Sequences Weight Matrices Weight functions

Stability properties for ultraholomorphic classes defined in unbounded sectors

Ignacio Miguel (University of Valladolid, Spain)

Joint work with J. Jiménez-Garrido (Univ. Cantabria), J. Sanz (Univ. Valladolid), G. Schindl (Univ. Vienna)

Complex Differential and Difference Equations II August 31st 2023

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

S	equences
Weight	Matrices
Weight	functions

Sectors and sequences

 $\ensuremath{\mathcal{R}}$ will denote the Riemann surface of the logarithm.

Given $\alpha > 0$, we consider unbounded sectors

$$S_{\alpha} := \{ z \in \mathcal{R}; \ |\arg(z)| < \pi \alpha/2 \}.$$

イロト イポト イヨト イヨト

э

Sequences	Definition and properties
t Matrices	Ultraholomorphic (Carleman-Roumieu) clas
t functions	lder-Sidiqqi's result
e functions	Characteristic functions in ultraholomorfic

Sectors and sequences

 ${\mathcal R}$ will denote the Riemann surface of the logarithm.

Given $\alpha > 0$, we consider unbounded sectors

$$S_{\alpha} := \{ z \in \mathcal{R}; | \arg(z) | < \pi \alpha/2 \}.$$

 $\mathbb{N}_0 = \{0, 1, 2, \dots\}.$

Let $\mathbb{M} = (M_n)_{n \in \mathbb{N}_0}$ be a sequence of positive real numbers, with $M_0 = 1$. We denote by $\widetilde{\mathbb{M}} = (\widetilde{M}_n)_{n \in \mathbb{N}_0}$ the sequence defined by $\widetilde{M}_n := \frac{M_n}{n!}$.

Example:

• For $a \in \mathbb{R}$ we set

$$\mathbb{G}^a := (j!^a)_{j \in \mathbb{N}_0}, \qquad \overline{\mathbb{G}}^a := (j^{ja})_{j \in \mathbb{N}_0},$$

i.e. for a > 0 the sequence \mathbb{G}^a is the Gevrey-sequence of index a.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ● ●

S	equences
Weight	Matrices
Weight	functions

Log-convexity

 \mathbb{M} is said to be logarithmically convex or (lc) if $M_n^2 \leq M_{n-1}M_{n+1}$, $n \geq 1$; equivalently, the sequence of quotients of \mathbb{M} , $\boldsymbol{m} = (m_n := \frac{M_{n+1}}{M_n})_{n \in \mathbb{N}_0}$, is nondecreasing.

(1) マン・ (1) マン・ (1)

S	equences
Weight	Matrices
Weight	functions

Log-convexity

 \mathbb{M} is said to be logarithmically convex or (Ic) if $M_n^2 \leq M_{n-1}M_{n+1}$, $n \geq 1$; equivalently, the sequence of quotients of \mathbb{M} , $\boldsymbol{m} = (m_n := \frac{M_{n+1}}{M_n})_{n \in \mathbb{N}_0}$, is nondecreasing.

If \mathbb{M} satisfies $\lim_{j \to +\infty} (M_j)^{1/j} = +\infty$, we denote by \mathbb{M}^{l^c} the log-convex minorant of \mathbb{M} , i.e. each log-convex sequence \mathbb{L} with $\mathbb{L} \leq \mathbb{M}$ satisfies $\mathbb{L} \leq \mathbb{M}^{l^c}$ (and $\mathbb{M}^{l^c} \equiv \mathbb{M}$ if and only if \mathbb{M} is log-convex).

不同 とうきょうきょう

S	equences
Weight	Matrices
Weight	functions

Log-convexity

 \mathbb{M} is said to be logarithmically convex or (Ic) if $M_n^2 \leq M_{n-1}M_{n+1}$, $n \geq 1$; equivalently, the sequence of quotients of \mathbb{M} , $\boldsymbol{m} = (m_n := \frac{M_{n+1}}{M_n})_{n \in \mathbb{N}_0}$, is nondecreasing.

If \mathbb{M} satisfies $\lim_{j \to +\infty} (M_j)^{1/j} = +\infty$, we denote by \mathbb{M}^{l^c} the log-convex minorant of \mathbb{M} , i.e. each log-convex sequence \mathbb{L} with $\mathbb{L} \leq \mathbb{M}$ satisfies $\mathbb{L} \leq \mathbb{M}^{l^c}$ (and $\mathbb{M}^{l^c} \equiv \mathbb{M}$ if and only if \mathbb{M} is log-convex).

We say $\mathbb M$ is a weight sequence, if $\mathbb M$ is (Ic) and $\lim_{n \to \infty} m_n = \infty$.

不同 とうきょうきょう

Sequences	
Weight Matrices	
Weight functions	

Properties of the sequences

 \mathbb{M} is called *normalized* if $1 = M_0 \leq M_1$ holds true.

イロン イ団 と イヨン イヨン

э

Sequences	
Weight Matrices	
Weight functions	

Properties of the sequences

 \mathbb{M} is called *normalized* if $1 = M_0 \leq M_1$ holds true.

 ${\mathbb M}$ has derivation closedness, denoted by (dc), if

 $\exists D \ge 1 \ \forall j \in \mathbb{N}_0: \ M_{j+1} \le D^{j+1} M_j \Longleftrightarrow m_j \le D^{j+1}.$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ → ■ → の Q (>)

Sequences	
Weight Matrices	
Weight functions	

Properties of the sequences

 \mathbb{M} is called *normalized* if $1 = M_0 \leq M_1$ holds true.

 ${\mathbb M}$ has derivation closedness, denoted by (dc), if

$$\exists D \ge 1 \ \forall j \in \mathbb{N}_0: \ M_{j+1} \le D^{j+1} M_j \Longleftrightarrow m_j \le D^{j+1}.$$

 ${\mathbb M}$ has the condition root almost increasing, denoted by (rai), if

$$\exists \ C>0 \ \forall \ 1 \leq j \leq k: \quad \widecheck{M}_j^{1/j} \leq C \widecheck{M}_k^{1/k}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

3

Sequences	
Weight Matrices	
Weight functions	

Properties of the sequences

 \mathbb{M} is called *normalized* if $1 = M_0 \leq M_1$ holds true.

