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Introduction

1 We introduce sequences preserving summability and describe their properties.

2 We introduce moment differentiation and operators of order zero.

3 We prove the characterisation of sequences preserving summability.

4 We show the sequence ([n]q!)n≥0 preserves summability for every q ∈ [0, 1).

5 As an application we characterise summable formal power series solutions of
linear q-difference-differential equations with constant coefficients{

P(Dq,t , ∂z)u = 0,
Dj

q,tu(0, z) = φj(z) ∈ O(D) for j = 0, . . . , p − 1

in terms of analytic continuation properties and growth estimates of the Cauchy
data φj(z), j = 0, . . . , p − 1.
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Functions of exponential growth

Definition (Function of exponential growth)
Let E be a Banach space and Ŝd = Sd ∪ D be an infinity disc-sector in a direction
d ∈ R. A function u ∈ O(Ŝd ,E) is of exponential growth of order at most k ∈ R as
x → ∞ in Ŝd if for any subsector S̃ ≺ Ŝd there exist A,B > 0 such that

∥u(x)∥E < AeB|x|k for every x ∈ S̃.

The space of such functions is denoted by Ok (Ŝd ,E).
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Borel operator

Definition (Borel operator)
For a fixed sequence m = (m(n))n≥0 of positive numbers with m(0) = 1, a linear
operator Bm,t : E[[t ]] → E[[t ]] defined by

(Bm,t û)(t) :=
∞∑

n=0

an

m(n)
tn for û(t) =

∞∑
n=0

antn ∈ E[[t ]]

is called an m-Borel operator with respect to t .

Remark
Observe that for a given sequence m = (m(n))n≥0 of positive numbers with m(0) = 1,
an inverse m-Borel operator B−1

m,t : E[[t ]] → E[[t ]], called sometimes an m-Laplace
operator, is given by B−1

m,t = Bm−1,t on E[[t ]], where m−1 = (m(n)−1)n≥0. Hence an
m-Borel operator Bm,t is a linear automorphism on the space of formal power series
E[[t ]].
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Gevrey order and summability

Let k > 0 and Γ1/k := (Γ(1 + n/k))n≥0, where Γ(·) denotes the Gamma function.

Definition (Gevrey order)
A series û ∈ E[[t ]] is called a formal power series of Gevrey order 1/k if there exists a
disc D ⊆ C with centre at the origin such that BΓ1/k ,t û ∈ O(D,E).
The space of formal power series of Gevrey order 1/k is denoted by E[[t ]]1/k .

Definition (k -summability)
Let d ∈ R. A series û ∈ E[[t ]] is called k -summable in a direction d if there exists a
disc-sector Ŝd in a direction d such that BΓ1/k ,t û ∈ Ok (Ŝd ,E).
The space of k -summable formal power series in a direction d is denoted by E{t}k,d .
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Sequences preserving summability

Definition (Sequence preserving summability)
Let m = (m(n))n≥0 be a sequence of positive numbers with m(0) = 1. We say that a
sequence m preserves summability if for any k > 0, d ∈ R and any û ∈ E[[t ]] the
following equivalence holds:

û ∈ E{t}k,d if and only if Bm,t û ∈ E{t}k,d .

Example
1 The sequence 1 = (1)n≥0 preserves summability in a trivial way.

2 More generally, if a > 0 and a := (an)n≥0 then the sequence a preserves
summability, because

Ba,t û(t) = û(t/a) for every û ∈ E[[t ]].
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Sequences preserving Gevrey order

Definition (Sequence preserving Gevrey order)
Let m = (m(n))n≥0 be a sequence of positive numbers with m(0) = 1. We say that a
sequence m preserves Gevrey order if for any k > 0 and any û ∈ E[[t ]] the following
equivalence holds:

û ∈ E[[t ]]1/k if and only if Bm,t û ∈ E[[t ]]1/k .

Proposition
A sequence m = (m(n))n≥0 preserves Gevrey order if and only if m is a sequence of
order zero
(i.e. there exists a,A > 0 such that an ≤ m(n) ≤ An for every n ∈ N0).

