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Introduction

In this talk, we discuss differential transcendence of solutions to second order
linear q-difference equations.

A function f(x) is differentially algebraic over C(x) if f(x) satisfies a non-trivial
algebraic differential equation with coefficients in C(x), i.e.,
∃G(X,Y0, Y1, . . . , Yn) ∈ C[X,Y0, Y1, . . . , Yn]\{0} s.t.

G

(
x, f,

df

dx
, . . . ,

dnf

dxn

)
≡ 0. (1)

A function f(x) is differentially transcendental over C(x) if f(x) is not
differentially algebraic over C(x).

Previous works
There are results on differential transcendence w.r.t eq. of q-special functions:
• q-Airy: y(q2x) + xy(qx)− y(x) = 0 ([Nishioka, 2018])
• Ramanujan: qxy(q2x)− y(qx) + y(x) = 0 ([Ogawara, 2023])
• Hahn-Exton q-Bessel when q : tr. / Q (essentially proved in [Nishioka, 2016])
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Introduction

• q ∈ C\{0} : not a root of unity.
• τ : ϕ(x) 7→ ϕ(qx) the q-shift operator.

Consider a second order linear q-difference equation with coefficients ai ∈ C[x]×,

a2τ
2(y) + a1τ(y) + a0y = 0. (2)

Define a linear fractional transformation as(
α β
γ δ

)
∗ y :=

αy + β

γy + δ
.

We transform the q-difference equation into a certain q-difference Riccati equation:

z :=

(
a1 a0
a1 0

)
∗ τ(y)

y
, a := −a2τ(a0)

a1τ(a1)
, (3)

(2)  τ(z) =

(
1 a
1 0

)
∗ z. (4)

The equation (4) is called Tietze’s normal form.
3 / 21



Theorem 1 ([Nishioka, 2018, Theorem 9 (q-difference ver.)])

Put
A =

(
1 a
1 0

)
, a ∈ C(x)\C

Consider the following q-difference Riccati equation of Tietze’s normal form:

τ(y) = A ∗ y = 1 +
a

y
, (5)

Suppose that

1 ∃p ∈ P = C ∪ {∞} s.t. ordp(τ
ka) > 0 for ∀k ∈ Z≥0. (ordp(x− p)n := n)

2 Put Ak = (τk−1A)(τk−2A) · · · (τA)A.
For ∀k ∈ Z≥1, τk(y) = Ak ∗ y has no algebraic solution.

3 The following third order linear q-difference equation has no rational solution,

q3τ2(a)τ3(y)+q2(τ(a) + 1)τ2(y)−q(τ(a) + 1)τ(y)−ay+qτ

(
d

dx
log a

)
= 0. (6)

Then (5) has no differentially algebraic solution over C(x).
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More precisely, the criterion is described by means of difference fields.

Theorem 2 ([Nishioka, 2018, Theorem 9])
Let
• F = (F,D0, τ0) : a DTC field with D0τ0 = sτ0D0 for a certain s ∈ F×.

• F/K : an algebraic function field of one variable.

• A =

(
1 r
1 0

)
∈ GL2(F ), (D0r 6= 0).

Suppose that

1 ∃ a place P of F/K s.t. vP (τ
i
0r) > 0 for ∀i ∈ Z≥0.

2 Put Ak = (τk−1A)(τk−2A) · · · (τA)A.
For ∀i ∈ Z≥1, τ

i
0(y) = Ai ∗ y has no algebraic solution over F.

Let U = (U,D, τ) be a DTC overfield of F with Dτ = sτD.
If ∃ a differentially algebraic solution f ∈ U over F satisfying τ0(y) = A ∗ y,
then ∃g ∈ F s.t.

τ2(sr)τ(s)sτ3(g) + (τ(r) + 1)τ(s)sτ2(g)− (τ(r) + 1)sτ(g)− rg + sτ

(
Dr

r

)
= 0. (7)
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Tietze’s theorem

Theorem 1 ([Nishioka, 2018, Theorem 9 (q-difference ver.)]) has redundant
assumptions than Tietze’s theorem.

Theorem 3 ([Tietze, 1905])
Consider the following difference Riccati equation

y(x+ 1) = 1 +
a(x)

y(x)
, a ∈ C(x)\C. (8)

Suppose that

1 a → 0 (x → ∞), i.e., ord∞ a > 0.

2 (8) has no rational solution.

Then (8) has no differentially algebraic solution over C(x).