 ${\mathbb M}$ has derivation closedness, denoted by (dc), if

$$\exists D \ge 1 \ \forall j \in \mathbb{N}_0: \ M_{j+1} \le D^{j+1} M_j \Longleftrightarrow m_j \le D^{j+1}.$$

 ${\mathbb M}$ has the condition root almost increasing, denoted by (rai), if

$$\exists \ C>0 \ \forall \ 1 \leq j \leq k: \quad \widecheck{M}_j^{1/j} \leq C \widecheck{M}_k^{1/k}.$$

 $\mathbb M$ has the Faà-di-Bruno property, denoted by (FdB), if

$$\exists \ C \ge 1 \ \exists \ h \ge 1 \ \forall \ j \in \mathbb{N}_0: \quad \widecheck{M}_j^\circ \le C h^j \widecheck{M}_j,$$

with $\breve{\mathbb{M}}^\circ:=(\widecheck{M}_j^\circ)_{j\in\mathbb{N}_0}$ the sequence defined by

$$\widetilde{\boldsymbol{M}}_{k}^{\circ} := \max\left\{\widetilde{\boldsymbol{M}}_{\ell} \cdot \widetilde{\boldsymbol{M}}_{j_{1}} \cdots \widetilde{\boldsymbol{M}}_{j_{\ell}} : j_{i} \in \mathbb{N}, \sum_{i=1}^{\ell} j_{i} = k\right\}, \quad \widetilde{\boldsymbol{M}}_{0}^{\circ} := 1.$$

S	equences
Weight	Matrices
Weight	functions

Let \mathbb{M}, \mathbb{L} two sequences, we write $\mathbb{M} \preceq \mathbb{L}$ if $\sup_{j \in \mathbb{N}} (M_j/L_j)^{1/j} < +\infty$ and call \mathbb{M} and \mathbb{L} equivalent, denoted by $\mathbb{M} \approx \mathbb{L}$, if $\mathbb{M} \preceq \mathbb{L}$ and $\mathbb{L} \preceq \mathbb{M}$; equivalently, there exist some constant A, B > 0 such that $A^n M_n \leq L_n \leq B^n M_n$ for all $n \in \mathbb{N}$.

くぼう イラト イラト

Sequences Weight Matrices Weight functions Definition and properties Ultraholomorphic (Carleman-Roumieu) classes Ider-Sidiqqi's result Characteristic functions in ultraholomorfic classes

Ultraholomorphic (Carleman-Roumieu) classes

Given $\mathbb{M},\,A>0$ and a sector S, we consider

$$\mathcal{A}_{\{\mathbb{M}\},A}(S) = \left\{ f \in \mathcal{H}(S) \colon \|f\|_{\mathbb{M},A} := \sup_{z \in S, n \in \mathbb{N}_0} \frac{|f^{(n)}(z)|}{A^n M_n} < \infty \right\}.$$

 $(\mathcal{A}_{\{\mathbb{M}\},A}(S), \| \|_{\mathbb{M},A})$ is a Banach space. $\mathcal{A}_{\{\mathbb{M}\}}(S) := \bigcup_{A>0} \mathcal{A}_{\{\mathbb{M}\},A}(S)$ is an (LB) space.

3

Sequences Weight Matrices Weight functions Definition and properties Ultraholomorphic (Carleman-Roumieu) classes Ider-Sidiqqi's result Characteristic functions in ultraholomorfic classes

Ultraholomorphic (Carleman-Roumieu) classes

Given $\mathbb{M},\,A>0$ and a sector S, we consider

$$\mathcal{A}_{\{\mathbb{M}\},A}(S) = \left\{ f \in \mathcal{H}(S) \colon \|f\|_{\mathbb{M},A} := \sup_{z \in S, n \in \mathbb{N}_0} \frac{|f^{(n)}(z)|}{A^n M_n} < \infty \right\}.$$

 $(\mathcal{A}_{\{\mathbb{M}\},A}(S), \| \|_{\mathbb{M},A})$ is a Banach space. $\mathcal{A}_{\{\mathbb{M}\}}(S) := \bigcup_{A>0} \mathcal{A}_{\{\mathbb{M}\},A}(S)$ is an (LB) space. For $f \in \mathcal{A}_{\{\mathbb{M}\}}(S)$ and for every $n \in \mathbb{N}_0$, there exists

$$f^{(n)}(0) := \lim_{z \to 0, z \in S} f^{(n)}(z).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Ider-Sidiqqi's result

Theorem

Let $\mathbb{M} \in \mathbb{R}_{>0}^{\mathbb{N}_0}$ be a sequence such that $\lim_{j \to +\infty} (j^{(1-\alpha)j}M_j)^{1/j} = \infty$ and for $0 < \alpha \le 1$, let $\mathbb{M}^{(\alpha)} = \overline{\mathbb{G}}^{\alpha-1} \left(\overline{\mathbb{G}}^{1-\alpha}\mathbb{M}\right)^{lc}$. Then the following assertions are equivalent:

- (a) The sequence $\mathbb{M}^{(\alpha)}$ has the (rai) property.
- (b) The class $\mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$ is holomorphically closed, i.e, if for all $f \in \mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$ and $g \in \mathcal{H}(U)$ where $U \subseteq \mathbb{C}$ is an open set containing the closure of the range of f, we have that $g \circ f \in \mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$.
- (c) The class $\mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$ is inverse-closed, i.e, if for all $f \in \mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$ such that $\inf_{z \in S_{\alpha}} |f(z)| > 0$ we have that $1/f \in \mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$.

・ロ・・(型・・モー・・)

5	equences
Weight	Matrices
Weight	functions

Definition

Definition

Let \mathbb{L} and S be given. A function $f \in \mathcal{A}_{\{\mathbb{L}\}}(S)$ is said to be **characteristic** in the class $\mathcal{A}_{\{\mathbb{L}\}}(S)$, if the following holds true: If for some sequence \mathbb{M} we have $f \in \mathcal{A}_{\{\mathbb{M}\}}(S) \subseteq \mathcal{A}_{\{\mathbb{L}\}}(S)$, then already $\mathcal{A}_{\{\mathbb{M}\}}(S) = \mathcal{A}_{\{\mathbb{L}\}}(S)$.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

5	equences
Weight	Matrices
Weight	functions

Definition

Definition

Let \mathbb{L} and S be given. A function $f \in \mathcal{A}_{\{\mathbb{L}\}}(S)$ is said to be **characteristic** in the class $\mathcal{A}_{\{\mathbb{L}\}}(S)$, if the following holds true: If for some sequence \mathbb{M} we have $f \in \mathcal{A}_{\{\mathbb{M}\}}(S) \subseteq \mathcal{A}_{\{\mathbb{L}\}}(S)$, then already $\mathcal{A}_{\{\mathbb{M}\}}(S) = \mathcal{A}_{\{\mathbb{L}\}}(S)$.

