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Introduction

We study the Gevrey regularity of formal solutions for a certain class of

inhomogeneous nonlinear moment PDEs of the form

(1)

{
∂κm0;tu− P (t, x, (∂im0;t∂

q
m;xu)(i,q)∈Λ) =f̃(t, x)

∂jm0;tu(t, x)|t=0 =ϕj(x) for 0 ≤ j < κ,
,

where P is a polynomial with analytic coe�cients , the initial conditions

are also analytic at a neighbourhood of the origin and the inhomogeneity

f̃(t, x) is σ-Gevrey for some σ ≥ 0.

Our aim is to show the connection between the Gevrey order of f̃(t, x) and

the shape of the Newton polygon for Eq. (??), and the Gevrey order of its

unique formal solution of (??).



Notation

� N∗ = N \ {0} stands for the set of all positive integers.

� R+ stands for the set of all the nonnegative real numbers and R∗+ for

the set of all the positive real numbers.

� For any ρ1, . . . , ρN > 0 we denote by Dρ1,...,ρN the polydisc

Dρ1 × . . .×DρN ⊂ CN , where Dρ = {z ∈ C : |z| < ρ} for any ρ > 0.

� For any d ∈ R and α,R > 0, an open sector in direction d with an

opening α and a radius R is a set

Sd(α,R) =
{
x ∈ C : 0 < |x| < R, | arg x− d| < α

2

}
.

� If U ⊂ CN , N ∈ N∗, is an open set then we denote by O(U) the set of

all holomorphic functions de�ned in U .

� The set of all formal power series in variable t with coe�cients from

F 6= ∅ is denoted by F [[t]].

� By O[[t]] we denote the set of all formal power series in variable t with

analytic coe�cients in some common neighborhood of the origin.



Moment functions and operators



Kernel functions

De�nition 1

A pair (e, E) of C-valued functions is called kernel functions of order s < 2

if the three following conditions hold:

1. The function e satis�es the following points:

1.1 e is holomorphic on the sector S0(πs);

1.2 e(t) > 0 for all t > 0;

1.3 the function t−1e(t) is integrable at zero;

1.4 e is k-exponentially �at at in�nity for k = 1/s, that is, for every ε > 0,

there exist two positive constants A,B > 0 such that

|e(x)| ≤ A exp(−(|x|/B)k) for all x ∈ S0(πs− ε).
2. The function E satis�es the following points:

2.1 E is entire on C with a global exponential growth of order at most

k = 1/s at in�nity;

2.2 the function t−1E(t) is integrable at zero in Sπ(π(2− s)).



Kernel functions

3. The functions e and E are connected by a corresponding moment
function m of order s as follows:

3.1 the function m is de�ned by the Mellin transform of e:

(2) m(λ) =

∫ +∞

0
tλ−1e(t)dt for all Re(λ) ≥ 0;

3.2 the function E has the power series expansion

(3) E(t) =
∑
j≥0

tj

m(j)
for all t ∈ C.

4. We assume that m(0) = 1.



Remarks on kernel and moment functions

� For any moment function m of order s we call a sequence (m(j))j≥0 a

moment sequence of order s.

� Kernel functions of orders s ≥ 2 can also be considered after some

adjustments to the de�nition.

� We have m(λ) > 0 for every λ ≥ 0.

� For any moment function m of order s there exist four positive

constants c, C, a,A > 0 such that for all j ≥ 0 we have:

(4) cajΓ(1 + (s+ 1)j) ≤ m(j) ≤ CAjΓ(1 + (s+ 1)j).

Example
The following is a classical example of kernel functions and their

corresponding moment function:

� e(t) = ktke−t
k

,

� E(t) =
∑
j≥0

tj

Γ(1+j/k)
,

� m(λ) = Γ(1 + λ/k).



Regular moment functions and moment di�erentiation

De�nition 2

A moment function m of order s > 0 is called regular if there exist

constants a,A > 0 such that

a(j + 1)s ≤ m(j + 1)

m(j)
≤ A(j + 1)s for every j ∈ N.

