Differential transcendence of solutions for second order linear q-difference equations

Hiroshi Ogawara
Josai University

Complex Differential and Difference Equations II Mathematical Research and Conference Center
Będlewo, Poland

$$
17: 50-18: 30,8.31 .2023
$$

Introduction

In this talk, we discuss differential transcendence of solutions to second order linear q-difference equations.

A function $f(x)$ is differentially algebraic over $\mathbb{C}(x)$ if $f(x)$ satisfies a non-trivial algebraic differential equation with coefficients in $\mathbb{C}(x)$, i.e., ${ }^{\exists} G\left(X, Y_{0}, Y_{1}, \ldots, Y_{n}\right) \in \mathbb{C}\left[X, Y_{0}, Y_{1}, \ldots, Y_{n}\right] \backslash\{0\}$ s.t.

$$
\begin{equation*}
G\left(x, f, \frac{d f}{d x}, \ldots, \frac{d^{n} f}{d x^{n}}\right) \equiv 0 \tag{1}
\end{equation*}
$$

A function $f(x)$ is differentially transcendental over $\mathbb{C}(x)$ if $f(x)$ is not differentially algebraic over $\mathbb{C}(x)$.

Previous works

There are results on differential transcendence w.r.t eq. of q-special functions:

- q-Airy: $y\left(q^{2} x\right)+x y(q x)-y(x)=0$ ([Nishioka, 2018])
- Ramanujan: $q x y\left(q^{2} x\right)-y(q x)+y(x)=0$ ([Ogawara, 2023])
- Hahn-Exton q-Bessel when q : tr. / \mathbb{Q} (essentially proved in [Nishioka, 2016])
- $q \in \mathbb{C} \backslash\{0\}$: not a root of unity.
- $\tau: \varphi(x) \mapsto \varphi(q x)$ the q-shift operator.

Consider a second order linear q-difference equation with coefficients $a_{i} \in \mathbb{C}[x]^{\times}$,

$$
\begin{equation*}
a_{2} \tau^{2}(y)+a_{1} \tau(y)+a_{0} y=0 \tag{2}
\end{equation*}
$$

Define a linear fractional transformation as

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) * y:=\frac{\alpha y+\beta}{\gamma y+\delta}
$$

We transform the q-difference equation into a certain q-difference Riccati equation:

$$
\begin{align*}
& z:=\left(\begin{array}{cc}
a_{1} & a_{0} \\
a_{1} & 0
\end{array}\right) * \frac{\tau(y)}{y}, \quad a:=-\frac{a_{2} \tau\left(a_{0}\right)}{a_{1} \tau\left(a_{1}\right)} \tag{3}\\
& (2) \quad \rightsquigarrow \quad \tau(z)=\left(\begin{array}{ll}
1 & a \\
1 & 0
\end{array}\right) * z . \tag{4}
\end{align*}
$$

The equation (4) is called Tietze's normal form.

Theorem 1 ([Nishioka, 2018, Theorem 9 (q-difference ver.)])

Put

$$
A=\left(\begin{array}{ll}
1 & a \\
1 & 0
\end{array}\right), \quad a \in \mathbb{C}(x) \backslash \mathbb{C}
$$

Consider the following q-difference Riccati equation of Tietze's normal form:

$$
\begin{equation*}
\tau(y)=A * y=1+\frac{a}{y}, \tag{5}
\end{equation*}
$$

Suppose that
(1) ${ }^{\exists} p \in \mathbb{P}=\mathbb{C} \cup\{\infty\}$ s.t. $\operatorname{ord}_{p}\left(\tau^{k} a\right)>0$ for ${ }^{\forall} k \in \mathbb{Z}_{\geq 0} .\left(\operatorname{ord}_{p}(x-p)^{n}:=n\right)$
(2) Put $A_{k}=\left(\tau^{k-1} A\right)\left(\tau^{k-2} A\right) \cdots(\tau A) A$.