Theorem

Let \mathbb{L} and S be given. Let $f \in \mathcal{A}_{\{\mathbb{L}\}}(S)$ with $C_n(f) := \sup_{z \in S} |f^{(n)}(z)|$ for all $n \in \mathbb{N}_0$, then each condition implies the next one:

- The sequence $(|f^{(j)}(0)|)_{j \in \mathbb{N}_0}$ is equivalent to \mathbb{L} .
- **2** The sequence $(C_j(f))_{j \in \mathbb{N}_0}$ is equivalent to \mathbb{L} .
- f is characteristic in the class $\mathcal{A}_{\{\mathbb{L}\}}(S)$.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Sequences Weight Matrices Weight functions	Definition and properties Ultraholomorphic (Carleman-Roumieu) classes Ider-Sidiqqi's result Characteristic functions in ultraholomorfic classes
--	--

Basic functions I

Definition

Let us consider $\alpha \in (0,1],$ and denote by $\widetilde{E}_{\alpha}(z)$ the function defined by

$$\widetilde{E}_{\alpha}(z) := E_{2-\alpha,4-\alpha}(-z) = \sum_{j=0}^{\infty} \frac{(-1)^j z^j}{\Gamma((2-\alpha)j+4-\alpha)}, \qquad z \in \mathbb{C}.$$

э

Sequences Weight Matrices Weight functions	Definition and properties Ultraholomorphic (Carleman-Roumieu) classes Ider-Sidiqqi's result Characteristic functions in ultraholomorfic classes
--	--

Basic functions I

Definition

Let us consider $\alpha \in (0,1],$ and denote by $\widetilde{E}_{\alpha}(z)$ the function defined by

$$\widetilde{E}_{\alpha}(z) := E_{2-\alpha,4-\alpha}(-z) = \sum_{j=0}^{\infty} \frac{(-1)^j z^j}{\Gamma((2-\alpha)j+4-\alpha)}, \qquad z \in \mathbb{C}.$$

Theorem (Salinas (1962))

Let $\widetilde{E}_{\alpha}(z)$ be the above function and $\alpha \in (0,1]$, then

$$\forall z \in S_{\alpha} \ \forall \ n \in \mathbb{N}_0: \quad \left| \widetilde{E}_{\alpha}^{(n)}(z) \right| \le 2 \frac{n! e^n}{n^{(2-\alpha)n}}.$$

Consequently, $\widetilde{E}_{\alpha} \in \mathcal{A}_{\{\overline{\mathbb{G}}^{\alpha-1}\}}(S_{\alpha})$. Moreover, \widetilde{E}_{α} is a characteristic function in the class $\mathcal{A}_{\{\overline{\mathbb{G}}^{\alpha-1}\}}(S_{\alpha})$.

Sequences Weight Matrices Weight functions Definition and properties Ultraholomorphic (Carler Ider-Sidiqqi's result Characteristic functions i	
--	--

Basic functions II

Definition

Let $\alpha > 1$ and take $\alpha' > \alpha$. For all $z \in S_{\alpha}$ we define

$$g_{\alpha,\alpha'}(z) := \int_0^{\infty(-\phi)} e^{-zv^{\alpha'-1}} e^{-v} dv,$$

where we choose $\phi \in (-\frac{(\alpha-1)}{(\alpha'-1)}\frac{\pi}{2}, \frac{(\alpha-1)}{(\alpha'-1)}\frac{\pi}{2})$ with $|\arg(z) - (\alpha'-1)\phi| < \pi/2$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● のへで

Sequences Weight Matrices Weight functions	Definition and properties Ultraholomorphic (Carleman-Roumieu) classes Ider-Sidiqqi's result Characteristic functions in ultraholomorfic classes

Basic functions II

Definition

Let $\alpha > 1$ and take $\alpha' > \alpha$. For all $z \in S_{\alpha}$ we define

$$g_{\alpha,\alpha'}(z) := \int_0^{\infty(-\phi)} e^{-zv^{\alpha'-1}} e^{-v} dv,$$

where we choose $\phi \in \left(-\frac{(\alpha-1)}{(\alpha'-1)}\frac{\pi}{2}, \frac{(\alpha-1)}{(\alpha'-1)}\frac{\pi}{2}\right)$ with $|\arg(z) - (\alpha'-1)\phi| < \pi/2$.

Theorem (Salinas (1962))

Consider $\alpha > 1$ and take $\alpha' > \alpha$. Let $g_{\alpha,\alpha'}$ be the above function, then

$$\exists C, A \ge 1 \ \forall \ z \in S_{\alpha} \ \forall \ n \in \mathbb{N}_0: \quad \left| g_{\alpha,\alpha'}^{(n)}(z) \right| \le CA^n \Gamma((\alpha'-1)n+1).$$

Consequently, $g_{\alpha,\alpha'} \in \mathcal{A}_{\{\overline{\mathbb{G}}^{\alpha'-1}\}}(S_{\alpha})$ and, moreover, $g_{\alpha,\alpha'}$ is a characteristic function of the class $\mathcal{A}_{\{\overline{\mathbb{G}}^{\alpha'-1}\}}(S_{\alpha})$.

- 小田 ト イヨト 一日

Sequences Weight Matrices Neight functions Definition and properties Ultraholomorphic (Carleman-Roumieu) classes Ider-Sidiqqi's result Characteristic functions in ultraholomorfic classes

Construction of Characteristic functions

Definition

Let $\mathbb M$ be a (lc) sequence, $\mathbb L$ a general sequence and S be a sector, take $f\in \mathcal A_{\{\mathbb L\}}(S).$ Then we define the $\mathcal T_{\mathbb M}-{\rm transform}$ of f by

$$\mathcal{T}_{\mathbb{M}}(f)(z) := \sum_{j=0}^{\infty} \frac{1}{2^j} \frac{M_j}{m_j^j} f(m_j z), \qquad z \in S.$$

イロト 不得 トイヨト イヨト

3

Sequences Weight Matrices Neight functions Definition and properties Ultraholomorphic (Carleman-Roumieu) classes Ider-Sidiqqi's result Characteristic functions in ultraholomorfic classes

Construction of Characteristic functions

Definition

Let $\mathbb M$ be a (Ic) sequence, $\mathbb L$ a general sequence and S be a sector, take $f\in \mathcal A_{\{\mathbb L\}}(S).$ Then we define the $\mathcal T_{\mathbb M}-{\rm transform}$ of f by

$$\mathcal{T}_{\mathbb{M}}(f)(z) := \sum_{j=0}^{\infty} \frac{1}{2^j} \frac{M_j}{m_j^j} f(m_j z), \qquad z \in S.$$

Theorem

Let \mathbb{M} be a general sequence and $\alpha > 0$. We assume that $\overline{\mathbb{G}}^{1-\alpha'}\mathbb{M} := (j^{(1-\alpha')j}M_j)_{j\in\mathbb{N}_0}$ is equivalent to a (lc) sequence \mathbb{L} depending on α' , where $\alpha' = \alpha$, if $\alpha \leq 1$, or $\alpha' > \alpha$, if $\alpha > 1$. Then, the following assertions hold true:

• If
$$\alpha \leq 1$$
, then $\mathcal{T}_{\mathbb{L}}(\widetilde{E}_{\alpha})$ is characteristic in the class $\mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$.