De�nition 3

Let m0 be a moment function of order s0 > 0 and

ũ(t, x) =
∑
j≥0

uj,∗(x)
tj

m0(j)

be a formal power series. Then, the moment derivative ∂m0;tũ of ũ(t, x)

with respect to t is the formal power series in O(Dρ1,...,ρN )[[t]] de�ned by

∂m0;tũ(t, x) =
∑
j≥0

uj+1,∗(x)
tj

m0(j)
.



The nonlinear Cauchy problem



The main problem

Let m0,m1, . . . ,mN be regular moment functions of resp. orders s0 > 0 and

s1, . . . , sN ≥ 1. We consider the inhomogeneous nonlinear moment partial

di�erential equations of the form

(5)

∂κm0;tu− P (t, x, (∂im0;t∂
q
m;xu)(i,q)∈Λ) = f̃(t, x)

∂jm0;tu(t, x)|t = 0 = ϕj(x) ∈ O(Dρ1,...,ρN ) for 0 ≤ j < κ,

where P denotes a polynomial

(6) P (t, x, (∂im0;t∂
q
m;xu)(i,q)∈Λ) =∑

n∈I

∑
(i,q,r)∈Λn

tvi,q,rai,q,r(t, x)
(
∂i1m0;t∂

q1
m;xu

)r1
...
(
∂inm0;t∂

qn
m;xu

)rn
,

satisfying a certain set of conditions.



The main problem

� κ ≥ 1 is a positive integer;

� ∂qm;x stands for the moment derivation ∂q1m1;x1 ...∂
qN
mN ;xN while

q = (q1, ..., qN );

� f̃(t, x) ∈ O(Dρ1,...,ρN )[[t]];

� I is a non-empty �nite subset of N∗ and for any n ∈ I, the set Λn is a

non-empty �nite subset of n-tuples

(i, q, r) = ((i1, q1, r1), ..., (in, qn, rn)) ∈ {0, ..., κ− 1} × NN × N∗,

with pairs (ik, qk) being two by two distinct;

� vi,q,r is a nonnegative integer for every (i, q, r) ∈ Λn;

� ai,q,r(t, x) ∈ O(Dρ0,ρ1,...,ρN ) and ai,q,r(0, x) 6≡ 0 for every (i, q, r) ∈ Λn.



The main problem

Remark
Eq. (??) is formally well-posed.

Moreover, for f̃(t, x) =
∑
j≥0 fj,∗(x)

tj

m0(j)
and

ai,q,r(t, x) =
∑
j≥0 ai,q,r;j,∗(x)

tj

m0(j)
the coe�cients uj,∗(x) of its formal

solution ũ(t, x) are uniquely determined by

(7)

uj+κ,∗(x) = fj,∗(x) +
∑
n∈I

∑
(i,q,r)∈Λn

∑
j0+j1+...+jr1+...+rn=j−vi,q,r

Ci,q,r,j,n(x)

together with the initial conditions uj,∗(x) = ϕj(x) for j = 0, ..., κ−1, where

(8) Ci,q,r,j,n(x) =
m0(j)

m0(j0) . . .m0(jr1+...+rn)
ai,q,r;j0,∗(x)×

n∏
`=1

jr1+...+r`∏
h=jr1+...+r`−1+1

∂q`m;xuh+i`,∗(x).



The Newton polygon

Let us denote by C(a, b) = {(x, y) ∈ R2;x ≤ a and y ≥ b} for all a, b ∈ R
and consider an operator ∆κ,P := ∂κm0;t − P (t, x, (∂im0;t∂

q
m;x)(i,q)∈Λ)

associated with Eq. (??).