For ${ }^{\forall} k \in \mathbb{Z}_{\geq 1}, \tau^{k}(y)=A_{k} * y$ has no algebraic solution.
(3) The following third order linear q-difference equation has no rational solution,

$$
\begin{equation*}
q^{3} \tau^{2}(a) \tau^{3}(y)+q^{2}(\tau(a)+1) \tau^{2}(y)-q(\tau(a)+1) \tau(y)-a y+q \tau\left(\frac{d}{d x} \log a\right)=0 . \tag{6}
\end{equation*}
$$

Then (5) has no differentially algebraic solution over $\mathbb{C}(x)$.

More precisely, the criterion is described by means of difference fields.

Theorem 2 ([Nishioka, 2018, Theorem 9])

Let

- $\mathcal{F}=\left(F, D_{0}, \tau_{0}\right)$: a DTC field with $D_{0} \tau_{0}=s \tau_{0} D_{0}$ for a certain $s \in F^{\times}$.
- F / K : an algebraic function field of one variable.
- $A=\left(\begin{array}{ll}1 & r \\ 1 & 0\end{array}\right) \in \mathrm{GL}_{2}(F), \quad\left(D_{0} r \neq 0\right)$.

Suppose that
(1) ${ }^{\exists}$ a place P of F / K s.t. $v_{P}\left(\tau_{0}^{i} r\right)>0$ for ${ }^{\forall} i \in \mathbb{Z}_{\geq 0}$.
(2) Put $A_{k}=\left(\tau^{k-1} A\right)\left(\tau^{k-2} A\right) \cdots(\tau A) A$.

For ${ }^{\forall} i \in \mathbb{Z}_{\geq 1}, \tau_{0}^{i}(y)=A_{i} * y$ has no algebraic solution over F.
Let $\mathcal{U}=(U, D, \tau)$ be a DTC overfield of \mathcal{F} with $D \tau=s \tau D$. If ${ }^{\exists}$ a differentially algebraic solution $f \in U$ over F satisfying $\tau_{0}(y)=A * y$, then ${ }^{\exists} g \in F$ s.t.

$$
\begin{equation*}
\tau^{2}(s r) \tau(s) s \tau^{3}(g)+(\tau(r)+1) \tau(s) s \tau^{2}(g)-(\tau(r)+1) s \tau(g)-r g+s \tau\left(\frac{D r}{r}\right)=0 . \tag{7}
\end{equation*}
$$

Theorem 1 ([Nishioka, 2018, Theorem 9 (q-difference ver.)]) has redundant assumptions than Tietze's theorem.

Theorem 3 ([Tietze, 1905])

Consider the following difference Riccati equation

$$
\begin{equation*}
y(x+1)=1+\frac{a(x)}{y(x)}, \quad a \in \mathbb{C}(x) \backslash \mathbb{C} \tag{8}
\end{equation*}
$$

Suppose that
(1) $a \rightarrow 0 \quad(x \rightarrow \infty)$, i.e., $\operatorname{ord}_{\infty} a>0$.
(2) (8) has no rational solution.

Then (8) has no differentially algebraic solution over $\mathbb{C}(x)$.
\rightsquigarrow We shall simplify the assumptions of Nishioka's theorem to the same extent as those of Tietze's theorem.

Criterion for second order linear q-difference equation

Consider a second order linear q-difference equation

$$
\begin{equation*}
a_{2} \tau^{2}(y)+a_{1} \tau(y)+a_{0} y=0, \quad\left(a_{i} \in \mathbb{C}[x]^{\times}\right) . \tag{9}
\end{equation*}
$$

Tietze's normal form of the q-difference Riccati equation w.r.t. (9) is given by

$$
\begin{equation*}
\tau(y)=A * y=1+\frac{a}{y}, \quad a=-\frac{a_{2} \tau\left(a_{0}\right)}{a_{1} \tau\left(a_{1}\right)} . \tag{10}
\end{equation*}
$$

