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Sectors and sequences

R will denote the Riemann surface of the logarithm.

Given α > 0, we consider unbounded sectors

Sα := {z ∈ R; | arg(z)| < πα/2 }.

N0 = {0, 1, 2, ...}.

Let M = (Mn)n∈N0 be a sequence of positive real numbers, with M0 = 1.

We denote by M̂ = (M̂n)n∈N0 the sequence defined by M̂n := Mn
n!

.

Example:

For a ∈ R we set

Ga := (j!a)j∈N0 , Ga
:= (jja)j∈N0 ,

i.e. for a > 0 the sequence Ga is the Gevrey-sequence of index a.
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Log-convexity

M is said to be logarithmically convex or (lc) if M2
n ≤ Mn−1Mn+1, n ≥ 1;

equivalently, the sequence of quotients of M, m = (mn :=
Mn+1

Mn
)n∈N0 , is

nondecreasing.

If M satisfies limj→+∞(Mj)
1/j = +∞, we denote by Mlc the log-convex

minorant of M, i.e. each log-convex sequence L with L ≤ M satisfies L ≤ Mlc

(and Mlc ≡ M if and only if M is log-convex).

We say M is a weight sequence, if M is (lc) and lim
n→∞

mn = ∞.
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Properties of the sequences

M is called normalized if 1 = M0 ≤ M1 holds true.

M has derivation closedness, denoted by (dc), if

∃ D ≥ 1 ∀ j ∈ N0 : Mj+1 ≤ Dj+1Mj ⇐⇒ mj ≤ Dj+1.

M has the condition root almost increasing, denoted by (rai), if

∃ C > 0 ∀ 1 ≤ j ≤ k : M̂
1/j

j ≤ CM̂
1/k

k .

M has the Faà-di-Bruno property, denoted by (FdB), if

∃ C ≥ 1 ∃ h ≥ 1 ∀ j ∈ N0 : M̂
◦
j ≤ ChjM̂ j ,

with M̂
◦
:= (M̂

◦
j )j∈N0 the sequence defined by

M̂
◦
k := max

{
M̂ ℓ · M̂ j1 · · · M̂ jℓ : ji ∈ N,

ℓ∑
i=1

ji = k

}
, M̂

◦
0 := 1.
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Equivalent sequences

Let M,L two sequences, we write M ⪯ L if supj∈N (Mj/Lj)
1/j < +∞ and call

M and L equivalent, denoted by M ≈ L, if M ⪯ L and L ⪯ M; equivalently,
there exist some constant A,B > 0 such that AnMn ≤ Ln ≤ BnMn for all
n ∈ N.
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Ultraholomorphic (Carleman-Roumieu) classes

Given M, A > 0 and a sector S, we consider

A{M},A(S) =

{
f ∈ H(S) : ∥f∥M,A := sup

z∈S,n∈N0

|f (n)(z)|
AnMn

< ∞
}
.

(A{M},A(S), ∥ ∥M,A) is a Banach space.

A{M}(S) :=
⋃

A>0 A{M},A(S) is an (LB) space.

For f ∈ A{M}(S) and for every n ∈ N0, there exists

f (n)(0) := lim
z→0,z∈S

f (n)(z).
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Ider-Sidiqqi’s result

Theorem

Let M ∈ RN0
>0 be a sequence such that limj→+∞(j(1−α)jMj)

1/j = ∞ and for

0 < α ≤ 1, let M(α) = Gα−1
(
G1−αM

)lc

. Then the following assertions are

equivalent:

(a) The sequence M(α) has the (rai) property.

(b) The class A{M}(Sα) is holomorphically closed, i.e, if for all f ∈ A{M}(Sα)
and g ∈ H(U) where U ⊆ C is an open set containing the closure of the
range of f , we have that g ◦ f ∈ A{M}(Sα).

(c) The class A{M}(Sα) is inverse-closed, i.e, if for all f ∈ A{M}(Sα) such
that infz∈Sα |f(z)| > 0 we have that 1/f ∈ A{M}(Sα).