Remark
Since for every k > 0 and d ∈ R we have E{t}k,d ⊂ E[[t ]]1/k , we see that if a
sequence m = (m(n))n≥0 preserves summability then m also preserves Gevrey order,
or equivalently m is a sequence of order 0.
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Example
We show that not every sequence of order 0 preserves summability:

Example

Let m(n) :=
{

1 n is even
2−1 n is odd

. The series x̂(t) =
∑∞

n=0 n!tn is 1-summable in any

direction d ̸= 0 mod 2π, because for m1(n) = n! and for any d ̸= 0 mod 2π

Bm1,t x̂(t) =
∞∑

n=0

tn =
1

1 − t
∈ O1(Ŝd ).

On the other hand the series
ŷ(t) = Bm,t x̂(t) =

∑∞
n=0

n!
m(n) t

n =
∑∞

k=0(2k)!t2k +
∑∞

k=0 2(2k + 1)!t2k+1 is 1-summable
only for directions d ̸= 0 mod π, because the function

Bm1,t ŷ(t) =
∞∑

k=0

t2k +
∞∑

k=0

2t2k+1 =
1

1 − t2 +
2t

1 − t2 =
1 + 2t
1 − t2 ∈ O1(Ŝd ), d ̸= 0 mod π

has a simple pole not only at t = 1, but also at t = −1.
Hence x̂(t) ∈ C{t}1,π, but ŷ(t) = Bm,t x̂(t) ̸∈ C{t}1,π.
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Moment functions
Definition (Kernel functions and corresponding moment function)
A pair of functions em and Em is said to be kernel functions of order k (k > 1/2) if they
have the following properties:

1. em ∈ O(S0(π/k)), em(z)/z is integrable at the origin, em(x) ∈ R+ for x ∈ R+ and
em is exponentially flat of order k in S0(π/k) (i.e. for every ε > 0 there exists
A,B > 0 such that |em(z)| ≤ Ae−(|z|/B)k for z ∈ S0(π/k − ε)).

2. Em ∈ Ok (C) and Em(1/z)/z is integrable at the origin in Sπ(2π − π/k).

3. The connection between em and Em is given by the corresponding moment
function m of order 1/k as follows. The function m is defined in terms of em by

m(u) :=
∫ ∞

0
xu−1em(x)dx for Re u ≥ 0

and the kernel function Em has the power series expansion

Em(z) =
∞∑

n=0

zn

m(n)
for z ∈ C.

4. Additionally we assume that m(u) satisfies the normalization condition m(0) = 1.
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Moment functions

Remark
The integral representation for the reciprocal moment function m is given by

1
m(u)

=
1

2πi

∫
γ

Em(w)w−u−1dw

with γ as in Hankel’s formula of the reciprocal Gamma function [Balser, 2000, p. 228].

Example
The canonical examples of kernel functions em and Em of order k > 0 and the
corresponding moment function m, which are used in the classical theory of
k -summability, are given by

em(z) = kzk e−zk
,

m(u) = Γ(1 + u/k),

Em(z) =
∑∞

j=0
z j

Γ(1+j/k) =: E1/k (z), where E1/k is the Mittag-Leffler function of
index 1/k .

S. Michalik (joint work with K. Ichinobe) On sequences preserving summability CDDE II, August 31, 2023 10 / 36



Moment functions

Remark
By [Balser, 2000, Theorems 31 and 32], if m1(u) and m2(u) are moment functions of
positive orders 1/k1 and 1/k2 respectively, then

1 m(u) = m1(u)m2(u) is a moment function of order 1/k1 + 1/k2,
2 m(u) = m1(u)/m2(u) is a moment function of order 1/k1 − 1/k2 under condition

that 1/k1 > 1/k2.

Using the above remark we may extend the definition of moment functions to real
order:

Definition
We say that m(u) is a moment function of order 1/k < 0 if 1/m(u) is a moment
function of order −1/k > 0.
Moreover, m(u) is called a moment function of order 0 if there exist moment functions
m1(u) and m2(u) of the same order 1/k > 0 such that m(u) = m1(u)/m2(u).
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Moment functions

Remark
Observe that by the definitions any moment function m(u) of order s ∈ R satisfies
conditions

m(u) > 0 for every u ≥ 0,

m(0) = 1.

Remark
By the general method of summability (see [Balser, 2000, Section 6.5 and Theorem
38]), in the definition of k -summability one can replace the sequence
Γ1/k = (Γ(1 + n/k))n≥0 by any sequence m = (m(n))n≥0, where m(u) is a moment
function of order 1/k .