Proposition 1

Suppose that the coefficients a_{0}, a_{1}, a_{2} satisfy at least one of the following inequilities:

$$
\begin{array}{lll}
\left(I_{0}\right) & \operatorname{ord}_{0} a_{2}+\operatorname{ord}_{0} a_{0}-2 \operatorname{ord}_{0} a_{1}>0 & \left(\Leftrightarrow \operatorname{ord}_{0} a>0\right) \\
\left(I_{\infty}\right) & 2 \operatorname{deg} a_{1}-\operatorname{deg} a_{0}-\operatorname{deg} a_{2}>0 & \left(\Leftrightarrow \operatorname{ord}_{\infty} a>0\right)
\end{array}
$$

Then the following 3rd order linear q-difference equation has no rational solution,

$$
\begin{equation*}
q^{3} \tau^{2}(a) \tau^{3}(y)+q^{2}(\tau(a)+1) \tau^{2}(y)-q(\tau(a)+1) \tau(y)-a y+q \tau\left(\frac{d}{d x} \log a\right)=0 \tag{11}
\end{equation*}
$$

Criterion for second order linear q-difference equation

Put $A=\left(\begin{array}{ll}1 & a \\ 1 & 0\end{array}\right), a \in \mathbb{C}(x) \backslash \mathbb{C}$. Let

$$
A_{1}:=A, \quad A_{k}:=\left(\tau^{k-1} A\right)\left(\tau^{k-2} A\right) \cdots(\tau A) A .
$$

Define

- $V(A):=\{f \in \mathbb{C}(x) \mid \tau(f)=A * f\}$,
the set of rational solutions to Tietze's normal form.
- $\bar{V}_{k}(A):=\left\{f \in \overline{\mathbb{C}(x)} \mid \tau^{k}(f)=A_{k} * f\right\}$,
the set of alg. sol. to k-iterated Tietze's normal form.

Theorem 4

Suppose $\left(I_{0}\right)$ or $\left(I_{\infty}\right)$. If f is an algebraic solution to $\tau^{k}(y)=A_{k} * y$, then f is a rational solution to $\tau(y)=A * y$, i.e.,

$$
\begin{equation*}
V(A)=\bar{V}_{1}(A)=\bar{V}_{2}(A)=\cdots=\bar{V}_{k}(A)=\cdots . \tag{12}
\end{equation*}
$$

Key ideas of proof: By [Hendriks, 1997, Lemma 10] or [Nishioka, 2010, Lemma 8], algebraic solutions are rational solutions in the variable $x^{1 / l}$ for some $l \in \mathbb{Z}_{\geq 1}$. Computing the ramification order $\operatorname{ram}\left(\sum_{i} \varphi_{i} x^{i / l}\right):=\min \left\{i \in \mathbb{Z} \mid \varphi_{i} \neq 0, l \nmid i\right\}$, we find $\operatorname{ram} f=\infty$, i.e., $l=1$.

Main result

Theorem 5

Consider a second order linear q-difference equation with $a_{i} \in \mathbb{C}[x]^{\times}$,

$$
\begin{equation*}
a_{2} \tau^{2}(y)+a_{1} \tau(y)+a_{0} y=0 \tag{13}
\end{equation*}
$$

Tietze's normal form of the q-difference Riccati equation w.r.t. (13) is given by

$$
\begin{equation*}
\tau(y)=A * y=1+\frac{a}{y}, \quad\left(a=-\frac{a_{2} \tau\left(a_{0}\right)}{a_{1} \tau\left(a_{1}\right)}\right) \tag{14}
\end{equation*}
$$

Suppose that
(1) The coefficients a_{0}, a_{1}, a_{2} satisfy at least one of the following inequilities::

$$
\begin{aligned}
& \left(I_{0}\right) \operatorname{ord}_{0} a_{2}+\operatorname{ord}_{0} a_{0}-2 \operatorname{ord}_{0} a_{1}>0 \quad\left(\Leftrightarrow \operatorname{ord}_{0} a>0\right) \\
& \left(I_{\infty}\right) 2 \operatorname{deg} a_{1}-\operatorname{deg} a_{0}-\operatorname{deg} a_{2}>0 \quad\left(\Leftrightarrow \operatorname{ord}_{\infty} a>0\right)
\end{aligned}
$$

(2) (14) has no rational solution.