I. Miguel Stability properties for ultraholomorphic classes



Sequences
Weight Matrices
Weight functions

Definition and properties
Ultraholomorphic (Carleman-Roumieu) classes
Ider-Sidiqqi’s result
Characteristic functions in ultraholomorfic classes

Definition

Definition

Let L and S be given. A function f ∈ A{L}(S) is said to be characteristic in
the class A{L}(S), if the following holds true: If for some sequence M we have
f ∈ A{M}(S) ⊆ A{L}(S), then already A{M}(S) = A{L}(S).

Theorem

Let L and S be given. Let f ∈ A{L}(S) with Cn(f) := supz∈S |f (n)(z)| for all
n ∈ N0, then each condition implies the next one:

1 The sequence (|f (j)(0)|)j∈N0 is equivalent to L.
2 The sequence (Cj(f))j∈N0 is equivalent to L.
3 f is characteristic in the class A{L}(S).
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Basic functions I

Definition

Let us consider α ∈ (0, 1], and denote by Ẽα(z) the function defined by

Ẽα(z) := E2−α,4−α(−z) =
∞∑
j=0

(−1)jzj

Γ((2− α)j + 4− α)
, z ∈ C.

Theorem (Salinas (1962))

Let Ẽα(z) be the above function and α ∈ (0, 1], then

∀ z ∈ Sα ∀ n ∈ N0 :
∣∣∣Ẽ(n)

α (z)
∣∣∣ ≤ 2

n!en

n(2−α)n
.

Consequently, Ẽα ∈ A{Gα−1}(Sα). Moreover, Ẽα is a characteristic function in

the class A{Gα−1}(Sα).
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∣∣∣Ẽ(n)

α (z)
∣∣∣ ≤ 2

n!en

n(2−α)n
.
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Basic functions II

Definition

Let α > 1 and take α′ > α. For all z ∈ Sα we define

gα,α′(z) :=

∫ ∞(−ϕ)

0

e−zvα′−1

e−vdv,

where we choose ϕ ∈ (− (α−1)
(α′−1)

π
2
, (α−1)
(α′−1)

π
2
) with | arg(z)− (α′ − 1)ϕ| < π/2.

Theorem (Salinas (1962))

Consider α > 1 and take α′ > α. Let gα,α′ be the above function, then

∃ C,A ≥ 1 ∀ z ∈ Sα ∀ n ∈ N0 :
∣∣∣g(n)

α,α′(z)
∣∣∣ ≤ CAnΓ((α′ − 1)n+ 1).

Consequently, gα,α′ ∈ A
{Gα′−1}

(Sα) and, moreover, gα,α′ is a characteristic

function of the class A
{Gα′−1}

(Sα).
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Construction of Characteristic functions

Definition

Let M be a (lc) sequence, L a general sequence and S be a sector, take
f ∈ A{L}(S). Then we define the TM−transform of f by

TM(f)(z) :=
∞∑
j=0

1

2j
Mj

mj
j

f(mjz), z ∈ S.

Theorem

Let M be a general sequence and α > 0. We assume that

G1−α′
M := (j(1−α′)jMj)j∈N0 is equivalent to a (lc) sequence L depending on

α′, where α′ = α, if α ≤ 1, or α′ > α, if α > 1. Then, the following assertions
hold true:

1 If α ≤ 1, then TL(Ẽα) is characteristic in the class A{M}(Sα).

2 If α > 1, then TL(gα,α′) is characteristic in the class A{M}(Sα).
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Weight matrices

Definition

A weight matrix M is a (one parameter) family of sequences
M := {M(α) : α > 0}, such that

M(α) ≤ M(β) for α ≤ β, M
(α)
0 = 1, ∀ α > 0.

Moreover, we put M̂
(α)

j :=
M

(α)
j

j!
for j ∈ N0, and m

(α)
j :=

M
(α)
j+1

M
(α)
j

for j ∈ N0.

