t \geq 1$.

Case $d \neq 0$

- Since $\lambda_{0}>0$, it follows that

$$
\begin{equation*}
M(z, f)=H(z) \sum_{i=0}^{\lambda_{0}}\binom{\lambda_{0}}{i}\left(\frac{d}{\pi(z)}\right)^{i} e^{\left(\gamma_{M}-i\right) h(z)} \tag{5}
\end{equation*}
$$

Case $d \neq 0$

- Since $\lambda_{0}>0$, it follows that

$$
\begin{equation*}
M(z, f)=H(z) \sum_{i=0}^{\lambda_{0}}\binom{\lambda_{0}}{i}\left(\frac{d}{\pi(z)}\right)^{i} e^{\left(\gamma_{M}-i\right) h(z)} . \tag{5}
\end{equation*}
$$

- $T(r, \pi)=S\left(r, e^{h}\right)$ and consequently $T(r, H)=S\left(r, e^{h}\right)$.

Case $d \neq 0$

- Since $\lambda_{0}>0$, it follows that

$$
\begin{equation*}
M(z, f)=H(z) \sum_{i=0}^{\lambda_{0}}\binom{\lambda_{0}}{i}\left(\frac{d}{\pi(z)}\right)^{i} e^{\left(\gamma_{M}-i\right) h(z)} . \tag{5}
\end{equation*}
$$

- $T(r, \pi)=S\left(r, e^{h}\right)$ and consequently $T(r, H)=S\left(r, e^{h}\right)$.
- Thus, $M(z, f)$ can be regarded as a polynomial in $e^{h(z)}$ with small coefficients. Hence

$$
H(z+c) e^{\gamma_{M} h_{c}(z)}=H(z) e^{\gamma_{M} h(z)}
$$

and

$$
\frac{H(z+c)}{\pi_{c}(z)} e^{\left(\gamma_{M}-1\right) h_{c}(z)}=\frac{H(z)}{\pi(z)} e^{\left(\gamma_{M}-1\right) h(z)} .
$$

Case $d \neq 0$

- Since $\lambda_{0}>0$, it follows that

$$
\begin{equation*}
M(z, f)=H(z) \sum_{i=0}^{\lambda_{0}}\binom{\lambda_{0}}{i}\left(\frac{d}{\pi(z)}\right)^{i} e^{\left(\gamma_{M}-i\right) h(z)} \tag{5}
\end{equation*}
$$

- $T(r, \pi)=S\left(r, e^{h}\right)$ and consequently $T(r, H)=S\left(r, e^{h}\right)$.
- Thus, $M(z, f)$ can be regarded as a polynomial in $e^{h(z)}$ with small coefficients. Hence

$$
H(z+c) e^{\gamma_{M} h_{c}(z)}=H(z) e^{\gamma_{M} h(z)}
$$

and

$$
\frac{H(z+c)}{\pi_{c}(z)} e^{\left(\gamma_{M}-1\right) h_{c}(z)}=\frac{H(z)}{\pi(z)} e^{\left(\gamma_{M}-1\right) h(z)} .
$$

- we get that $\pi(z) e^{h(z)}$ is periodic of period c. Thus $f(z)$ is c-periodic.

$P(z, f)$ is a differential polynomial with at least two terms

$$
P(z, f)=\sum_{j=1}^{m} \alpha_{j} M_{j}(z, f)
$$

$$
M_{j}(z, f)=f(z)^{\lambda_{0 j}}\left(f^{\prime}(z)\right)^{\lambda_{1 j}} \ldots\left(f^{(n)}(z)\right)^{\lambda_{n j}}, \quad \lambda_{0 j}, \ldots, \lambda_{n j} \in \mathbb{N}
$$

The total degree γ_{P} and total weight Γ_{P} of $P(z, f)$ are defined by

$$
\gamma_{P}=\max _{1 \leq j \leq m} \gamma_{j} \quad \text { and } \quad \Gamma_{P}=\max _{1 \leq j \leq m} \Gamma_{j}
$$

More Terms, more Challenges

Example

The function $f(z)=e^{z^{2}}$ is not periodic and

$$
P(z, f)=f^{\prime}(z)^{2} f(z)-f^{\prime \prime}(z) f(z)^{2}+2 f(z)^{3} \equiv 0 .
$$

More Terms, more Challenges

Example

The function $f(z)=e^{z^{2}}$ is not periodic and

$$
P(z, f)=f^{\prime}(z)^{2} f(z)-f^{\prime \prime}(z) f(z)^{2}+2 f(z)^{3} \equiv 0
$$

Example

The function $f(z)=z e^{z}+d$, where d is a constant, is not periodic whereas the differential polynomial

$$
P(z, f):=\left(f^{\prime}(z)\right)^{2}-f(z) f^{\prime \prime}(z)+d f(z)=\left(e^{z}-d\right)^{2}
$$

is periodic.