Hence

Example
For any moment function m(u) of order zero, the sequence (m(n))n≥0 preserves
summability.
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Moment functions

In particular we get

Example
Suppose that

m(n) =
Γ(1 + a1n) · · · Γ(1 + ak n)
Γ(1 + b1n) · · · Γ(1 + bln)

for n ∈ N0,

where a1, . . . , ak and b1, . . . bl are positive numbers satisfying

a1 + · · ·+ ak = b1 + · · ·+ bl .

Then the sequence (m(n))n≥0 preserves summability.
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The group of sequences preserving summability

Remark
The set of sequences preserving summability forms a group M with a group
operation given by the multiplication:

1 If m1 = (m1(n))n≥0 and m2 = (m2(n))n≥0 preserve summability then also their
product m = m1 · m2 (i.e. m = (m(n))n≥0, where m(n) = m1(n) · m2(n) for any
n ∈ N0) preserves summability.

2 If m = (m(n))n≥0 preserves summability then also its inverse element
m−1 = (m(n)−1)n≥0 preserves summability.

3 The identity element 1 = (1)n≥0 preserves summability.

Remark
The set

M =
{
(m(n))n≥0 : m(u) is a moment function of order zero

}
forms a subgroup of the group M of sequences preserving summability.
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Moment differentiation
We extend the notion of m-moment differentiation introduced by
[Balser, Yoshino, 2010] originally for the sequence of moments m = (m(n))n≥0

inherited from a moment function m(u).

Definition (Moment differentiation)
For a given sequence m = (m(n))n≥0 of positive numbers with m(0) = 1, an operator
∂m,t : E[[t ]] → E[[t ]] defined by

∂m,t
( ∞∑

n=0

un

m(n)
tn) :=

∞∑
n=0

un+1

m(n)
tn

is called an m-moment differentiation. If additionally m is a sequence of order 0 then
∂m,t is called an m-moment differentiation of order 0 or an operator of order 0 for short.

Remark
Notice that the operator ∂m,t : E[[t ]] → E[[t ]] can be equivalently defined as

∂m,t
( ∞∑

n=0

antn) :=
∞∑

n=0

m(n + 1)
m(n)

an+1tn.
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Moment differentiation

Remark
Observe that in the most important case m = (n!)n≥0, the operator ∂m,t is the
m-moment differentiation, which coincides with the usual differentiation ∂t .

By the direct calculation we get

Proposition
Let m1 = (m1(n))n≥0 and m2 = (m2(n))n≥0 be sequences of positive numbers. Then
the operators Bm1,t , ∂m2,t : E[[t ]] → E[[t ]] commute in a such way that

Bm1,t∂m2,t = ∂m1m2,tBm1,t .

Proposition (The moment Taylor formula)
Let φ̂ ∈ E[[t ]] and m = (m(n))n≥0 be a sequence of positive numbers with m(0) = 1.
Then

φ̂(t) =
∞∑

n=0

∂n
m,t φ̂(0)
m(n)

tn.
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Operators of order zero
Examples of operators of order 0:

Example

1 If 1 = (1)n≥0 then ∂1,t û(t) = û(t)−û(0)
t for û(t) ∈ E[[t ]].

More generally, for every n ∈ N we get

∂n
1,t û(t) =

û(t)−
∑n−1

k=0
∂k

t û(0)
k! tk

tn for û(t) ∈ E[[t ]].

Hence we may write the usual Taylor’s theorem as

û(t) =
n−1∑
k=0

∂k
t û(0)
k !

tk + Rn(t),

where the reminder term Rn(t) of the Taylor polynomial is given by
Rn(t) = tn∂n

1,t û(t).

2 If a > 0 and a = (an)n≥0 then ∂a,t û(t) = a(û(t)−û(0))
t = a∂1,t û(t) for û(t) ∈ E[[t ]].

3 If m(u) is a moment function of order 0 then m = (m(n))n≥0 is a sequence of
order 0. Hence ∂m,t is an operator of order 0.
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Operators of order zero
Example

4 Fix q ∈ [0, 1). Let Dq,t be the q-difference operator defined by

Dq,t û(t) :=
û(qt)− û(t)

qt − t
for û(t) ∈ E[[t ]].