De�nition 4

We call moment Newton polygon of ∆κ,P , and we denote it by N (∆κ,P ),

the convex hull of

C(s0κ,−κ) ∪
⋃
n∈I

⋃
(i,q,r)∈Λn

C

(
n∑
`=1

(s0r`i` + r`λ(sq`)) , vi,q,r −
n∑
`=1

r`i`

)

with λ(sq`) =

N∑
d=1

sdq`,d.

For all n ∈ I and all (i, q, r) ∈ Λn we assume that

n∑
`=1

r`i` − vi,q,r < κ.



The Newton polygon

For any n ∈ I, let us denote by Sn the set of all the the tuples (i, q, r) ∈ Λn

such that
n∑
`=1

(s0r`i` + r`λ(sq`)) > s0κ.

Let S =
⋃
n∈I

Sn.

1. Assume S = ∅. Then, the moment Newton polygon is reduced to

C(s0κ,−κ) (see Fig. ??).

2. If S 6= ∅, the moment Newton polygon has at least one side with a

positive slope. Moreover, its smallest positive slope k is given by

k = min
n∈I

(i,q,r)∈Sn

(
κ+ vi,q,r −

∑n
`=1 r`i`∑n

`=1 (s0r`i` + r`λ(sq`))− s0κ

)

=
κ+ vi∗,q∗,r∗ −

∑n∗

`=1 r
∗
` i
∗
`∑n∗

`=1 (s0r∗` i
∗
` + r∗`λ(sq∗` ))− s0κ

.
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Figure 1: Case S = ∅
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Figure 2: Case S 6= ∅



Gevrey order

De�nition 5

Let σ ≥ 0. Then, a formal power series

ũ(t, x) =
∑
j≥0

uj,∗(x)tj ∈ O(Dρ1,...,ρN )[[t]]

is said to be Gevrey of order σ (or, for short, σ-Gevrey) if there exist a

radius 0 < r < min{ρ1, . . . , ρN} and constants C,K > 0 such that

|uj,∗(x)| ≤ CKjΓ(1 + σj)

for all x ∈ Dr,...,r and all j ≥ 0.



The Gevrey regularity theorem

Theorem 1

Let

σc =
1

k
=


∑n∗
`=1 (s0r∗` i

∗
`+r∗` λ(sq∗` ))−s0κ

κ+vi∗,q∗,r∗−
∑n∗
`=1

r∗
`
i∗
`

when S 6= ∅

0 when S = ∅

Then,

1. ũ(t, x) and f̃(t, x) are simultaneously σ-Gevrey for any σ ≥ σc;

2. ũ(t, x) is generically σc-Gevrey while f̃(t, x) is σ-Gevrey with σ < σc.



The Gevrey regularity theorem

Example
Let us consider the semilinear regular moment heat equation

(9)

∂m0;tu− tva(t, x)∆m;xu+ b(t, x)ur = f̃(t, x)

u(0, x) = ϕ(x) ∈ O(Dρ1,...,ρN )

where

� ∆m;x = ∂2
m1;x1 + ...+ ∂2

mN ;xN is the moment Laplace operator;

� the degree r is an integer at least 2;

� v is a nonnegative integer;

� the coe�cients a(t, x) and b(t, x) are analytic on a polydisc Dρ0,ρ1,...,ρN
and a(0, x) 6≡ 0;

� f̃(t, x) ∈ O(Dρ1,...,ρN )[[t]].



The Gevrey regularity theorem

The moment Newton polygon associated with Eq. (??) is as shown on Fig

?? below. If any exists, we de�ne d∗ by

d∗ = max{d ∈ {1, ..., N} : 2sd > s0}.

s0

-
−1

•
0

-v • • •

(a) Case 2sd ≤ s0
for all d ∈ {1, ..., N}

-

s0
•

2sd∗

-
−1

•

•

0

-v • • • •

(b) Case 2sd > s0
for some d ∈ {1, ..., N}.

Figure 3: The moment Newton polygon associated with Eq. (??)