Then (13) has no non-trivial differentially algebraic solution over $\mathbb{C}(x)$.

Degeneration diagram of Gauss hypergeometric equation

There are three unified approaches to construct the degeneration diagram:

- Confluence of singularities
- Separation of variables of the Laplacian by orthogonal coordinates
- Classifying differential equations of the Laplace type

Degeneration diagram of Heine q-hypergeometric equation

Ohyama constructed a degeneration diagram of Heine q-hypergeometric equation by using a q-analogue of classifying differential equations of the Laplace type [Ohyama, 2011].

We check the conditions $\left(I_{0}\right),\left(I_{\infty}\right)$ for second order linear q-difference equations of the hypergeometric type (cf. [Ohyama, 2011]).

Equation	Irregular singular pt.	Conditions
Heine q-hypergeometric	\emptyset	none
q-confluent	$x=\infty$	$\left(I_{\infty}\right)$
Jackson q-Bessel	\emptyset	none
Hahn-Exton q-Bessel	$x=\infty$	$\left(I_{\infty}\right)$
q-Hermite-Weber	$x=0, \infty$	$\left(I_{0}\right),\left(I_{\infty}\right)$
q-Airy	$x=\infty$	$\left(I_{\infty}\right)$
Ramanujan	$x=0, \infty^{2}$ (apparent)	$\left(I_{0}\right)$

In order to prove differential transcendence of solutions to five of these q-difference equations, we only have to show that there is no rat. sol. to $\tau(y)=A * y$ by virtue of Theorem 5.

Another criterion for differential transcendence of 2 nd ord. lin. difference eq.

Theorem 6 ([Arreche et al., 2021, Theorem 3.5 (q-difference ver.)])

Let

- $K=\bigcup_{l \in \mathbb{Z} \geq 1} \mathbb{C}\left(x^{1 / l}\right)$: the field of ramified rational functions.
- $\tau: \varphi(x) \mapsto \varphi(q x)$

Consider a second-order linear q-difference equation

$$
\begin{equation*}
\tau^{2}(y)+a \tau(y)+b y=0 \quad\left(a \in K, b \in K^{\times}\right) \tag{15}
\end{equation*}
$$

Suppose that

- $\tau(u)=\left(\begin{array}{cc}-a & -b \\ 1 & 0\end{array}\right) * u$ has no solution u in K.
- For ${ }^{\forall} \mathcal{L} \in \mathbb{C}[\delta]^{\times}, \delta=x \frac{d}{d x}$, the q-difference equation

$$
\mathcal{L}\left(\frac{\delta b}{b}\right)=\tau(g)-g
$$

has no solution g in K.
Then (15) has no non-trivial differentially algebraic solution over K.

Application to q-Hermite-Weber equation

Let $a \in \mathbb{C} \backslash\{0\}=\mathbb{C}^{\times} . q$-Hermite-Weber equation is

$$
a x \tau^{2}(y)+(1-x) \tau(y)-y=0 .
$$

Tietze's normal form of q-Hermite-Weber equation is

$$
\tau(y)=\left(\begin{array}{ll}
1 & \alpha \tag{16}\\
1 & 0
\end{array}\right) * y, \quad \alpha=\frac{a x}{(1-x)(1-q x)}
$$

We rewrite (16) as

$$
\begin{equation*}
F y \tau(y)+G y+H=0, \tag{17}
\end{equation*}
$$

where $(F, G, H)=((1-x)(1-q x),-(1-x)(1-q x),-a x)$.