Observe that Dq,t tn = [n]q tn−1, where [n]q = 1−qn

1−q = 1 + q + · · ·+ qn−1.
It means that

Dq,t û(t) = ∂m,t û(t) for û(t) ∈ E[[t ]],
where m = ([n]q!)n≥0 and [n]q! = [1]q · · · [n]q .
Since q ∈ [0, 1) we get 1 ≤ [n]q ≤ 1

1−q for every n ∈ N0 and we conclude that

1 ≤ [n]q! ≤
( 1

1 − q
)n for every n ∈ N0.

Hence the q-difference operator Dq,t is an m-moment differentiation of order 0.
Observe also that in the special case q = 0 we get

D0,t û(t) = ∂1,t û(t) =
û(t)− û(0)

t
.
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Sequences preserving summability

Theorem ([Ichinobe, Michalik, 2023])
A sequence m = (m(n))n≥0 preserves summability if and only if for every k > 0 and
for every θ ̸= 0 mod 2π there exists a disc-sector Ŝθ such that

Bm,t
( ∞∑

n=0

tn) ∈ Ok (Ŝθ) and Bm−1,t

( ∞∑
n=0

tn) ∈ Ok (Ŝθ).

Proof.
(⇒) Take any k > 0 and θ ̸= 0 mod 2π. Let û(t) :=

∑∞
n=0 Γ(1 + n/k)tn. Since

BΓ1/k ,t û(t) =
∑∞

n=0 tn = 1
1−t ∈ Ok (Ŝθ), we see that û is k -summable in a direction θ.

It means that also Bm,t û(t) and Bm−1,t û(t) are k -summable in a direction θ for any
sequence m preserving summability. Hence we conclude that

Bm,t
( ∞∑

n=0

tn) = BΓ1/k ,t
(
Bm,t û

)
∈ Ok (Ŝθ), Bm−1,t

( ∞∑
n=0

tn) = BΓ1/k ,t
(
Bm−1,t û

)
∈ Ok (Ŝθ).
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Sequences preserving summability

Proof.
(⇐) Take any k > 0 and d ∈ R. Assume that x̂(t) =

∑∞
n=0 xntn ∈ E[[t ]] is k -summable

in a direction d . It is sufficient to show that also Bm,t x̂(t) and Bm−1,t x̂(t) are
k -summable in the same direction d .
Since x̂(t) ∈ E{t}k,d , we see that the function φ(t) := BΓ1/k ,t x̂(t) belongs to the space
Ok (Ŝd ,E). Let û(t , z) be a solution of the Cauchy problem{

(∂m̃,t − ∂z)u = 0
u(0, z) = φ(z) ∈ Ok (Ŝd ,E),

where m̃ = (m(n)n!)n≥0. Then since û(t , z) =
∑

n≥0
φ(n)(z)

m̃(n) tn, we have

û(t , 0) =
∞∑

n=0

φ(n)(0)
m(n)n!

tn =
∞∑

n=0

xn

Γ(1 + n/k)m(n)
tn = BΓ1/k ,t

(
Bm,t x̂(t)

)
,

which is convergent at t = 0. To prove that Bm,t x̂(t) is k -summable in the direction d , it
is sufficient to show that u(t , 0) ∈ Ok (Ŝd ,E).

S. Michalik (joint work with K. Ichinobe) On sequences preserving summability CDDE II, August 31, 2023 20 / 36



Sequences preserving summability

Proof.
To this end observe that using the integral representation of u we get

u(t , 0) =
1

2πi

∮
|ζ|=ρ

φ(ζ)

ζ

( ∞∑
n=0

(t/ζ)n

m(n)

)
dζ =

1
2πi

∮
|ζ|=ρ

φ(ζ)

ζ
ψ(t/ζ) dζ

for sufficiently small ρ > 0, where the kernel ψ is defined as

ψ(t) :=
∞∑

n=0

tn

m(n)
= Bm,t

( ∞∑
n=0

tn).
Observe that ψ ∈ Ok (Ŝθ) for every θ ̸= 0 mod 2π by the assumption. In particular the
power series ψ has a positive radius of convergence r > 0, i.e. ψ ∈ O(Dr ).
Since φ ∈ O(Ŝd ,E) and ψ ∈ O(Ŝθ) for every θ ̸= 0 mod 2π, we may deform the path
of integration from ζ ∈ ∂Dρ to ζ ∈ Γ(R) := ∂(Ŝd ∩ DR) for some positive R. Then for
every fixed t ∈ Ŝd we may find sufficiently large R such that | t

ζ
| < r for ζ ∈ Γ(R) such

that arg ζ = arg t . Hence u(t , 0) ∈ O(Ŝd ,E).