New Notations

Define the sequence of positive integers $\delta_{1}, \delta_{2}, \ldots, \delta_{l}$ as follows:

$$
\begin{aligned}
\delta_{1} & =\min _{j} \gamma_{j} \\
\delta_{2} & =\min _{j}\left\{\gamma_{j}: \gamma_{j} \neq \delta_{1}\right\}, \\
& \vdots \\
\delta_{I} & =\min _{j}\left\{\gamma_{j}: \gamma_{j} \neq \delta_{i}, i=1, \ldots, I-1\right\}=\gamma_{P}
\end{aligned}
$$

New Notations

Define the sequence of positive integers $\delta_{1}, \delta_{2}, \ldots, \delta_{l}$ as follows:

$$
\begin{aligned}
\delta_{1} & =\min _{j} \gamma_{j}, \\
\delta_{2} & =\min _{j}\left\{\gamma_{j}: \gamma_{j} \neq \delta_{1}\right\}, \\
& \vdots \\
\delta_{l} & =\min _{j}\left\{\gamma_{j}: \gamma_{j} \neq \delta_{i}, i=1, \ldots, I-1\right\}=\gamma_{P} .
\end{aligned}
$$

We denote by $\Lambda\left(\delta_{i}\right)$ the set that contains the indices of the terms in

$$
P(z, f)=\sum_{j=1}^{m} \alpha_{j} M_{j}(z, f)
$$

with the highest weights among those of degree δ_{i}.

New Notations

Define the sequence of positive integers $\delta_{1}, \delta_{2}, \ldots, \delta_{l}$ as follows:

$$
\begin{aligned}
\delta_{1} & =\min _{j} \gamma_{j}, \\
\delta_{2} & =\min _{j}\left\{\gamma_{j}: \gamma_{j} \neq \delta_{1}\right\}, \\
& \vdots \\
\delta_{l} & =\min _{j}\left\{\gamma_{j}: \gamma_{j} \neq \delta_{i}, i=1, \ldots, I-1\right\}=\gamma_{P} .
\end{aligned}
$$

We denote by $\Lambda\left(\delta_{i}\right)$ the set that contains the indices of the terms in

$$
P(z, f)=\sum_{j=1}^{m} \alpha_{j} M_{j}(z, f)
$$

with the highest weights among those of degree δ_{i}.

$$
\Lambda_{P}=\left\{\delta_{i}: \sum_{k \in \Lambda\left(\delta_{i}\right)} \alpha_{k} \neq 0\right\}
$$

New Notations

Define the sequence of positive integers $\delta_{1}, \delta_{2}, \ldots, \delta_{l}$ as follows:

$$
\begin{aligned}
\delta_{1} & =\min _{j} \gamma_{j}, \\
\delta_{2} & =\min _{j}\left\{\gamma_{j}: \gamma_{j} \neq \delta_{1}\right\}, \\
& \vdots \\
\delta_{l} & =\min _{j}\left\{\gamma_{j}: \gamma_{j} \neq \delta_{i}, i=1, \ldots, I-1\right\}=\gamma_{P} .
\end{aligned}
$$

We denote by $\Lambda\left(\delta_{i}\right)$ the set that contains the indices of the terms in

$$
P(z, f)=\sum_{j=1}^{m} \alpha_{j} M_{j}(z, f)
$$

with the highest weights among those of degree δ_{i}.

$$
\Lambda_{P}=\left\{\delta_{i}: \sum_{k \in \Lambda\left(\delta_{i}\right)} \alpha_{k} \neq 0\right\} \subset\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{l}\right\} .
$$

New notations

Example

Let $P(z, f)=\sum_{i=0}^{n} f^{(i)}(z)$.

New notations

Example

Let $P(z, f)=\sum_{i=0}^{n} f^{(i)}(z)$.That is,

$$
P(z, f)=\underbrace{f(z)}_{(\gamma=1, \Gamma=0)}+\underbrace{f^{\prime}(z)}_{(\gamma=1, \Gamma=1)}+\underbrace{f^{\prime \prime}(z)}_{(\gamma=1, \Gamma=2)}+\ldots+\underbrace{f^{(n)}(z)}_{(\gamma=1, \Gamma=n)} .
$$