Application to q-Hermite-Weber equation

$$
\begin{gather*}
F y \tau(y)+G y+H=0 \tag{17}\\
(F, G, H)=((1-x)(1-q x),-(1-x)(1-q x),-a x)
\end{gather*}
$$

By Hendriks' algorithm [Hendriks, 1997, Section 4.1], we shall find a rational solution u to (17). Write $u \in \mathbb{C}(x)$ as

$$
u=c x^{m} \frac{P}{T}, \quad\left(c \in \mathbb{C}^{\times}, m \in \mathbb{Z}\right)
$$

where $P, T \in \mathbb{C}[x]^{\text {monic }}$ s.t. $\operatorname{gcd}(P, T)=\operatorname{gcd}(P, x)=\operatorname{gcd}(T, x)=1$. Let $R \in \mathbb{C}[x]^{\text {monic }}$ be the greatest monic divisor of T satisfying $\tau R \mid P$. Then we have ${ }^{\exists} t, p \in \mathbb{C}[x]^{\text {monic }}$ s.t. $T=t R, P=p \tau R$ and

$$
\begin{equation*}
u=c x^{m} \frac{p}{\bar{t}} \frac{\tau R}{R} \tag{18}
\end{equation*}
$$

Substituting (18) to (17), we find $p \mid H$ and $t \mid \tau^{-1} F$. Hence we define

$$
\begin{aligned}
S_{p} & :=\left\{\tilde{p} \in \mathbb{C}[x]^{\text {monic }} ; \tilde{p} \mid H, \operatorname{gcd}(\tilde{p}, x)=1\right\}=\{1\} \\
S_{t} & :=\left\{\tilde{t} \in \mathbb{C}[x]^{\text {monic }} ; \tilde{t} \mid \tau^{-1} F, \operatorname{gcd}(\tilde{t}, x)=1\right\} \\
& =\{1, x-1, x-q,(x-1)(x-q)\}
\end{aligned}
$$

Application to q-Hermite-Weber equation

$$
\begin{gather*}
F y \tau(y)+G y+H=0 \tag{17}\\
(F, G, H)=((1-x)(1-q x),-(1-x)(1-q x),-a x)
\end{gather*}
$$

In addition to S_{p}, S_{t}, we define

$$
\begin{aligned}
S_{0} & :=\{\text { all possibilities for the first term of } u \text { expressed in } \mathbb{C}((x))\} \\
& =\{1,-a x\} \\
S_{\infty} & :=\left\{\text { all possibilities for the first term of } u \text { expressed in } \mathbb{C}\left(\left(x^{-1}\right)\right)\right\} \\
& =\left\{1,-\frac{a}{q} x^{-1}\right\}
\end{aligned}
$$

Put $e:=\operatorname{deg} R \in \mathbb{Z}_{\geq 0}$. From the form u, we obtain

$$
\frac{u t}{c x^{m} p}=\frac{\tau R}{R} \equiv \begin{cases}1 & \bmod x \tag{19}\\ q^{e} & \bmod x^{-1}\end{cases}
$$

\rightsquigarrow For each possibility $\left(p, t, u_{0}, u_{\infty}\right) \in S_{p} \times S_{t} \times S_{0} \times S_{\infty}$ and the parameter $a \in \mathbb{C}^{\times}$, we determine c, m, R by using (17) and (19).

Application to q-Hermite-Weber equation

Tietze's normal form of q-Hermite-Weber equation

$$
\tau y=\left(\begin{array}{cc}
1 & \alpha \tag{16}\\
1 & 0
\end{array}\right) * y, \quad \alpha=\frac{a x}{(1-x)(1-q x)}
$$

Proposition 2

Let $a \in \mathbb{C}^{\times}$.

- When $a=q^{e+1}, e \in \mathbb{Z}_{\geq 0}$, (16) has a rational solution

$$
u=-\frac{1}{x-1} \frac{\tau R}{R}, \quad R=\sum_{k=0}^{e}\binom{e}{k}_{q} x^{k}
$$

- When $a=q^{-e}, e \in \mathbb{Z}_{\geq 0}$, (16) has a rational solution

$$
u=q^{-e} \frac{x}{x-1} \frac{\tau R}{R}, \quad R=\sum_{k=0}^{e}\binom{e}{k}_{q} q^{k(k-e)} x^{k}
$$

- When $a \in \mathbb{C}^{\times} \backslash q^{\mathbb{Z}},(16)$ has no rational solution.