S. Michalik (joint work with K. Ichinobe) On sequences preserving summability CDDE II, August 31, 2023 21 / 36



Sequences preserving summability
Proof.
To estimate ∥u(t , 0)∥E for t ∈ Ŝd , |t | → ∞, we split the contour Γ(R) into 2 arcs
Γ1(R) := Γ(R) ∩ (∂DR) and Γ2(R) := Γ(R) ∩ DR . Then we get

u(t , 0) =
1

2πi

∫
Γ1(R)

φ(ζ)

ζ
ψ(t/ζ) dζ +

1
2πi

∫
Γ2(R)

φ(ζ)

ζ
ψ(t/ζ) dζ.

If ζ ∈ Γ1(R) then |ζ| = R and ζ ∈ Ŝd . Taking R = 2|t |/r , where the constant r > 0 is
the radius of convergence of ψ, we see that R and t both go to infinity together and
that the function t 7→ ψ(t/ζ) is bounded. Since moreover φ ∈ Ok (Ŝd ,E), we conclude
that the first integral has exponential growth of order k as |t | → ∞ in Ŝd .
To estimate the second integral, observe that if ζ ∈ Γ2(R) then arg ζ ̸= d mod 2π. It
means that the function t 7→ ψ(t/ζ) has exponential growth of order k as |t | → ∞ in
Ŝd . Since moreover φ ∈ Ok (Ŝd ,E), in this case we also conclude that the second
integral has exponential growth of order k as |t | → ∞ in Ŝd .
Hence the function t 7→ u(t , 0) has also exponential growth of order k as |t | → ∞ in
Ŝd and Bm,t x̂(t) is k -summable in the direction d .
Replacing m by m−1 and repeating the above proof we conclude that Bm−1,t x̂(t) is
also k -summable in the same direction d .
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The sequence ([n]q!)n≥0 preserves summability

Theorem ([Ichinobe, Michalik, 2023])
If q ∈ [0, 1) then the sequence ([n]q!)n≥0 preserves summability.

Lemma 1
For every k > 0 and every θ ̸= 0 mod 2π there exists a disc-sector Ŝθ such that

x(t) =
∞∑

n=0

tn

[n]q!
∈ Ok (Ŝθ).

Proof of Lemma 1.
Observe that x(t) coincides with the q-exponential function expq(t). By the properties
of expq(t) we get the assertion.

S. Michalik (joint work with K. Ichinobe) On sequences preserving summability CDDE II, August 31, 2023 23 / 36



The sequence ([n]q!)n≥0 preserves summability
Lemma 2
For every k > 0 and every θ ̸= 0 mod 2π there exists a disc-sector Ŝθ such that

y(t) =
∞∑

n=0

[n]q!tn ∈ Ok (Ŝθ).

Proof of Lemma 2.
We consider the initial value problem{

(∂t − ∂m̃,z)u = 0
u(0, z) = φ(z) := 1

1−z
, where m̃ = (n![n]q!)n≥0.

The formal power series solution is given by û(t , z) =
∑∞

n=0
∂n

m̃,zφ(z)

n! zn.
By the moment Taylor formula for φ(z) we see that

∂n
m̃,zφ(0)
n![n]q!

=
∂n

m̃,zφ(0)
m̃(n)

=
φ(n)(0)

n!
for every n ∈ N0.
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The sequence ([n]q!)n≥0 preserves summability
Proof of Lemma 2.
Hence we conclude that

u(t , 0) =
∞∑

n=0

∂n
m̃,tφ(0)

n!
tn =

∞∑
n=0

[n]q!φ(n)(0)
n!

tn = y(t).