2 If $\alpha > 1$, then $\mathcal{T}_{\mathbb{L}}(g_{\alpha,\alpha'})$ is characteristic in the class $\mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Definition and properties Ultraholomorphic (Carleman-Roumieu) classes Stability properties for ultraholomorphic classes defined by weight matrices

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

-

Weight matrices

Definition

A weight matrix \mathcal{M} is a (one parameter) family of sequences $\mathcal{M} := \{\mathbb{M}^{(\alpha)} : \alpha > 0\}$, such that

$$\mathbb{M}^{(\alpha)} \leq \mathbb{M}^{(\beta)} \text{ for } \alpha \leq \beta, \qquad M_0^{(\alpha)} = 1, \quad \forall \; \alpha > 0.$$

Moreover, we put $\widecheck{M}_{j}^{(\alpha)} := \frac{M_{j}^{(\alpha)}}{j!}$ for $j \in \mathbb{N}_{0}$, and $m_{j}^{(\alpha)} := \frac{M_{j+1}^{(\alpha)}}{M_{j}^{(\alpha)}}$ for $j \in \mathbb{N}_{0}$.

Sequences	Definition and properties
Weight Matrices	Ultraholomorphic (Carleman-Roumieu) classes
Veight functions	Stability properties for ultraholomorphic classes defined by weight matrices

Properties I

Let $\mathcal{M}:=\{\mathbb{M}^{(\alpha)}:\alpha>0\}$ be a weight matrix, we said that $\mathcal M$ has:

$$\begin{split} & (\mathcal{M}_{\mathsf{lc}}) & \text{if } \mathbb{M}^{(\alpha)} \text{ is a log-convex sequence for all } \alpha > 0, \\ & (\mathcal{M}_{\mathsf{sc}}) & \text{if } \mathbb{M}^{(\alpha)} \text{ is a normalized weight sequence for all } \alpha > 0, \\ & (\mathcal{M}_{\{\mathsf{c}^{\omega}\}}) & \exists \alpha > 0 : \quad \liminf_{j \to \infty} (\widetilde{M}_{j}^{(\alpha)})^{1/j} > 0, \\ & (\mathcal{M}_{\mathcal{H}}) & \forall \alpha > 0 : \quad \liminf_{j \to \infty} (\widetilde{M}_{j}^{(\alpha)})^{1/j} > 0, \\ & (\mathcal{M}_{\{\mathsf{rai}\}}) & \forall \alpha > 0 : \quad \liminf_{j \to \infty} (\widetilde{M}_{j}^{(\alpha)})^{1/j} \leq C(\widetilde{M}_{k}^{(\beta)})^{1/k}, \\ & (\mathcal{M}_{\{\mathsf{rdB}\}}) & \forall \alpha > 0 \exists \beta > 0 \forall 1 \leq j \leq k : \quad (\widetilde{M}_{j}^{(\alpha)})^{\alpha})^{\alpha} \preceq \widetilde{\mathbb{M}}^{(\beta)}, \\ & \text{with } (\widetilde{\mathbb{M}}^{(\alpha)})^{\circ} := ((\widetilde{M}_{j}^{(\alpha)})^{\circ})_{j} \text{ the sequence defined by} \\ & (\widetilde{M}_{k}^{(\alpha)})^{\circ} := \max \left\{ \widetilde{M}_{\ell}^{(\alpha)} \cdot \widetilde{M}_{j_{1}}^{(\alpha)} \cdots \widetilde{M}_{j_{\ell}}^{(\alpha)} : j_{i} \in \mathbb{N}, \sum_{i=1}^{\ell} j_{i} = k \right\}, \quad (\widetilde{M}_{0}^{(\alpha)})^{\circ} := 1, \\ & (\mathcal{M}_{\{\mathsf{dc}\}}) & \forall \alpha > 0 \exists C > 0 \exists \beta > 0 \forall j \in \mathbb{N}_{0} : M_{j+1}^{(\alpha)} \leq C^{j+1} M_{j}^{(\beta)}. \end{split}$$

▶ ▲ 臣 ▶ 臣 • • • • • •

Properties II

Lemma

Let $\mathcal{M} = \{\mathbb{M}^{(\alpha)} : \alpha > 0\}$ be a weight matrix. Then we have the following: (i) $(\mathcal{M}_{\{rai\}})$ implies $(\mathcal{M}_{\mathcal{H}})$. (ii) $(\mathcal{M}_{\{dc\}})$ and $(\mathcal{M}_{\{rai\}})$ imply $(\mathcal{M}_{\{FdB\}})$. (iii) If $\forall \alpha > 0 \exists H \ge 1 \forall 1 \le j \le k : (M_j^{(\alpha)})^{1/j} \le H(M_k^{(\alpha)})^{1/k}$, i.e. each sequence $((M_j^{(\alpha)})^{1/j})_j$ is almost increasing, then $(\mathcal{M}_{\mathcal{H}})$ and $(\mathcal{M}_{\{FdB\}})$ imply $(\mathcal{M}_{\{rai\}})$. In particular, the inequality holds true (with H = 1 for any α) provided that \mathcal{M} is log-convex.

イロト 不得 トイヨト イヨト 二日

R-equivalence

Let $\mathcal{M}=\{\mathbb{M}^{(\alpha)}:\alpha>0\}$ and $\mathcal{L}=\{\mathbb{L}^{(\alpha)}:\alpha>0\}$ be given. We write $\mathcal{M}\{\preceq\}\mathcal{L}$ if

$$\forall \ \alpha > 0 \ \exists \ \beta > 0 : \quad \mathbb{M}^{(\alpha)} \preceq \mathbb{L}^{(\beta)},$$

and call \mathcal{M} and \mathcal{L} *R*-equivalent, if $\mathcal{M}\{\leq\}\mathcal{L}$ and $\mathcal{L}\{\leq\}\mathcal{M}$.

Some properties like $(\mathcal{M}_{\{rai\}})$ and $(\mathcal{M}_{\{FdB\}})$ are stable under R-equivalence.