New notations

Example

Let $P(z, f)=\sum_{i=0}^{n} f^{(i)}(z)$.That is,

$$
\begin{gathered}
P(z, f)=\underbrace{f(z)}_{(\gamma=1, \Gamma=0)}+\underbrace{f^{\prime}(z)}_{(\gamma=1, \Gamma=1)}+\underbrace{f^{\prime \prime}(z)}_{(\gamma=1, \Gamma=2)}+\ldots+\underbrace{f^{(n)}(z)}_{(\gamma=1, \Gamma=n)} . \\
\gamma_{1}=\gamma_{P}=\delta_{1}=1 \text { and } \Gamma_{i}=i \Longrightarrow \Lambda\left(\delta_{1}\right)=\{n\} \Longrightarrow \sum_{k \in \Lambda\left(\delta_{1}\right)} \alpha_{k}=1 .
\end{gathered}
$$

New notations

Example

Let $P(z, f)=\sum_{i=0}^{n} f^{(i)}(z)$.That is,

$$
\begin{gathered}
P(z, f)=\underbrace{f(z)}_{(\gamma=1, \Gamma=0)}+\underbrace{f^{\prime}(z)}_{(\gamma=1, \Gamma=1)}+\underbrace{f^{\prime \prime}(z)}_{(\gamma=1, \Gamma=2)}+\ldots+\underbrace{f^{(n)}(z)}_{(\gamma=1, \Gamma=n)} . \\
\gamma_{1}=\gamma_{P}=\delta_{1}=1 \text { and } \Gamma_{i}=i \Longrightarrow \Lambda\left(\delta_{1}\right)=\{n\} \Longrightarrow \sum_{k \in \Lambda\left(\delta_{1}\right)} \alpha_{k}=1 . \\
\Lambda_{P}=\left\{\delta_{1}\right\}=\{1\} .
\end{gathered}
$$

New notations

Example

Consider now

$$
\begin{aligned}
& P(z, f)=\underbrace{f^{\prime \prime}(z) f(z)^{2}}_{(\gamma=3, \Gamma=2)}-\underbrace{2\left(f^{\prime}(z)\right)^{2} f(z)}_{(\gamma=3, \Gamma=2)}-\underbrace{f^{\prime}(z) f(z)^{2}}_{(\gamma=3, \Gamma=1)} \\
& +\underbrace{f^{\prime \prime}(z) f(z)}_{(\gamma=2, \Gamma=2)}-\underbrace{\left(f^{\prime}(z)\right)^{2}}_{(\gamma=2, \Gamma=2)}+\underbrace{f^{\prime \prime}(z)}_{(\gamma=1, \Gamma=2)}+\underbrace{f^{\prime}(z)}_{(\gamma=1, \Gamma=1)},
\end{aligned}
$$

New notations

Example

Consider now

$$
\begin{aligned}
& P(z, f)=\underbrace{f^{\prime \prime}(z) f(z)^{2}}_{(\gamma=3, \Gamma=2)}-\underbrace{2\left(f^{\prime}(z)\right)^{2} f(z)}_{(\gamma=3, \Gamma=2)}-\underbrace{f^{\prime}(z) f(z)^{2}}_{(\gamma=3, \Gamma=1)} \\
& +\underbrace{f^{\prime \prime}(z) f(z)}_{(\gamma=2, \Gamma=2)}-\underbrace{\left(f^{\prime}(z)\right)^{2}}_{(\gamma=2, \Gamma=2)}+\underbrace{f^{\prime \prime}(z)}_{(\gamma=1, \Gamma=2)}+\underbrace{f^{\prime}(z)}_{(\gamma=1, \Gamma=1)},
\end{aligned}
$$

where $\delta_{1}=1, \delta_{2}=2$ and $\delta_{3}=\gamma_{P}=3$.

$$
\sum_{k \in \Lambda(1)} \alpha_{k}=1, \quad \sum_{k \in \Lambda(2)} \alpha_{k}=1-1=0 \quad \text { and } \quad \sum_{k \in \Lambda(3)} \alpha_{k}=1-2=-1
$$

New notations

Example

Consider now

$$
\begin{aligned}
& P(z, f)=\underbrace{f^{\prime \prime}(z) f(z)^{2}}_{(\gamma=3, \Gamma=2)}-\underbrace{2\left(f^{\prime}(z)\right)^{2} f(z)}_{(\gamma=3, \Gamma=2)}-\underbrace{f^{\prime}(z) f(z)^{2}}_{(\gamma=3, \Gamma=1)} \\
& +\underbrace{f^{\prime \prime}(z) f(z)}_{(\gamma=2, \Gamma=2)}-\underbrace{\left(f^{\prime}(z)\right)^{2}}_{(\gamma=2, \Gamma=2)}+\underbrace{f^{\prime \prime}(z)}_{(\gamma=1, \Gamma=2)}+\underbrace{f^{\prime}(z)}_{(\gamma=1, \Gamma=1)},
\end{aligned}
$$

where $\delta_{1}=1, \delta_{2}=2$ and $\delta_{3}=\gamma_{P}=3$.

$$
\sum_{k \in \Lambda(1)} \alpha_{k}=1, \quad \sum_{k \in \Lambda(2)} \alpha_{k}=1-1=0 \quad \text { and } \quad \sum_{k \in \Lambda(3)} \alpha_{k}=1-2=-1
$$

Thus, we have

$$
\Lambda_{P}=\{1,3\} .
$$

Why Λ_{p} ?