Since [n]q! = (q;q)n
(1−q)n , where (a; q)n = (1 − q) · · · (1 − qn), by the Cauchy integral

formula, we see that

y(t) = u(t , 0) =
1

2πi

∮
|η|=ρ

φ(η)

η

∞∑
n=0

(q; q)n

( t
(1 − q)η

)n
dη

for sufficiently small |t |.
We will follow the proof of necessity in [Ichinobe, Adachi, 2020, Theorem 3.1] with
κ = ν = 1 and x0 = 0. By Heine’s transformation formula we obtain

∞∑
n=0

(q; q)n

( t
(1 − q)η

)n
=

(
q, q t

(1−q)η ; q
)
∞( t

(1−q)η ; q
)
∞

∞∑
j=0

( t
(1−q)η ; q

)
j(

q t
(1−q)η , q; q

)
j

q j .
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The sequence ([n]q!)n≥0 preserves summability
Proof of Lemma 2.
For fixed t ̸= 0, the function

η 7−→ 1( t
(1−q)η ; q

)
∞

=
∞∏

n=0

η

η − (1 − q)−1tqn

is meromorphic on C with simple poles at

η = ηn(t) := (1 − q)−1tqn for n ∈ N0.

Using the residue theorem we see that

y(t) = (q; q)∞
∞∑

n=0

φ
( tqn

1 − q
)

Res
η=ηn(t)

1( t
(1−q)η ; q

)
∞

1
η
(q1−n; q)∞

∞∑
j=0

(q−n; q)j

(q1−n, q; q)j
q j .

Since (q−n, q)j = 0 for j > n and (q1−n ;q)∞
(q1−n ;q)j

= 0 for j < n, we get

(q1−n; q)∞
∞∑
j=0

(q−n; q)j

(q1−n, q; q)j
q j = (q1−n; q)∞

(q−n; q)n

(q1−n, q; q)n
qn = (q; q)∞

(q−n; q)n

(q; q)n
qn.
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The sequence ([n]q!)n≥0 preserves summability

Proof of Lemma 2.
Moreover

Res
η=ηn(t)

1( t
(1−q)η ; q

)
∞

1
η
=

1
(q−n; q)n(q; q)∞

.

Hence

y(t) = (q; q)∞
∞∑

n=0

φ
( tqn

1 − q
) qn

(q; q)n
.

Since there exist A,B <∞ such that |φ(z)| ≤ AeB|z|k for every z ∈ Ŝθ, we conclude
that

|y(t)| ≤ AeB(1−q)−k |t|k
∞∑

n=0

(q; q)∞
(q; q)n

qn ≤ AeB̃|t|k
∞∑

n=0

qn ≤ ÃeB̃|t|k

for some positive constants Ã, B̃ <∞ and for every t ∈ Ŝθ. It means that
y(t) ∈ Ok (Ŝθ).
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The sequence ([n]q!)n≥0 preserves summability

Remark
In the similar way one can show that the sequence ([an]q!)n≥0 preserves summability
for every a ∈ N0

Example
Suppose that

m(n) =
[a1n]q! · · · [ak n]q!
[b1n]q! · · · [bln]q!

for n ∈ N0,

where a1, . . . , ak and b1, . . . , bl are natural numbers.
Then the sequence (m(n))n≥0 preserves summability.
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The Cauchy problem for moment operators of order 0

We consider the Cauchy problem for the linear equations P(∂m,t , ∂z)u = 0 with
constant coefficients, where ∂m,t is an operator of order 0. We will show that if
additionally a sequence m preserves summability then summable solutions are
characterised in the same way as for the solutions of P(∂1,t , ∂z)u = 0, which is a
special case of the equation P(∂m1,t , ∂m2,z)u = 0 already studied in [Michalik, 2013]
under condition that m1(u) and m2(u) are moment functions of real orders. By the
main result of the paper it allows us to characterise summable solutions of general
linear q-difference-differential equations P(Dq,t , ∂z)u = 0 with constant coefficients. It
gives a far greater generalisation of the results from [Ichinobe, Adachi, 2020].

We assume that P(λ, ζ) is a general polynomial of two variables of order p with
respect to λ and φj(z) ∈ O(D) for j = 0, . . . , p − 1.