The Gevrey regularity theorem

Then we have

σc =

0 if 2sd ≤ s0 for all d ∈ {1, ..., N}
2sd∗ − s0

1 + v
otherwise

and the Gevrey regularity of the unique formal solution ũ(t, x) of Eq. (??)

follows from Theorem ??.



Sketch of the proof



Sketch of the proof

The proof of the main theorem is devided into two parts.

� Proof of the �rst point is based on the modi�ed Nagumo norms, the

technique of majorant series and the �xed-point procedure.

� To prove the second point of the theorem we shall present an explicit

example for which ũ(t, x) is σ′-Gevrey for no σ′ < σc while f̃(t, x) is

σ-Gevrey with σ < σc.



Modi�ed Nagumo norms

For any α ≥ 0 and s > 0, we consider the formal power series

Θα,s(x) =
∑
j≥0

(
α+ j − 1

j

)s
xj

with(
α+ j − 1

j

)
=

Γ(α+ j)

Γ(1 + j)Γ(α)
=

1 if j = 0

α(α+ 1)...(α+ j − 1)

j!
if j ≥ 1

.



Modi�ed Nagumo norms

De�nition 6

Let f(x) =
∑

j1,...,jN≥0

fj1,...,jNx
j1
1 ...x

jN
N ∈ O(Dρ1,...,ρN ) be an analytic

function on Dρ1,...,ρN . Let s = (s1, ..., sN ) ∈ (R∗+)N and

α = (α1, ..., αN ) ∈ [1,+∞[N∪{0}, and suppose that 0 < r < min(ρ1, ..., ρN ).

Then, the modi�ed Nagumo norm ‖f‖α,r,s of f with indices (α, r, s) is

de�ned by:

‖f‖α,r,s =


∑

j1,...,jN≥0

|fj1,...,jN | r
j1+...+jN if α = 0

inf

(
A ≥ 0 : f(x)� A

N∏
d=1

1

rαd
Θαd,sd

(xd
r

))
otherwise

.



Modi�ed Nagumo norms

Remark
The modi�ed Nagumo norms are well de�ned for α ∈ [1,+∞[N .

Proposition 1

For �xed (α, r, s), the function ‖f‖α,r,s : O(Dρ1,...,ρN )→ R+ de�nes a norm

on O(Dρ1,...,ρN ).

Proposition 2

Let f(x), g(x) ∈ O(Dρ1,...,ρN ), s ∈ [1,+∞[N and α, β ∈ [1,+∞[N∪{0} and
0 < r < min(ρ1, ..., ρN ). Then, ‖fg‖α+β,r,s ≤ ‖f‖α,r,s ‖g‖β,r,s.

Proposition 3

Assume that m1, ...,mN are all regular moment functions. Then, for all

α ∈ [1,+∞[N and all q ∈ NN , there exists C > 0 such that

∥∥∂qm;xf
∥∥
α+q,r,s

≤ Cλ(q)

(
N∏
d=1

qd!
sd

(
αd + qd − 1

qd

)sd)
‖f‖α,r,s .



Modi�ed Nagumo norms

Proposition 4

Let ũ(t, x) =
∑
j≥0

uj,∗(x)tj ∈ O(Dρ1,...,ρN )[[t]]σ be a σ-Gevrey formal power

series. Let 0 < r < min{ρ1, . . . , ρN}. Then, for all α ∈ [1,+∞[N∪{0} and
all s ∈ (R∗+)N , there exist A,B > 0 such that the following inequality holds

for all j ≥ 0:

‖uj,∗‖jα,r,s ≤ AB
jΓ(1 + σj).

Proposition 5

Let 0 < ρ < r < min(ρ1, . . . , ρN ). Then, there exists A > 0 such that, for all

f(x) ∈ O(Dρ1,...,ρN ) and all α ∈ [1,+∞[N∪{0}, the following inequality

holds for all x ∈ Dρ,...,ρ:

|f(x)| ≤ Aλ(α) ‖f‖α,r,s .