I. Miguel Stability properties for ultraholomorphic classes



Sequences
Weight Matrices
Weight functions

Definition and properties
Ultraholomorphic (Carleman-Roumieu) classes
Stability properties for ultraholomorphic classes defined by weight matrices

Properties I

Let M := {M(α) : α > 0} be a weight matrix, we said that M has:

(Mlc) if M(α) is a log-convex sequence for all α > 0,
(Msc) if M(α) is a normalized weight sequence for all α > 0,

(M{Cω}) ∃ α > 0 : lim infj→∞(M̂
(α)

j )1/j > 0,

(MH) ∀ α > 0 : lim infj→∞(M̂
(α)

j )1/j > 0,
(M{rai})

∀ α > 0 ∃ C > 0 ∃ β > 0 ∀ 1 ≤ j ≤ k : (M̂
(α)

j )1/j ≤ C(M̂
(β)

k )1/k,

(M{FdB}) ∀ α > 0 ∃ β > 0 : (M̂
(α)

)◦ ⪯ M̂
(β)

,

with (M̂
(α)

)◦ := ((M̂
(α)

j )◦)j the sequence defined by

(M̂
(α)

k )◦ := max

{
M̂

(α)

ℓ · M̂
(α)

j1 · · · M̂
(α)

jℓ : ji ∈ N,
ℓ∑

i=1

ji = k

}
, (M̂

(α)

0 )◦ := 1,

(M{dc}) ∀ α > 0 ∃ C > 0 ∃ β > 0 ∀ j ∈ N0 : M
(α)
j+1 ≤ Cj+1M

(β)
j .
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Properties II

Lemma

Let M = {M(α) : α > 0} be a weight matrix. Then we have the following:

(i) (M{rai}) implies (MH).

(ii) (M{dc}) and (M{rai}) imply (M{FdB}).

(iii) If

∀ α > 0 ∃ H ≥ 1 ∀ 1 ≤ j ≤ k : (M
(α)
j )1/j ≤ H(M

(α)
k )1/k,

i.e. each sequence ((M
(α)
j )1/j)j is almost increasing, then (MH) and

(M{FdB}) imply (M{rai}).
In particular, the inequality holds true (with H = 1 for any α) provided
that M is log-convex.
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R-equivalence

Let M = {M(α) : α > 0} and L = {L(α) : α > 0} be given. We write M{⪯}L
if

∀ α > 0 ∃ β > 0 : M(α) ⪯ L(β),

and call M and L R-equivalent, if M{⪯}L and L{⪯}M.

Some properties like (M{rai}) and (M{FdB}) are stable under R-equivalence.
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Ultraholomorphic (Carleman-Roumieu) classes

Given a weight matrix M = {M(α) : α > 0} and a sector S we may introduce
the class A{M}(S) of Roumieu type as

A{M}(S) :=
⋃
α>0

A{M(α)}(S).

R-equivalent weight matrices yield the same function class on each sector S.
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The matrix Mα

Definition

Let M = {M(p) : p > 0} be a weight matrix. Given α > 0 we assume that

limj→+∞(j(1−α)jM
(p)
j )1/j = ∞ for all p > 0. Let us introduce the matrix

Mα := {M(p,α) : p > 0}

given by the sequences satisfying the relation(
G1−αM(p)

)lc

= G1−αM(p,α).

We have that Mα is a weight matrix. However, in general Mα is not
log-convex anymore.
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Stability Properties

Definition

Let M be a sequence and U ⊆ C be an open set. Given K ⊂ U a compact set,
we define

HM,h(K) := {f ∈ H(U) : ∥f∥M,K,h := sup
z∈K,j∈N0

|f (j)(z)|
hjMj

< +∞}.

We put

H{M}(K) :=
⋃
h>0

HM,h(K).

Moreover, given a weight matrix M = {M(p) : p > 0}, we may introduce the
class H{M}(U) as

H{M}(U) :=
⋂

K⊂U

⋃
p>0

H{M(p)}(K).

Definition

Let M = {M(p) : p > 0} be a weight matrix and α > 0. The class A{M}(Sα)
is said to be:

(i) holomorphically closed, if for all f ∈ A{M}(Sα) and g ∈ H(U) where
U ⊆ C is an open set containing the closure of the range of f , we have
that g ◦ f ∈ A{M}(Sα).