Application to q-Hermite-Weber equation

From Proposition 2 and our main result, we obtain the following theorem:

Theorem 7

Let $a \in \mathbb{C}^{\times}$. Consider q-Hermite-Weber equation

$$
a x \tau^{2}(y)+(1-x) \tau(y)-y=0 .
$$

Every non-trivial solution to q-Hermite-Weber equation is differentially transcendental over $\mathbb{C}(x)$ if $a \notin q^{\mathbb{Z}}$.

Application to Hahn-Exton q-Bessel equation

Let $\nu \in \mathbb{C}$. Hahn-Exton q-Bessel equation is the following linear q-difference equation

$$
\begin{equation*}
\tau(y)+\left(\frac{x^{2}}{4}-q^{\nu}-q^{-\nu}\right) y+\tau^{-1} y=0 . \tag{20}
\end{equation*}
$$

This equation is transformed into the q-difference Riccati equation

$$
\begin{equation*}
u \tau u+\left(\frac{x^{2}}{4}-\alpha\right) u+1=0 \tag{21}
\end{equation*}
$$

where $\alpha=q^{\nu}+q^{-\nu}$.
Nishioka showed (21) has no algebraic solution when q is transcendental over \mathbb{Q} in [Nishioka, 2016, Proposition 16].
In the same way as before, it follows from Hendriks' algorithm that (21) has no rational solution for any parameter α.

Theorem 8

For any $\nu \in \mathbb{C}$, every non-trivial solution to Hahn-Exton q-Bessel equation is differentially transcendental over $\mathbb{C}(x)$.

Conclusion and future work

Conclusion

We have examined the following subjects:

- Simplifying the conditions of Nishioka's criterion w.r.t. the q-shift operator to the same extent as those of Tietze's theorem.
- Applying our result to q-Hermite-Weber equation and Hahn-Exton q-Bessel equation.
- Determining when every non-trivial solution for these equations is differentially transcendental over $\mathbb{C}(x)$ by using Hendriks' algorithm.

Future work

Investigating to determine differential transcendence of q-confluent equation.

Reference I

[Arreche et al., 2021] Arreche, C. E., Dreyfus, T., and Roques, J. (2021). Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions. J. Éc. polytech. Math., 8:147-168.
[Hendriks, 1997] Hendriks, P. A. (1997). An algorithm for computing a standard form for second-order linear q-difference equations. volume 117/118, pages 331-352. Algorithms for algebra (Eindhoven, 1996).
[Nishioka, 2010] Nishioka, S. (2010). Solvability of difference Riccati equations by elementary operations. J. Math. Sci. Univ. Tokyo, 17(2):159-178.
[Nishioka, 2016] Nishioka, S. (2016). Proof of unsolvability of q-Bessel equation using valuations. J. Math. Sci. Univ. Tokyo, 23(4):763-789.
[Nishioka, 2018] Nishioka, S. (2018). Differential transcendence of solutions of difference Riccati equations and Tietze's treatment. J. Algebra, 511:16-40.
[Ogawara, 2023] Ogawara, H. ([2023] ©2023). Differential transcendence of solutions for q-difference equation of Ramanujan function. In Recent trends in formal and analytic solutions of diff. equations, volume 782 of Contemp. Math., pages 143-153. Amer. Math. Soc., [Providence], RI.
[Ohyama, 2011] Ohyama, Y. (2011). A unified approach to q-special functions of the laplace type (arxiv:1103.5232).
[Tietze, 1905] Tietze, H. (1905). Über Funktionalgleichungen, deren Lösungen keiner algebraischen Differentialgleichung genügen können. Monatsh. Math. Phys., 16(1):329-364.

Thank you for your attention!