Sketch of the proof - point 1

It is clear that ũ(t, x) ∈ O(Dρ1,...,ρN )[[t]]σ ⇒ f̃(t, x) ∈ O(Dρ1,...,ρN )[[t]]σ.

Let us �x σ ≥ σc and assume that f̃(t, x) =
∑
j≥0

fj,∗(x)
tj

m0(j)
is σ-Gevrey.

Then, there exist 0 < r < min(ρ1, ..., ρN ) and C,K > 0 such that

|fj,∗(x)| ≤ CKjm0(j)Γ(1 + σj) for all x ∈ Dr,...,r and all j ≥ 0.

In order to prove that uj,∗(x) satisfy similar inequalities, we use modi�ed

Nagumo norms with indices ((j + κ)ασ, r, s), where ασ ∈ (R+)N is the

multi-index with all components equal to (σ + s0)(κ+ v), with

v = ς + max vi,q,r and

ς = max

(
1− (σ + s0)(κ+ max vi,q,r)

σ + s0
,

max
(i,q,r)∈

⋃
n∈I Λn

 1

(σ + s0)

(
κ−

n∑
`=1

r`i` + vi,q,r

)

 .



Sketch of the proof - point 1

After applying this norm to both sides of (??) and using the propositions

from before, we receive:

‖uj+κ,∗‖(j+κ)ασ,r,s

m0(j + κ)Γ(1 + σ(j + κ))
≤

‖fj,∗‖(j+κ)ασ,r,s

m0(j + κ)Γ(1 + σ(j + κ))
+∑

n∈I

∑
(i,q,r)∈Λn

∑
j0+j1+...+

jr1+...+rn=j−vi,q,r

Bi,q,r,j,n(x)

with

Bi,q,r,j,n(x) =
C̃
∥∥ai,q,r;j0,∗∥∥α′σ(j0),r,s

Γ(1 + σj0)m0(j0)
×

n∏
`=1

jr1+...+r`∏
h=jr1+...+r`−1+1

‖uh+i`,∗‖(h+i`)ασ,r,s

m0(h+ i`)Γ(1 + σ(h+ i`))

for all j ≥ vi,q,r with α′σ(j0) =

(
j0 + κ−

n∑
`=1

r`i` + vi,q,r

)
ασ −

n∑
`=1

r`q`.



Sketch of the proof - point 1

The next step is to bound ‖uh+i`,∗‖(h+i`)ασ,r,s
using the majorant series

method.

Let us set

gj,s =
‖fj,∗‖(j+κ)ασ,r,s

m0(j + κ)Γ(1 + σ(j + κ))
and αi,q,r,j,s =

C̃
∥∥ai,q,r;j,∗∥∥

α′σ(j),r,s

Γ(1 + σj)m0(j)
,

Lemma 1

There exist four positive constants B′, B′′, C′, C′′ > 0 such that the

following inequalities hold for all j ≥ 0:

gj,s ≤ C′B′j and αi,q,r,j,s ≤ C′′B′′j .



Sketch of the proof - point 1

Let us now consider the formal power series v(X) =
∑
j≥0

vjX
j , the

coe�cients of which are recursively determined for all j ≥ 0 by the relations

(10) vj+κ = gj,s +
∑
n∈I

∑
(i,q,r)∈Λn

∑
j0+j1+...+jr̃

=j+
∑n
`=1 r`i`−vi,q,r

αi,q,r,j0,svj1 ...vjr̃

starting with the initial conditions

v0 = 1 +
‖ϕ0‖0,r,s
m0(0)

, and, for j = 1, ..., κ− 1 (if κ ≥ 2):

vj =
‖ϕj‖jασ,r,s

m0(j)Γ(1 + σj)
+

∑
(i,q,r)∈Vj

∑
j0+j1+...+jr̃

=j−κ+
∑n
`=1 r`i`−vi,q,r

αi,q,r,j0,svj1 ...vjr̃ ,

where r̃ = max(i,q,r)∈
⋃
n∈I Λn(r1 + ...+ rn), and where

Vj =

{
(i, q, r) ∈

⋃
n∈I

Λn such that j − κ+

n∑
`=1

r`i` − vi,q,r ≥ 0

}
.