Sequences Weight Matrices Weight functions

Definition and properties Ultraholomorphic (Carleman-Roumieu) classes Stability properties for ultraholomorphic classes defined by weight matrices

・ 同 ト ・ ヨ ト ・ ヨ ト

Ultraholomorphic (Carleman-Roumieu) classes

Given a weight matrix $\mathcal{M} = \{\mathbb{M}^{(\alpha)} : \alpha > 0\}$ and a sector S we may introduce the class $\mathcal{A}_{\{\mathcal{M}\}}(S)$ of *Roumieu type* as

$$\mathcal{A}_{\{\mathcal{M}\}}(S) := \bigcup_{\alpha > 0} \mathcal{A}_{\{\mathbb{M}^{(\alpha)}\}}(S).$$

R-equivalent weight matrices yield the same function class on each sector S.

Definition and properties Ultraholomorphic (Carleman-Roumieu) classes Stability properties for ultraholomorphic classes defined by weight matrices

The matrix \mathcal{M}^{lpha}

Definition

Let $\mathcal{M} = \{\mathbb{M}^{(p)} : p > 0\}$ be a weight matrix. Given $\alpha > 0$ we assume that $\lim_{j \to +\infty} (j^{(1-\alpha)j} M_j^{(p)})^{1/j} = \infty$ for all p > 0. Let us introduce the matrix

 $\mathcal{M}^{\alpha} := \{ \mathbb{M}^{(p,\alpha)} : p > 0 \}$

given by the sequences satisfying the relation

$$\left(\overline{\mathbb{G}}^{1-\alpha}\mathbb{M}^{(p)}\right)^{\mathsf{lc}} = \overline{\mathbb{G}}^{1-\alpha}\mathbb{M}^{(p,\alpha)}.$$

We have that \mathcal{M}^{α} is a weight matrix. However, in general \mathcal{M}^{α} is not log-convex anymore.

Sequences Definition and properties Weight Matrices Ultraholomorphic (Carleman-Roumieu) classes Weight functions Stability properties for ultraholomorphic classes defined by weight matrices

Stability Properties

Definition

Let $\mathbb M$ be a sequence and $U\subseteq \mathbb C$ be an open set. Given $K\subset U$ a compact set, we define

$$\mathcal{H}_{\mathbb{M},h}(K) := \{ f \in \mathcal{H}(U) : \|f\|_{\mathbb{M},K,h} := \sup_{z \in K, j \in \mathbb{N}_0} \frac{|f^{(j)}(z)|}{h^j M_j} < +\infty \}.$$

We put

$$\mathcal{H}_{\{\mathbb{M}\}}(K) := \bigcup_{h>0} \mathcal{H}_{\mathbb{M},h}(K).$$

Moreover, given a weight matrix $\mathcal{M} = \{\mathbb{M}^{(p)} : p > 0\}$, we may introduce the class $\mathcal{H}_{\{\mathcal{M}\}}(U)$ as

$$\mathcal{H}_{\{\mathcal{M}\}}(U) := \bigcap_{K \subset U} \bigcup_{p>0} \mathcal{H}_{\{\mathbb{M}^{(p)}\}}(K).$$

(1) マン・ (1) マン・ (1)

イロン 不得 とくほう くほう 二日

Stability Properties

Definition

Let $\mathcal{M} = \{\mathbb{M}^{(p)} : p > 0\}$ be a weight matrix and $\alpha > 0$. The class $\mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$ is said to be:

- (i) holomorphically closed, if for all $f \in \mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$ and $g \in \mathcal{H}(U)$ where $U \subseteq \mathbb{C}$ is an open set containing the closure of the range of f, we have that $g \circ f \in \mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$.
- (*ii*) inverse-closed, if for all $f \in \mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$ such that $\inf_{z \in S_{\alpha}} |f(z)| > 0$ we have that $1/f \in \mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$.
- (iii) closed under composition, if for all $f \in \mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$ and for all $g \in \mathcal{H}_{\{\mathcal{M}\}}(U)$ where $U \subseteq \mathbb{C}$ is an open set containing the closure of the range of f, we have that $g \circ f \in \mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$.

Sequences	Definition and properties
Weight Matrices	Ultraholomorphic (Carleman-Roumieu) classes
Veight functions	Stability properties for ultraholomorphic classes defined by weight matrices

Preparatory results

Theorem (Salinas (1962))

Let $0 < \alpha \le 1$ and $f \in \mathcal{H}(S_{\alpha})$. If $C_n(f) = \sup_{z \in S_{\alpha}} |f^{(n)}(z)|$, then the sequence $B_n = n^{(1-\alpha)n} C_n(f)$ verifies

$$B_n \le Aq^{(1-\alpha)n} B_{n_1}^{\frac{n_2-n}{n_2-n_1}} B_{n_2}^{\frac{n-n_1}{n_2-n_1}}, \qquad n_1 < n < n_2.$$

where A = 4 and q = 1 if $\alpha = 1$, or $A = 8\pi$ and $q = 2e(2 - \alpha)/(1 - \alpha)$ for the remainder cases.

Sequences	Definition and properties
Neight Matrices	Ultraholomorphic (Carleman-Roumieu) classes
Veight functions	Stability properties for ultraholomorphic classes defined by weight matrices

Preparatory results

Theorem (Salinas (1962))

Let $0 < \alpha \leq 1$ and $f \in \mathcal{H}(S_{\alpha})$. If $C_n(f) = \sup_{z \in S_{\alpha}} |f^{(n)}(z)|$, then the sequence $B_n = n^{(1-\alpha)n} C_n(f)$ verifies

$$B_n \le Aq^{(1-\alpha)n} B_{n_1}^{\frac{n_2-n}{n_2-n_1}} B_{n_2}^{\frac{n-n_1}{n_2-n_1}}, \qquad n_1 < n < n_2,$$

where A=4 and q=1 if $\alpha=1,$ or $A=8\pi$ and $q=2e(2-\alpha)/(1-\alpha)$ for the remainder cases.

Theorem (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let $\mathcal{M} = \{\mathbb{M}^{(p)} : p > 0\}$ be a weight matrix and $0 < \alpha \leq 1$ be given such that $\lim_{j \to +\infty} (j^{(1-\alpha)j} M_j^{(p)})^{1/j} = \infty$ for all p > 0. Let us consider the matrix $\mathcal{M}^{\alpha} = \{\mathbb{M}^{(p,\alpha)} : p > 0\}$. Then, we have that

$$\mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha}) = \mathcal{A}_{\{\mathcal{M}^{\alpha}\}}(S_{\alpha}).$$

- (四) (日) (日) (日) (日)

Main result: Case $0 < \alpha \leq 1$

Theorem (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let $\mathcal{M} = \{\mathbb{M}^{(p)} : p > 0\}$ be a weight matrix and $0 < \alpha \leq 1$ be given such that $\lim_{j \to +\infty} (j^{(1-\alpha)j} M_j^{(p)})^{1/j} = \infty$ for all p > 0. Let us consider the matrix $\mathcal{M}^{\alpha} = \{\mathbb{M}^{(p,\alpha)} : p > 0\}$. Then the following assertions are equivalent:

(a) The matrix \mathcal{M}^{α} satisfies the property $(\mathcal{M}_{\{rai\}})$.