S. Michalik (joint work with K. Ichinobe) On sequences preserving summability CDDE II, August 31, 2023 29 / 36



The Cauchy problem for moment operators of order 0

We study the relation between the solution û(t , z) ∈ O(D)[[t ]] of the Cauchy problem

(1)
{

P(∂m,t , ∂z)u = 0
∂ j

m,tu(0, z) = φj(z), j = 0, . . . , p − 1,

and the solution v̂(t , z) ∈ O(D)[[t ]] of the similar initial value problem

(2)
{

P(∂1,t , ∂z)v = 0
∂ j

1,tv(0, z) = φj(z), j = 0, . . . , p − 1.

First, let us observe that

Proposition
A formal power series û(t , z) =

∑∞
n=0

un(z)
m(n) tn is a solution of (1) if and only if

v̂(t , z) =
∑∞

n=0 un(z)tn is a formal power series solution of (2).
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The Cauchy problem for moment operators of order 0

Proposition
A formal power series û(t , z) =

∑∞
n=0

un(z)
m(n) tn is a solution of (1) if and only if

v̂(t , z) =
∑∞

n=0 un(z)tn is a formal power series solution of (2).

Proof.
(⇒) Let û(t , z) =

∑∞
n=0

un(z)
m(n) tn be a formal solution of (1). Using the commutation

formula
Bm−1,t∂m,t = ∂1,tBm−1,t with m−1 = (m(n)−1)n≥0

and applying the Borel transform Bm−1,t to the Cauchy problem (1) we conclude that
v̂(t , z) = Bm−1,t û(t , z) is a formal solution of (2).

(⇐) The proof is analogous. It is sufficient to apply the Borel transform Bm,t to the
Cauchy problem (2) and to observe that û(t , z) = Bm,t v̂(t , z).
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The Cauchy problem for moment operators of order 0

Proposition
Let P(λ, ζ) be a polynomial of two variables of order p with respect to λ, k > 0 and
d ∈ R. We also assume that a sequence m = (m(n))n≥0 preserves summability.
Then a formal power series solution û(t , z) ∈ O(D)[[t ]] of the Cauchy problem (1) is
k -summable in a direction d if and only if a power series solution
v̂(t , z) = Bm−1,t û(t , z) of the Cauchy problem (2) is k -summable in the same direction.

In the case m = ([n]q!)n≥0 for q ∈ [0, 1) we can rewrite (1) as the Cauchy problem for
the general homogeneous linear q-difference-differential equation with constant
coefficients

(3)
{

P(Dq,t , ∂z)u = 0
Dj

q,tu(0, z) = φj(z) ∈ O(D), j = 0, . . . , p − 1,
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The Cauchy problem for moment operators of order 0

Since the sequence ([n]q!)n≥0 preserves summability we get

Theorem ([Ichinobe, Michalik, 2023])
Let P(λ, ζ) be a polynomial of two variables of order p with respect to λ and q ∈ [0, 1).
We also assume that û(t , z) =

∑∞
n=0

un(z)
[n]q !

tn and v̂(t , z) =
∑∞

n=0 un(z)tn are formal
power series belonging to the space O(D)[[t ]]. Then the following equivalences hold:

1 û(t , z) is a formal power series solution of (3) if and only if v̂(t , z) is a formal
power series solution of (2).

2 Fix k > 0. û(t , z) is a formal power series solution of (3) of Gevrey order 1/k if
and only if v̂(t , z) is a formal power series solution of (2) of the same Gevrey
order 1/k.

3 Fix k > 0 and d ∈ R. û(t , z) is a formal power series solution of (3) that is
k-summable in a direction d if and only if v̂(t , z) is a formal power series solution
of (2) that is k-summable in the same direction.
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Final remarks

1 In the similar way one can define the sequences preserving q-asymptotic
expansions (for q > 1). In this case one can get also the characterisation of such
sequences:

Theorem ([Lastra, Michalik, 2023])
A sequence m = (mn)n≥0 preserves q-Gevrey asymptotic expansions if and only if for
every s > 0 and every θ ̸= 0 mod 2π, Bm,t

(∑
n≥0 tn

)
and Bm−1,t

(∑
n≥0 tn

)
belong

to C{t} and each of them can be extended to an infinite sector of bisecting direction θ
with q-exponential growth of order 1/s.

We hope that such sequences will be useful in the study of q-summable
solutions of some q-difference equations.

2 It seems be also interesting to find another characterisation of sequences
preserving summability, which is given more directly in terms of these
sequences.
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Thank you for your attention!
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