Sketch of the proof - point 1

Proposition 6

The inequalities

(11) 0 ≤
‖uj,∗‖jασ,r,s

m0(j)Γ(1 + σj)
≤ vj

hold for all j ≥ 0.

Proposition 7

The formal series v(X) is convergent. In particular, there exist two positive

constants C′,K′ > 0 such that vj ≤ C′K′j for all j ≥ 0.



Sketch of the proof - point 1

To prove Proposition ??, it is necessary to observe that v(X) is the unique

formal power series in X solution of the functional equation

(12) v(X) = Xα(X)(v(X))r̃ + h(X),

where α(X) and h(X) are the two formal power series de�ned by

α(X) =
∑
n∈I

∑
(i,q,r)∈Λn

Xκ−
∑n
`=1 r`i`−1+vi,q,rαi,q,r,s(X) and

h(X) = A0 +A1X + ...+Aκ−1X
κ−1 +Xκ

∑
j≥0

gj,sX
j

with

αi,q,r,s(X) =
∑
j≥0

αi,q,r,j,sX
j , A0 = 1 +

‖ϕ0‖0,r,s
m0(0)

,

Aj =
‖ϕj‖jασ,r,s

m0(j)Γ(1 + σj)
for j = 1, ..., κ− 1 (if κ ≥ 2).



Sketch of the proof - point 1

α(X) and h(X) are convergent power series with nonnegative coe�cients,

with radii of convergence rα and rh, respectively. They both de�ne

increasing functions within their respective regions of convergence.

Moreover, seeing as ai,q,r;0,∗(x) 6≡ 0 and A0 ≥ 1, we have α(r) > 0 and

h(r) > 0 for all r ∈]0, rα[ and r ∈]0, rh[ respectively.

To determine that v(X) is convergent, the �xed point method will be used.

Let us de�ne a formal power series V (X) =
∑
µ≥0

Vµ(X) and let us choose the

solution of the functional equation (??) given by the system
V0(X) = h(X)

Vµ+1(X) = Xα(X)
∑

µ1+...+µr̃=µ

Vµ1(X) . . . Vµr̃ (X) for µ ≥ 0.



Sketch of the proof - point 1

By inductive reasoning on µ ≥ 0, we establish that

Vµ(x) = C̃µ,r̃X
µα(X)µh(X)(r̃−1)µ+1

with

C̃µ+1,r̃ =
∑

µ1+...+µr̃=µ

C̃µ1,r̃ . . . C̃µr̃,r̃

for every µ > 0 and C̃0,r̃ = 1.

It follows from the analyticity of α(X) and h(X) that all Vµ(X) de�ne

analytic functions on the disc with center 0 ∈ C and radius min{rα, rh}).
Moreover Vµ(X) is of order Xµ for all µ ≥ 0. Hence, the series V (X) makes

sense as a formal power series in X, and we obtain V (X) = v(X) by unicity.

To conclude the proof, it remains to show that V (X) is convergent. To do

that, let us �x 0 < r < min{rα, rh}. Then, for all µ ≥ 0 and for |X| ≤ r we
receive

|Vµ(X)| ≤ C̃µ,r̃|X|µα(r)µh(r)(r̃−1)µ+1.



Sketch of the proof - point 1

Proposition 8

Let C′,K′ > 0 be as in Proposition ??. Then, the following inequality holds

for all j ≥ 0:

‖uj,∗‖jασ,r,s ≤ C
′K′jm0(j)Γ(1 + σj).

Let us now apply Proposition ??: there exists A > 0 such that the following

inequality holds for all j ≥ 0 and all x ∈ Dρ,...,ρ:

|uj,∗(x)| ≤ Aλ(jασ) ‖uj,∗‖jασ,r,s .