The function $f(z)=z e^{z}+1$ is not periodic whereas the differential polynomial

$$
P(z, f)=\left(f^{\prime}(z)\right)^{2}-f(z) f^{\prime \prime}(z)+f(z)=\left(e^{z}-1\right)^{2}
$$

is periodic.

Why Λ_{p} ?

The function $f(z)=z e^{z}+1$ is not periodic whereas the differential polynomial

$$
P(z, f)=\left(f^{\prime}(z)\right)^{2}-f(z) f^{\prime \prime}(z)+f(z)=\left(e^{z}-1\right)^{2}
$$

is periodic. Note that

$$
P(z, f)=\underbrace{\left(f^{\prime}(z)\right)^{2}}_{(\gamma=2, \Gamma=2)}-\underbrace{f(z) f^{\prime \prime}(z)}_{(\gamma=2, \Gamma=2)}+\underbrace{f(z)}_{(\gamma=1, \Gamma=0)}
$$

where $\delta_{1}=1$ and $\delta_{2}=\gamma_{P}=2$.

$$
\gamma_{P} \notin \Lambda_{P}=\left\{\delta_{1}\right\}
$$

Our results

$$
P(z, f)=\sum_{j=1}^{m} \alpha_{j} f(z)^{\lambda_{0 j}}\left(f^{\prime}(z)\right)^{\lambda_{\lambda_{j}}} \cdots\left(f^{(n)}(z)\right)^{\lambda_{n j}} .
$$

Theorem (Zemirni, Laine \& Latreuch, 2023)

Let $f(z)$ be a transcendental entire function with $\rho_{2}(f)<1$, and suppose that there exists $d \in \mathbb{C}$ such that $\lambda(f-d)<\rho(f) \leq \infty$. Suppose that $P(z, f) \not \equiv 0$ is periodic with period $c, \lambda_{0 j}>0$ for every $j \in\{1, \ldots, m\}$ and one of the following holds
(i) $d=0$,
(ii) $d \neq 0$ and $\lambda_{01}=\cdots=\lambda_{0 m}=\lambda>0$,
(iii) $d \neq 0$ and $\gamma_{p} \in \Lambda_{p}$.

Then $f(z)$ is c-periodic.

Our Results

Corollary

Let $f(z)$ be a transcendental entire function with a finite Picard exceptional value d and $\rho_{2}(f)<1$. Suppose that $P(z, f) \not \equiv 0$ is a periodic function with period c. Then $f(z)$ is c-periodic.

Our Results

Theorem (Zemirni, Laine \& Latreuch, 2023)

Let $f(z)$ be a transcendental entire function with $1 \leq \rho_{2}(f)<\infty$, and suppose that there exists $d \in \mathbb{C}$ such that $\lambda(f-d)<\rho_{2}(f)$. Suppose that $P(z, f)$ is a periodic function with period $c, \Lambda_{P} \neq \emptyset$ and one of the following holds:
(i) $d=0$;
(ii) $d \neq 0$ and $\gamma_{P} \in \Lambda_{P}$.

Then $f(z)$ is c-periodic.

Our Results

Theorem (Zemirni, Laine \& Latreuch, 2023)

Let $f(z)$ be a transcendental entire function with $1 \leq \rho_{2}(f)<\infty$, and suppose that there exists $d \in \mathbb{C}$ such that $\lambda(f-d)<\rho_{2}(f)$. Suppose that $P(z, f)$ is a periodic function with period $c, \Lambda_{P} \neq \emptyset$ and one of the following holds:
(i) $d=0$;
(ii) $d \neq 0$ and $\gamma_{P} \in \Lambda_{P}$.

Then $f(z)$ is c-periodic.

Remark

The function $f(z)=e^{\sin z}$ satisfies $\lambda(f)=0<1=\rho_{2}(f)$ and

$$
P(z, f)=\left(f^{\prime}(z)\right)^{2}-f^{\prime \prime}(z) f(z)=e^{2 \sin z} \sin z
$$

Here, $P(z, f)$ and $f(z)$ are both periodic while $\Lambda_{P}=\emptyset$.

Thank You \& Good Night!