 We shall simplify the assumptions of Nishioka’s theorem to the same extent as
those of Tietze’s theorem.
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Criterion for second order linear q-difference equation

Consider a second order linear q-difference equation

a2τ
2(y) + a1τ(y) + a0y = 0,

(
ai ∈ C[x]×

)
. (9)

Tietze’s normal form of the q-difference Riccati equation w.r.t. (9) is given by

τ(y) = A ∗ y = 1 +
a

y
, a = −a2τ(a0)

a1τ(a1)
. (10)

Proposition 1
Suppose that the coefficients a0, a1, a2 satisfy at least one of the following
inequilities:

(I0) ord0 a2 + ord0 a0 − 2 ord0 a1 > 0 (⇔ ord0 a > 0)

(I∞) 2 deg a1 − deg a0 − deg a2 > 0 (⇔ ord∞ a > 0)

Then the following 3rd order linear q-difference equation has no rational solution,

q3τ2(a)τ3(y) + q2(τ(a) + 1)τ2(y)− q(τ(a) + 1)τ(y)− ay + qτ

(
d

dx
log a

)
= 0 (11)
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Criterion for second order linear q-difference equation

Put A =

(
1 a
1 0

)
, a ∈ C(x)\C. Let

A1 := A, Ak := (τk−1A)(τk−2A) · · · (τA)A.

Define
• V (A) := {f ∈ C(x) | τ(f) = A ∗ f},

the set of rational solutions to Tietze’s normal form.
• V k(A) :=

{
f ∈ C(x) | τk(f) = Ak ∗ f

}
,

the set of alg. sol. to k-iterated Tietze’s normal form.

Theorem 4

Suppose (I0) or (I∞). If f is an algebraic solution to τk(y) = Ak ∗ y, then f is a
rational solution to τ(y) = A ∗ y, i.e.,

V (A) = V 1(A) = V 2(A) = · · · = V k(A) = · · · . (12)

Key ideas of proof: By [Hendriks, 1997, Lemma 10] or [Nishioka, 2010, Lemma 8],
algebraic solutions are rational solutions in the variable x1/l for some l ∈ Z≥1.
Computing the ramification order ram

(∑
i ϕix

i/l
)
:= min {i ∈ Z | ϕi 6= 0, l 6 | i},

we find ram f = ∞, i.e., l = 1.
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Main result

Theorem 5

Consider a second order linear q-difference equation with ai ∈ C[x]×,

a2τ
2(y) + a1τ(y) + a0y = 0. (13)

Tietze’s normal form of the q-difference Riccati equation w.r.t. (13) is given by

τ(y) = A ∗ y = 1 +
a

y
,

(
a = −a2τ(a0)

a1τ(a1)

)
. (14)

Suppose that

1 The coefficients a0, a1, a2 satisfy at least one of the following inequilities::
(I0) ord0 a2 + ord0 a0 − 2 ord0 a1 > 0 (⇔ ord0 a > 0)
(I∞) 2 deg a1 − deg a0 − deg a2 > 0 (⇔ ord∞ a > 0)

2 (14) has no rational solution.

Then (13) has no non-trivial differentially algebraic solution over C(x).

9 / 21



Degeneration diagram of Gauss hypergeometric equation

Weber

##
Gauss // Kummer

99

%%

Airy

Bessel

;;

There are three unified approaches to construct the degeneration diagram:
• Confluence of singularities
• Separation of variables of the Laplacian by orthogonal coordinates
• Classifying differential equations of the Laplace type
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Degeneration diagram of Heine q-hypergeometric equation

Ohyama constructed a degeneration diagram of Heine q-hypergeometric equation
by using a q-analogue of classifying differential equations of the Laplace type
[Ohyama, 2011].

Hahn-Exton q-Bessel // q-Airy

Heine // q-confluent

55

//

))

Jackson q-Bessel

))
q-Hermite-Weber // Ramanujan
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Conditions (I0), (I∞) for q-difference equations of the hypergeometric type

We check the conditions (I0), (I∞) for second order linear q-difference equations
of the hypergeometric type (cf. [Ohyama, 2011]).

Equation Irregular singular pt. Conditions
Heine q-hypergeometric ∅ none
q-confluent x = ∞ (I∞)
Jackson q-Bessel ∅ none
Hahn-Exton q-Bessel x = ∞ (I∞)
q-Hermite-Weber x = 0,∞ (I0), (I∞)
q-Airy x = ∞ (I∞)
Ramanujan x = 0,∞2 (apparent) (I0)

In order to prove differential transcendence of solutions to five of these
q-difference equations, we only have to show that there is no rat. sol. to
τ(y) = A ∗ y by virtue of Theorem 5.
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Another criterion for differential transcendence of 2nd ord. lin. difference eq.

Theorem 6 ([Arreche et al., 2021, Theorem 3.5 (q-difference ver.)])
Let
• K =

⋃
l∈Z≥1

C(x1/l) : the field of ramified rational functions.
• τ : ϕ(x) 7→ ϕ(qx)

Consider a second-order linear q-difference equation

τ2(y) + aτ(y) + by = 0 (a ∈ K, b ∈ K×) (15)

Suppose that

• τ(u) =

(
−a −b
1 0

)
∗ u has no solution u in K.

• For ∀L ∈ C[δ]×, δ = x d
dx , the q-difference equation

L
(
δb

b

)
= τ(g)− g

has no solution g in K.