(ii) inverse-closed, if for all f ∈ A{M}(Sα) such that infz∈Sα |f(z)| > 0 we
have that 1/f ∈ A{M}(Sα).

(iii) closed under composition, if for all f ∈ A{M}(Sα) and for all
g ∈ H{M}(U) where U ⊆ C is an open set containing the closure of the
range of f , we have that g ◦ f ∈ A{M}(Sα).
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Stability Properties

Definition

Let M = {M(p) : p > 0} be a weight matrix and α > 0. The class A{M}(Sα)
is said to be:

(i) holomorphically closed, if for all f ∈ A{M}(Sα) and g ∈ H(U) where
U ⊆ C is an open set containing the closure of the range of f , we have
that g ◦ f ∈ A{M}(Sα).

(ii) inverse-closed, if for all f ∈ A{M}(Sα) such that infz∈Sα |f(z)| > 0 we
have that 1/f ∈ A{M}(Sα).

(iii) closed under composition, if for all f ∈ A{M}(Sα) and for all
g ∈ H{M}(U) where U ⊆ C is an open set containing the closure of the
range of f , we have that g ◦ f ∈ A{M}(Sα).
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Preparatory results

Theorem (Salinas (1962))

Let 0 < α ≤ 1 and f ∈ H(Sα). If Cn(f) = supz∈Sα
|f (n)(z)|, then the

sequence Bn = n(1−α)nCn(f) verifies

Bn ≤ Aq(1−α)nB
n2−n
n2−n1
n1 B

n−n1
n2−n1
n2 , n1 < n < n2,

where A = 4 and q = 1 if α = 1, or A = 8π and q = 2e(2− α)/(1− α) for the
remainder cases.

Theorem (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let M = {M(p) : p > 0} be a weight matrix and 0 < α ≤ 1 be given such that

limj→+∞(j(1−α)jM
(p)
j )1/j = ∞ for all p > 0. Let us consider the matrix

Mα = {M(p,α) : p > 0}. Then, we have that

A{M}(Sα) = A{Mα}(Sα).
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Main result: Case 0 < α ≤ 1

Theorem (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let M = {M(p) : p > 0} be a weight matrix and 0 < α ≤ 1 be given such that

limj→+∞(j(1−α)jM
(p)
j )1/j = ∞ for all p > 0. Let us consider the matrix

Mα = {M(p,α) : p > 0}. Then the following assertions are equivalent:

(a) The matrix Mα satisfies the property (M{rai}).

(b) The class A{M}(Sα) is holomorphically closed.

(c) The class A{M}(Sα) is inverse-closed.

If M has in addition (M{Cω}) and Mα has (M{dc}), then the list of
equivalences can be extended by

(d) The class A{M}(Sα) is closed under composition.

(e) The matrix Mα satisfies the property (M{FdB}).

If M has (M{dc}) then Mα has it too (the converse is not clear in general).
If α = 0, we obtain the same result by replacing the sector by the positive real
line in the previous theorems.
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Main result: Case 0 < α ≤ 1
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(e) The matrix Mα satisfies the property (M{FdB}).

If M has (M{dc}) then Mα has it too (the converse is not clear in general).
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line in the previous theorems.
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Ider-Sidiqqi’s general result I

Corollary (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let M ∈ RN0
>0 be a sequence, and 0 < α ≤ 1 be given such that

limj→+∞(j(1−α)jMj)
1/j = ∞. Let M(α) = Gα−1

(
G1−αM

)lc

. Then the

following assertions are equivalent:

(a) The sequence M(α) has the (rai) property.

(b) The class A{M}(Sα) is holomorphically closed.

(c) The class A{M}(Sα) is inverse-closed.

If lim infj→∞(M̂ j)
1/j > 0 and the sequence M(α) is (dc), then the list of

equivalences can be extended by

(d) The class A{M}(Sα) is closed under composition.

(e) The sequence M(α) has the (FdB) property.
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Main result: Case α > 1

Theorem (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let M = {M(p) : p > 0} be a weight matrix and consider α > 1. For each

p > 0, we suppose that there exist some αp > α such that G1−αpM(p) is
equivalent to a (lc) sequence L(p) depending on αp. Then the following
assertions are equivalent:

(a) The matrix M satisfies the property (M{rai}).