From the fact that λ(jασ) = jλ(ασ) and Proposition ?? it follows that

|uj,∗(x)| ≤ C′(K′Aλ(ασ))jm0(j)Γ(1 + σj)

for all x ∈ Dρ,...,ρ and all j ≥ 0.



Sketch of the proof - point 2

According to the �ltration of the σ-Gevrey spaces O(Dρ1,...,ρN )[[t]]s and the

�rst point of Theorem ??, the following implications hold:

f̃(t, x) ∈ O(Dρ1,...,ρN )[[t]]σ ⇒ f̃(t, x) ∈ O(Dρ1,...,ρN )[[t]]σc

⇒ ũ(t, x) ∈ O(Dρ1,...,ρN )[[t]]σc .

Lemma 2

Let m1, . . . ,mN be regular moment functions of respective orders

s1, . . . , sN ≥ 1 Then function

Em(x) =
N∏
d=1

∑
jd≥0

a
jd
d jd!

sd
x
jd
d

md(jd)


de�nes an analytic function on the polydisc D1,...,1.
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Proposition 9

Let us consider the equation
∂κm0;tu−

∑
n∈I

∑
(i,q,r)∈Λn

tvi,q,rai,q,r
(
∂i1m0;t∂

q1
m;xu

)r1
...
(
∂inm0;t∂

qn
m;xu

)rn
= f̃(t, x)

∂jm0;tu(t, x)|t=0 = ϕj(x), j = 0, ..., κ− 1

where

� the coe�cients ai,q,r are positive real numbers for all (i, q, r) ∈ Λn and

all n ∈ I;

� i∗` = 0 and q∗` = (0, ..., 0) for all ` ∈ {1, ..., n∗ − 1}, and r∗n∗ = 1;

� the initial condition ϕi∗
n∗

(x) is the analytic function Em(x) on the disc

D1,...1;

� the initial conditions ϕj(x) for j 6= i∗n∗ are analytic functions on D1,...,1

satisfying ∂`m;xϕj(0) > 0 for all ` ∈ NN .

� f̃(t, x) is σ-Gevrey and ∂`m;xfj,∗(0) ≥ 0 for all j ≥ 0 and all ` ∈ NN .



Sketch of the proof - point 2

Remark
Due to our assumptions the previous equation is reduced to a nonlinear

equation of the form
∂κm0;tu−

∑
i∈K

∑
q∈Qi

 ∑
r∈Pi,q

ai,q,rt
vi,q,rur

 ∂im0;t∂
q
m;xu = f̃(t, x)

∂jm0;tu(t, x)|t=0 = ϕj(x), j = 0, ..., κ− 1

where

� K is a nonempty subset of {0, ..., κ− 1};

� Qi is a nonempty �nite subset of NN for all i ∈ K;

� Pi,q is a nonempty �nite subset of N for all i ∈ K and all q ∈ Qi.

For the sake of clarity, we retain the notations used before and will not use

this simpler form.

Observe in particular that we have σc =
s0i
∗
n∗ + λ(sq∗n∗)− s0κ

κ+ vi∗,q∗,r∗ − i∗n∗
.



Sketch of the proof - point 2

It is su�cient to prove that ũ(t, x) is σ′-Gevrey for no σ′ < σc.

Let us rewrite the general relations (??) as

uj+κ,∗(x) = Ai∗,q∗,r∗(x)
m0(j)

m0(j − vi∗,q∗,r∗)
∂
q∗n∗
m;xuj−vi∗,q∗,r∗+i∗

n∗ ,∗
(x)

+Rj(x)

with Ai∗,q∗,r∗(x) = ai∗,q∗,r∗
n∗−1∏
`=1

(u0,∗(x))r
∗
` and

Rj(x) = fj,∗(x)

+
∑

j1+...+jr∗1+...+r∗
n∗

=j−vi∗,q∗,r∗
(j1,...,jr∗1+...+r∗

n∗
)6=(0,...,0,j−vi∗,q∗,r∗ )

Ci∗,q∗,r∗,j,n∗(x)

+
∑

(i,q,r)∈
⋃
n∈I Λn

(n,i,q,r) 6=(n∗,i∗,q∗,r∗)

∑
j0+j1+...+jr1+...+rn=j−vi,q,r

Ci,q,r,j,n(x)

for all j ≥ 0, with the initial conditions uj,∗(x) = ϕj(x) for j = 0, ..., κ− 1.