Then (15) has no non-trivial differentially algebraic solution over K.
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Application to q-Hermite-Weber equation

Let a ∈ C\{0} = C×. q-Hermite-Weber equation is

axτ2(y) + (1− x)τ(y)− y = 0.

Tietze’s normal form of q-Hermite-Weber equation is

τ(y) =

(
1 α
1 0

)
∗ y, α =

ax

(1− x)(1− qx)
. (16)

We rewrite (16) as

Fyτ(y) +Gy +H = 0, (17)

where (F,G,H) = ((1− x)(1− qx), −(1− x)(1− qx), −ax).
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Application to q-Hermite-Weber equation

Fyτ(y) +Gy +H = 0, (17)
(F,G,H) = ((1− x)(1− qx), −(1− x)(1− qx), −ax).

By Hendriks’ algorithm [Hendriks, 1997, Section 4.1], we shall find a rational
solution u to (17). Write u ∈ C(x) as

u = cxmP

T
, (c ∈ C×,m ∈ Z)

where P, T ∈ C[x]monic s.t. gcd(P, T ) = gcd(P, x) = gcd(T, x) = 1.
Let R ∈ C[x]monic be the greatest monic divisor of T satisfying τR | P.
Then we have ∃t, p ∈ C[x]monic s.t. T = tR, P = pτR and

u = cxm p

t

τR

R
. (18)

Substituting (18) to (17), we find p | H and t | τ−1F. Hence we define

Sp :=
{
p̃ ∈ C[x]monic ; p̃ | H, gcd(p̃, x) = 1

}
= {1},

St :=
{
t̃ ∈ C[x]monic ; t̃ | τ−1F, gcd(t̃, x) = 1

}
= {1, x− 1, x− q, (x− 1)(x− q)}.
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Application to q-Hermite-Weber equation

Fyτ(y) +Gy +H = 0, (17)
(F,G,H) = ((1− x)(1− qx), −(1− x)(1− qx), −ax).

In addition to Sp, St, we define

S0 := {all possibilities for the first term of u expressed in C((x))}
= {1,−ax},

S∞ :=
{

all possibilities for the first term of u expressed in C((x−1))
}

=

{
1,−a

q
x−1

}
Put e := degR ∈ Z≥0. From the form u, we obtain

ut

cxmp
=

τR

R
≡

{
1 mod x,

qe mod x−1.
(19)

 For each possibility (p, t, u0, u∞) ∈ Sp × St × S0 × S∞ and the parameter
a ∈ C×, we determine c,m,R by using (17) and (19).
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Application to q-Hermite-Weber equation

Tietze’s normal form of q-Hermite-Weber equation

τy =

(
1 α
1 0

)
∗ y, α =

ax

(1− x)(1− qx)
. (16)

Proposition 2

Let a ∈ C×.

• When a = qe+1, e ∈ Z≥0, (16) has a rational solution

u = − 1

x− 1

τR

R
, R =

e∑
k=0

(
e

k

)
q

xk.

• When a = q−e, e ∈ Z≥0, (16) has a rational solution

u = q−e x

x− 1

τR

R
, R =

e∑
k=0

(
e

k

)
q

qk(k−e)xk.

• When a ∈ C×\qZ, (16) has no rational solution.
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Application to q-Hermite-Weber equation

From Proposition 2 and our main result, we obtain the following theorem:

Theorem 7
Let a ∈ C×. Consider q-Hermite-Weber equation

axτ2(y) + (1− x)τ(y)− y = 0.

Every non-trivial solution to q-Hermite-Weber equation is differentially
transcendental over C(x) if a 6∈ qZ.

18 / 21



Application to Hahn-Exton q-Bessel equation

Let ν ∈ C. Hahn-Exton q-Bessel equation is the following linear q-difference
equation

τ(y) +

(
x2

4
− qν − q−ν

)
y + τ−1y = 0. (20)

This equation is transformed into the q-difference Riccati equation

uτu+

(
x2

4
− α

)
u+ 1 = 0, (21)

where α = qν + q−ν .
Nishioka showed (21) has no algebraic solution when q is transcendental over Q in
[Nishioka, 2016, Proposition 16].
In the same way as before, it follows from Hendriks’ algorithm that (21) has no
rational solution for any parameter α.

Theorem 8
For any ν ∈ C, every non-trivial solution to Hahn-Exton q-Bessel equation is
differentially transcendental over C(x).
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Conclusion and future work

Conclusion
We have examined the following subjects:
• Simplifying the conditions of Nishioka’s criterion w.r.t. the q-shift operator to

the same extent as those of Tietze’s theorem.
• Applying our result to q-Hermite-Weber equation and Hahn-Exton q-Bessel

equation.
• Determining when every non-trivial solution for these equations is

differentially transcendental over C(x) by using Hendriks’ algorithm.

Future work
Investigating to determine differential transcendence of q-confluent equation.
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Thank you for your attention!
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