(b) The class A{M}(Sα) is holomorphically closed.

(c) The class A{M}(Sα) is inverse-closed.

If M has in addition (M{Cω}) and (M{dc}), then the list of equivalences can
be extended by

(d) The class A{M}(Sα) is closed under composition.

(e) The matrix M satisfies the property (M{FdB}).
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Differences between the two cases

Note that there exist some differences between the statements of the previous
theorems.

Proposition (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let M = {M(p) : p > 0} be a given weight matrix. Suppose that for every

p > 0 there exists αp > 0 such that G1−αpM(p) is equivalent to a (lc) sequence
L(p), and that there exists β ∈ R such that β < αp for all p > 0. Then, for

every p > 0 one has limj→+∞(j(1−β)jM
(p)
j )1/j = ∞, M and Mβ are

R-equivalent, and therefore M satisfies the property (M{rai}) (resp.(M{FdB}))
if and only if the matrix Mβ satisfies this condition too. Moreover,
A{Mβ}(Sγ) = A{M}(Sγ), for all γ > 0.
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Ider-Sidiqqi’s general result II

Corollary (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let M ∈ RN0
>0 and α > 1. Suppose there exists α′ > α such that G1−α′

M is
equivalent to an (lc) sequence L (depending on α′). Then the following
assertions are equivalent:

(a) The sequence M has the (rai) property.

(b) The class A{M}(Sα) is holomorphically closed.

(c) The class A{M}(Sα) is inverse-closed.

If lim infj→∞(M̂ j)
1/j > 0 and M is (dc), then the list of equivalences can be

extended by

(d) The class A{M}(Sα) is closed under composition.

(e) The sequence M has the (FdB) property.
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Weight functions

Definition

A function ω : [0,+∞) → [0,+∞) is called a weight function, if it is
continuous, nondecreasing, ω(0) = 0 and limt→+∞ ω(t) = +∞.
If ω satisfies in addition ω(t) = 0 for all t ∈ [0, 1], then we call ω a normalized
weight function.

For any s > 0 we put ωs to be the function given by ωs(t) := ω(ts).
(If s = 0, then we put ω0(t) := ω(1).)
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Associated weight function

Definition

Let M be a sequence such that limj→+∞(Mj)
1/j = +∞, then the associated

weight function ωM : [0,+∞) → [0,+∞) is defined by

ωM(t) := sup
j∈N0

log

(
tj

Mj

)
for t > 0, ωM(0) := 0.

If M is a sequence which satisfies limj→+∞(Mj)
1/j = +∞, we can construct

the log-convex minorant Mlc of M, more precisely

M lc
j = sup

t≥0

tj

exp(ωM(t))
, j ∈ N0.
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Properties

Let ω be a weight function, we say that ω has:

(ω0) if ω is a normalized weight.

(ω1) ω(2t) = O(ω(t)) as t → +∞, i.e.
∃ L ≥ 1 ∀ t ≥ 0 : ω(2t) ≤ L(ω(t) + 1).

(ω2) ω(t) = O(t) as t → +∞.

(ω3) log(t) = o(ω(t)) as t → +∞.

(ω4) φω : t 7→ ω(et) is a convex function on R.
(ω5) ω(t) = o(t) as t → +∞.

(α0) ∃ C ≥ 1 ∃ t0 ≥ 0 ∀ λ ≥ 1 ∀ t ≥ t0 : ω(λt) ≤ Cλω(t).

For convenience we define the sets

W0 := {ω : [0,∞) → [0,∞) : ω has (ω0), (ω3), (ω4)},
W := {ω ∈ W0 : ω has (ω1)}.
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Weight matrices associated with weight functions

For any ω ∈ W0 we define the Legendre-Fenchel-Young-conjugate of φω by

φ∗
ω(x) := sup{xy − φω(y) : y ≥ 0}, x ≥ 0.

Definition

Given ω ∈ W0 we can associate a weight matrix Mω := {W(ℓ) : ℓ > 0} by

W
(ℓ)
j := exp

(
1

ℓ
φ∗

ω(ℓj)

)
, ∀j ∈ N0.