- (b) The class $\mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$ is holomorphically closed.
- (c) The class $\mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$ is inverse-closed.

If \mathcal{M} has in addition $(\mathcal{M}_{\{C^{\omega}\}})$ and \mathcal{M}^{α} has $(\mathcal{M}_{\{dc\}})$, then the list of equivalences can be extended by

- (d) The class $\mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$ is closed under composition.
- (e) The matrix \mathcal{M}^{α} satisfies the property $(\mathcal{M}_{\{FdB\}})$.

Main result: Case $0 < \alpha \leq 1$

Theorem (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let $\mathcal{M} = \{\mathbb{M}^{(p)} : p > 0\}$ be a weight matrix and $0 < \alpha \leq 1$ be given such that $\lim_{j \to +\infty} (j^{(1-\alpha)j} M_j^{(p)})^{1/j} = \infty$ for all p > 0. Let us consider the matrix $\mathcal{M}^{\alpha} = \{\mathbb{M}^{(p,\alpha)} : p > 0\}$. Then the following assertions are equivalent:

(a) The matrix \mathcal{M}^{α} satisfies the property $(\mathcal{M}_{\{rai\}})$.

- (b) The class $\mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$ is holomorphically closed.
- (c) The class $\mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$ is inverse-closed.

If \mathcal{M} has in addition $(\mathcal{M}_{\{C^{\omega}\}})$ and \mathcal{M}^{α} has $(\mathcal{M}_{\{dc\}})$, then the list of equivalences can be extended by

(d) The class $\mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$ is closed under composition.

(e) The matrix \mathcal{M}^{α} satisfies the property $(\mathcal{M}_{\{FdB\}})$.

If \mathcal{M} has $(\mathcal{M}_{\{dc\}})$ then \mathcal{M}^{α} has it too (the converse is not clear in general). If $\alpha = 0$, we obtain the same result by replacing the sector by the positive real line in the previous theorems.

Definition and properties Ultraholomorphic (Carleman-Roumieu) classes Stability properties for ultraholomorphic classes defined by weight matrices

イロン 不得 とくほ とくほ とうほう

Ider-Sidiqqi's general result I

Corollary (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let $\mathbb{M} \in \mathbb{R}^{\mathbb{N}_0}_{>0}$ be a sequence, and $0 < \alpha \leq 1$ be given such that $\lim_{j \to +\infty} (j^{(1-\alpha)j}M_j)^{1/j} = \infty$. Let $\mathbb{M}^{(\alpha)} = \overline{\mathbb{G}}^{\alpha-1} \left(\overline{\mathbb{G}}^{1-\alpha}\mathbb{M}\right)^k$. Then the following assertions are equivalent:

- (a) The sequence $\mathbb{M}^{(\alpha)}$ has the (rai) property.
- (b) The class $\mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$ is holomorphically closed.

(c) The class
$$\mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$$
 is inverse-closed.

If $\liminf_{j\to\infty} (\widetilde{M}_j)^{1/j} > 0$ and the sequence $\mathbb{M}^{(\alpha)}$ is (dc), then the list of equivalences can be extended by

- (d) The class $\mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$ is closed under composition.
- (e) The sequence $\mathbb{M}^{(\alpha)}$ has the (FdB) property.

Main result: Case $\alpha > 1$

Theorem (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let $\mathcal{M} = \{\mathbb{M}^{(p)} : p > 0\}$ be a weight matrix and consider $\alpha > 1$. For each p > 0, we suppose that there exist some $\alpha_p > \alpha$ such that $\overline{\mathbb{G}}^{1-\alpha_p} \mathbb{M}^{(p)}$ is equivalent to a (lc) sequence $\mathbb{L}^{(p)}$ depending on α_p . Then the following assertions are equivalent:

- (a) The matrix \mathcal{M} satisfies the property $(\mathcal{M}_{\{rai\}})$.
- (b) The class $\mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$ is holomorphically closed.
- (c) The class $\mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$ is inverse-closed.

If $\mathcal M$ has in addition $(\mathcal M_{\{C^\omega\}})$ and $(\mathcal M_{\{dc\}})$, then the list of equivalences can be extended by

- (d) The class $\mathcal{A}_{\{\mathcal{M}\}}(S_{\alpha})$ is closed under composition.
- (e) The matrix \mathcal{M} satisfies the property $(\mathcal{M}_{\{FdB\}})$.

・ロト ・ 一下・ ・ ヨト・

Definition and properties Ultraholomorphic (Carleman-Roumieu) classes Stability properties for ultraholomorphic classes defined by weight matrices

イボト イヨト イヨト

Differences between the two cases

Note that there exist some differences between the statements of the previous theorems.

Proposition (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let $\mathcal{M} = \{\mathbb{M}^{(p)} : p > 0\}$ be a given weight matrix. Suppose that for every p > 0 there exists $\alpha_p > 0$ such that $\overline{\mathbb{G}}^{1-\alpha_p} \mathbb{M}^{(p)}$ is equivalent to a (lc) sequence $\mathbb{L}^{(p)}$, and that there exists $\beta \in \mathbb{R}$ such that $\beta < \alpha_p$ for all p > 0. Then, for every p > 0 one has $\lim_{j \to +\infty} (j^{(1-\beta)j} M_j^{(p)})^{1/j} = \infty$, \mathcal{M} and \mathcal{M}^{β} are *R*-equivalent, and therefore \mathcal{M} satisfies the property $(\mathcal{M}_{\{rai\}})$ (resp. $(\mathcal{M}_{\{FdB\}})$) if and only if the matrix \mathcal{M}^{β} satisfies this condition too. Moreover, $\mathcal{A}_{\{\mathcal{M}^{\beta}\}}(S_{\gamma}) = \mathcal{A}_{\{\mathcal{M}\}}(S_{\gamma})$, for all $\gamma > 0$.

Definition and properties Ultraholomorphic (Carleman-Roumieu) classes Stability properties for ultraholomorphic classes defined by weight matrices

イロン 不得 とくほ とくほ とうほう

Ider-Sidiqqi's general result II

Corollary (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let $\mathbb{M} \in \mathbb{R}_{>0}^{\mathbb{N}_0}$ and $\alpha > 1$. Suppose there exists $\alpha' > \alpha$ such that $\overline{\mathbb{G}}^{1-\alpha'}\mathbb{M}$ is equivalent to an (lc) sequence \mathbb{L} (depending on α'). Then the following assertions are equivalent:

- (a) The sequence \mathbb{M} has the (rai) property.
- (b) The class $\mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$ is holomorphically closed.
- (c) The class $\mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$ is inverse-closed.

If $\liminf_{j\to\infty} (\widetilde{M}_j)^{1/j} > 0$ and \mathbb{M} is (dc), then the list of equivalences can be extended by

- (d) The class $\mathcal{A}_{\{\mathbb{M}\}}(S_{\alpha})$ is closed under composition.
- (e) The sequence \mathbb{M} has the (FdB) property.

Definition and properties Ultraholomorphic (Braun-Meise-Taylor) classes Stability properties for ultraholomorphic classes

Weight functions

Definition

A function $\omega : [0, +\infty) \to [0, +\infty)$ is called a *weight function*, if it is continuous, nondecreasing, $\omega(0) = 0$ and $\lim_{t \to +\infty} \omega(t) = +\infty$. If ω satisfies in addition $\omega(t) = 0$ for all $t \in [0, 1]$, then we call ω a normalized weight function.

For any s>0 we put ω^s to be the function given by $\omega^s(t):=\omega(t^s)$. (If s=0, then we put $\omega^0(t):=\omega(1)$.)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

-

Sequences Weight Matrices Weight functions Definition and properties Ultraholomorphic (Braun-Meise-Taylor) classes Stability properties for ultraholomorphic classes

Associated weight function

Definition

Let \mathbb{M} be a sequence such that $\lim_{j\to+\infty} (M_j)^{1/j} = +\infty$, then the associated weight function $\omega_{\mathbb{M}} : [0, +\infty) \to [0, +\infty)$ is defined by

$$\omega_{\mathbb{M}}(t) := \sup_{j \in \mathbb{N}_0} \log\left(\frac{t^j}{M_j}\right) \quad \text{for } t > 0, \qquad \qquad \omega_{\mathbb{M}}(0) := 0.$$

イロト 不得 トイヨト イヨト

э

Sequences Weight Matrices Weight functions Definition and properties Ultraholomorphic (Braun-Meise-Taylor) classes Stability properties for ultraholomorphic classes

Associated weight function

Definition

Let \mathbb{M} be a sequence such that $\lim_{j\to+\infty} (M_j)^{1/j} = +\infty$, then the associated weight function $\omega_{\mathbb{M}} : [0, +\infty) \to [0, +\infty)$ is defined by

$$\omega_{\mathbb{M}}(t) := \sup_{j \in \mathbb{N}_0} \log\left(\frac{t^j}{M_j}\right) \quad \text{for } t > 0, \qquad \qquad \omega_{\mathbb{M}}(0) := 0.$$

If \mathbb{M} is a sequence which satisfies $\lim_{j\to+\infty} (M_j)^{1/j} = +\infty$, we can construct the log-convex minorant \mathbb{M}^{lc} of \mathbb{M} , more precisely

$$M_j^{\mathsf{lc}} = \sup_{t \ge 0} \frac{t^j}{\exp(\omega_{\mathbb{M}}(t))}, \quad j \in \mathbb{N}_0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Properties

Let ω be a weight function, we say that ω has:

$$\begin{array}{ll} (\omega_0) \mbox{ if } \omega \mbox{ is a normalized weight.} \\ (\omega_1) \ \omega(2t) = O(\omega(t)) \mbox{ as } t \to +\infty, \mbox{ i.e.} \\ \ \exists \ L \ge 1 \ \forall \ t \ge 0: \quad \omega(2t) \le L(\omega(t) + 1). \\ (\omega_2) \ \omega(t) = O(t) \mbox{ as } t \to +\infty. \\ (\omega_3) \ \log(t) = o(\omega(t)) \mbox{ as } t \to +\infty. \\ (\omega_4) \ \varphi_{\omega} : t \mapsto \omega(e^t) \mbox{ is a convex function on } \mathbb{R}. \\ (\omega_5) \ \omega(t) = o(t) \mbox{ as } t \to +\infty. \\ (\alpha_0) \ \exists \ C \ge 1 \ \exists \ t_0 \ge 0 \ \forall \ \lambda \ge 1 \ \forall \ t \ge t_0: \quad \omega(\lambda t) \le C\lambda\omega(t). \end{array}$$

For convenience we define the sets

$$\begin{split} \mathcal{W}_0 &:= \{ \omega : [0, \infty) \to [0, \infty) : \omega \text{ has } (\omega_0), (\omega_3), (\omega_4) \}, \\ \mathcal{W} &:= \{ \omega \in \mathcal{W}_0 : \omega \text{ has } (\omega_1) \}. \end{split}$$

イロト 不得 トイヨト イヨト

3

Sequences De Weight Matrices UI Weight functions St

Definition and properties Ultraholomorphic (Braun-Meise-Taylor) classes Stability properties for ultraholomorphic classes

Weight matrices associated with weight functions

For any $\omega \in \mathcal{W}_0$ we define the Legendre-Fenchel-Young-conjugate of φ_ω by

$$\varphi_{\omega}^*(x) := \sup\{xy - \varphi_{\omega}(y) : y \ge 0\}, \quad x \ge 0.$$

Definition

Given $\omega \in \mathcal{W}_0$ we can associate a weight matrix $\mathcal{M}_\omega := \{\mathbb{W}^{(\ell)} : \ell > 0\}$ by

$$W_j^{(\ell)} := \exp\left(rac{1}{\ell} \varphi_\omega^*(\ell j)
ight), \quad \forall j \in \mathbb{N}_0.$$

This matrix \mathcal{M}_{ω} has (\mathcal{M}_{sc}) and $(\mathcal{M}_{\{dc\}})$.

・ロ・ ・ 四・ ・ ヨ・ ・

Sequences De Weight Matrices UI Weight functions St

Definition and properties Ultraholomorphic (Braun-Meise-Taylor) classes Stability properties for ultraholomorphic classes

Weight matrices associated with weight functions

For any $\omega \in \mathcal{W}_0$ we define the Legendre-Fenchel-Young-conjugate of φ_ω by

$$\varphi_{\omega}^*(x) := \sup\{xy - \varphi_{\omega}(y) : y \ge 0\}, \quad x \ge 0.$$

Definition

Given $\omega \in \mathcal{W}_0$ we can associate a weight matrix $\mathcal{M}_\omega := \{ \mathbb{W}^{(\ell)} : \ell > 0 \}$ by

$$W_j^{(\ell)} := \exp\left(rac{1}{\ell} arphi_\omega^*(\ell j)
ight), \quad orall j \in \mathbb{N}_0.$$

This matrix \mathcal{M}_{ω} has (\mathcal{M}_{sc}) and $(\mathcal{M}_{\{dc\}})$.