This matrix Mω has (Msc) and (M{dc}).

Mω satisfies (MH) if and only if ω has in addition (ω2).

In particular, if ω ∈ W0 has (ω2) then properties (M{rai}) and (M{FdB}) for
Mω are equivalently satisfied.
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Ultraholomorphic (Braun-Meise-Taylor) classes

Let ω ∈ W0, S be an unbounded sector, and for every ℓ > 0, we first define

Aω,ℓ(S) := {f ∈ H(S) : ∥f∥ω,ℓ := sup
z∈S,j∈N0

|f (j)(z)|
exp( 1

ℓ
φ∗

ω(ℓj))
< +∞}.

(Aω,ℓ(S), ∥ · ∥ω,ℓ) is a Banach space and we put

A{ω}(S) :=
⋃
ℓ>0

Aω,ℓ(S).

A{ω}(S) is called the ultraholomorphic class (of Braun-Meise-Taylor type)
associated with ω in the sector S (it is a (LB) space).

Let ω ∈ W be given and let Mω be the associated weight matrix, then

A{ω}(S) = A{Mω}(S)

holds as locally convex vector spaces.
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Auxiliary Lemma

Lemma

Let ω ∈ W0 be given with associated weight matrix Mω := {W(ℓ) : ℓ > 0}.
Then the following are equivalent:

(a) The matrix Mω has (M{rai}), i.e. (recall Ŵ
(ℓ)

j = W
(ℓ)
j /j!)

∀ ℓ > 0 ∃ ℓ′ > 0 ∃ H ≥ 1 ∀ 1 ≤ j ≤ k : (Ŵ
(ℓ)

j )1/j ≤ H(Ŵ
(ℓ′)

k )1/k.

(b) ω satisfies the condition (α0), so

∃ C ≥ 1 ∃ t0 ≥ 0 ∀ λ ≥ 1 ∀ t ≥ t0 : ω(λt) ≤ Cλω(t).
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Main result: Case 0 < α ≤ 1

Theorem (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let ω ∈ W be given with associated weight matrix Mω := {W(ℓ) : ℓ > 0} and
let 0 < α ≤ 1. Then the following are equivalent:

(a) The matrix Mω has (M{rai}).

(b) ω satisfies the condition (α0).

(c) The class A{ω}(Sα) is holomorphically closed.

(d) The class A{ω}(Sα) is inverse-closed.

If ω has in addition (ω2), then the list of equivalences can be extended by:

(e) The class A{ω}(Sα) is closed under composition.

(f) The matrix Mω satisfies the condition (M{FdB}).
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Main result: Case α > 1

Theorem (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let ω ∈ W0 be given with associated weight matrix Mω := {W(ℓ) : ℓ > 0} and
let α > 1. Suppose there exists s > α− 1 such that, for ωs(t) := ω(ts), one
has:

(i) ωs has (ω5).

(ii) ωs satisfies the condition (α0).

Then the following are equivalent:

(a) The matrix Mω has (M{rai}).

(b) ω satisfies the condition (α0).

(c) The class A{ω}(Sα) is holomorphically closed.

(d) The class A{ω}(Sα) is inverse-closed.

If ω has in addition (ω2), then the list of equivalences can be extended by:

(e) The class A{ω}(Sα) is closed under composition.

(f) The matrix Mω satisfies the condition (M{FdB}).
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THANK YOU VERY MUCH FOR YOUR ATTENTION!

I. Miguel Stability properties for ultraholomorphic classes


	Sequences
	Definition and properties
	Ultraholomorphic (Carleman-Roumieu) classes
	Ider-Sidiqqi's result
	Characteristic functions in ultraholomorfic classes

	Weight Matrices
	Definition and properties
	Ultraholomorphic (Carleman-Roumieu) classes
	Stability properties for ultraholomorphic classes defined by weight matrices

	Weight functions
	Definition and properties
	Ultraholomorphic (Braun-Meise-Taylor) classes
	Stability properties for ultraholomorphic classes