 \mathcal{M}_{ω} satisfies $(\mathcal{M}_{\mathcal{H}})$ if and only if ω has in addition (ω_2) . In particular, if $\omega \in \mathcal{W}_0$ has (ω_2) then properties $(\mathcal{M}_{\{rai\}})$ and $(\mathcal{M}_{\{FdB\}})$ for \mathcal{M}_{ω} are equivalently satisfied.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

-

Ultraholomorphic (Braun-Meise-Taylor) classes

Let $\omega \in \mathcal{W}_0$, S be an unbounded sector, and for every $\ell > 0$, we first define

$$\mathcal{A}_{\omega,\ell}(S) := \{ f \in \mathcal{H}(S) : \|f\|_{\omega,\ell} := \sup_{z \in S, j \in \mathbb{N}_0} \frac{|f^{(j)}(z)|}{\exp(\frac{1}{\ell}\varphi_{\omega}^*(\ell j))} < +\infty \}.$$

 $(\mathcal{A}_{\omega,\ell}(S),\|\cdot\|_{\omega,\ell})$ is a Banach space and we put

$$\mathcal{A}_{\{\omega\}}(S) := \bigcup_{\ell > 0} \mathcal{A}_{\omega,\ell}(S).$$

 $\mathcal{A}_{\{\omega\}}(S)$ is called the ultraholomorphic class (of Braun-Meise-Taylor type) associated with ω in the sector S (it is a (LB) space).

・ 同 ト ・ ヨ ト ・ ヨ ト

Ultraholomorphic (Braun-Meise-Taylor) classes

Let $\omega \in \mathcal{W}_0$, S be an unbounded sector, and for every $\ell > 0$, we first define

$$\mathcal{A}_{\omega,\ell}(S) := \{ f \in \mathcal{H}(S) : \|f\|_{\omega,\ell} := \sup_{z \in S, j \in \mathbb{N}_0} \frac{|f^{(j)}(z)|}{\exp(\frac{1}{\ell}\varphi_{\omega}^*(\ell j))} < +\infty \}.$$

 $(\mathcal{A}_{\omega,\ell}(S),\|\cdot\|_{\omega,\ell})$ is a Banach space and we put

$$\mathcal{A}_{\{\omega\}}(S) := \bigcup_{\ell > 0} \mathcal{A}_{\omega,\ell}(S).$$

 $\mathcal{A}_{\{\omega\}}(S)$ is called the ultraholomorphic class (of Braun-Meise-Taylor type) associated with ω in the sector S (it is a (LB) space).

Let $\omega \in \mathcal{W}$ be given and let \mathcal{M}_{ω} be the associated weight matrix, then

$$\mathcal{A}_{\{\omega\}}(S) = \mathcal{A}_{\{\mathcal{M}_{\omega}\}}(S)$$

holds as locally convex vector spaces.

・ロト ・ 一下・ ・ ヨト・

Definition and properties Ultraholomorphic (Braun-Meise-Taylor) classes Stability properties for ultraholomorphic classes

Auxiliary Lemma

Lemma

Let $\omega \in W_0$ be given with associated weight matrix $\mathcal{M}_{\omega} := \{ \mathbb{W}^{(\ell)} : \ell > 0 \}$. Then the following are equivalent:

(a) The matrix
$$\mathcal{M}_{\omega}$$
 has $(\mathcal{M}_{\{rai\}})$, i.e. $(recall \ \widetilde{W}_{j}^{(\ell)} = W_{j}^{(\ell)}/j!)$

$$\forall \, \ell > 0 \; \exists \; \ell' > 0 \; \exists \; H \geq 1 \; \forall \; 1 \leq j \leq k : \quad (\widetilde{W}_j^{(\ell)})^{1/j} \leq H(\widetilde{W}_k^{(\ell')})^{1/k}.$$

(b) ω satisfies the condition (α_0) , so

 $\exists C \ge 1 \ \exists t_0 \ge 0 \ \forall \lambda \ge 1 \ \forall t \ge t_0: \quad \omega(\lambda t) \le C \lambda \omega(t).$

イロト 不得 トイヨト イヨト 二日

Sequences Weight Matrices Weight functions Definition and properties Ultraholomorphic (Braun-Meise-Taylor) classes Stability properties for ultraholomorphic classes

Main result: Case $0 < \alpha \leq 1$

Theorem (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let $\omega \in W$ be given with associated weight matrix $\mathcal{M}_{\omega} := \{ \mathbb{W}^{(\ell)} : \ell > 0 \}$ and let $0 < \alpha \leq 1$. Then the following are equivalent:

- (a) The matrix \mathcal{M}_{ω} has $(\mathcal{M}_{\{rai\}})$.
- (b) ω satisfies the condition (α_0) .
- (c) The class $\mathcal{A}_{\{\omega\}}(S_{\alpha})$ is holomorphically closed.
- (d) The class $\mathcal{A}_{\{\omega\}}(S_{\alpha})$ is inverse-closed.
- If ω has in addition (ω_2) , then the list of equivalences can be extended by:
- (e) The class $\mathcal{A}_{\{\omega\}}(S_{\alpha})$ is closed under composition.
- (f) The matrix \mathcal{M}_{ω} satisfies the condition $(\mathcal{M}_{\{FdB\}})$.

イロン 不得 とくほ とくほ とうほう

Main result: Case $\alpha > 1$

Theorem (J. Jiménez-Garrido, I. M-C, J. Sanz, G. Schindl (2023))

Let $\omega \in W_0$ be given with associated weight matrix $\mathcal{M}_{\omega} := \{\mathbb{W}^{(\ell)} : \ell > 0\}$ and let $\alpha > 1$. Suppose there exists $s > \alpha - 1$ such that, for $\omega^s(t) := \omega(t^s)$, one has:

- (i) ω^s has (ω_5) .
- (ii) ω^s satisfies the condition (α_0) .

Then the following are equivalent:

- (a) The matrix \mathcal{M}_{ω} has $(\mathcal{M}_{\{rai\}})$.
- (b) ω satisfies the condition (α_0) .
- (c) The class $\mathcal{A}_{\{\omega\}}(S_{\alpha})$ is holomorphically closed.
- (d) The class $\mathcal{A}_{\{\omega\}}(S_{\alpha})$ is inverse-closed.

If ω has in addition (ω_2) , then the list of equivalences can be extended by:

- (e) The class $\mathcal{A}_{\{\omega\}}(S_{\alpha})$ is closed under composition.
- (f) The matrix \mathcal{M}_{ω} satisfies the condition $(\mathcal{M}_{\{FdB\}})$.

ヘロト ヘヨト ヘヨト

Weight functions Stability properties for ultraholomorphic classes
--

THANK YOU VERY MUCH FOR YOUR ATTENTION!

I. Miguel Stability properties for ultraholomorphic classes

= nar