Sketch of the proof - point 2

We easily check that, for all j ≥ 0:

uj(vi∗,q∗,r∗+κ−i∗
n∗ )+i∗

n∗ ,∗
(x) =

(
Ai∗,q∗,r∗(x)

)j
∂
jq∗n∗
m;x ϕi∗

n∗
(x)×

j−1∏
k=0

m0(k(vi∗,q∗,r∗ + κ− i∗n∗) + vi∗,q∗,r∗)

m0(k(vi∗,q∗,r∗ + κ− i∗n∗))
+ remj(x)

with Ai∗,q∗,r∗(0) > 0 and remj(0) ≥ 0.

Observe that

∂
jq∗n∗
m;x ϕi∗

n∗
(0) =

N∏
d=1

a
jq∗n∗,d
d (jq∗n∗,d)!

sd .

We can also deduce that there exist C,K > 0 such that

(13) uj(vi∗,q∗,r∗+κ−i∗
n∗ )+i∗

n∗ ,∗
(0) ≥ CKj(jvi∗,q∗,r∗)!

s0

N∏
d=1

(jq∗n∗,d)!
sd .



Sketch of the proof - point 2

Suppose that ũ(t, x) is σ′-Gevrey for some σ′ < σc. Then, De�nition ??,

properties of moment functions and inequality (??) imply

(14) 1 ≤ C′K′j
Γ(1 + (σ′ + s0)(j(vi∗,q∗,r∗ + κ− i∗n∗) + i∗n∗))

(jvi∗,q∗,r∗)!s0
N∏
d=1

(jq∗n∗,d)!
sd

for all j ≥ 0 and some convenient positive constants C′,K′ > 0 independent

of j. Using the Stirling formula we conclude that the right hand-side of

(??) goes to 0 when j tends to in�nity. This ends the proof.



Additional remarks



Additional remarks

� When the moment functions m0,m1, ...,mN are chosen so that

m0(λ) = m1(λ)... = mN (λ) = Γ(1 + λ), Eq. (??) is reduced to a

classical inhomogeneous nonlinear partial di�erential equation. In

particular, Theorem ?? allows to study the Gevrey regularity of its

formal power series solution, including the non-Kovalevskaya case.

� In the Kovalevskaya case our result is weaker than the

Cauchy-Kovalevskaya Theorem. Let us consider the partial di�erential

equation

(15)

∂3
t u+ ∂t∂xu+ (∂2

xu)3 = 0

∂jtu(t, x)|t=0 = ϕj(x), j = 0, 1, 2
.

in two variables (t, x) ∈ C2. From Cauchy-Kovalevskaya Theorem it

follows that the formal solution ũ(t, x) de�nes an analytic function at

the origin of C2, whereas Theorem ?? tells us that ũ(t, x) is 1-Gevrey.

This is not contradictory, but our result is clearly weaker.



THANK YOU FOR YOUR ATTENTION!



References i

W. Balser, Formal power series and linear systems of meromorphic

ordinary di�erential equations, Springer-Verlag, New York, 2000.

W. Balser, M. Yoshino, Gevrey order of formal power series solutions

of inhomogeneous partial di�erential equations with constant

coe�cients, Funkcial. Ekvac. 53 (2010), 411�434.

S. Michalik, Analytic and summable solutions of inhomogeneous

moment partial di�erential equations, Funkcial. Ekvac. 60 (2017),

325�351.

S. Michalik, M. Suwi«ska, Gevrey estimates for certain moment partial

di�erential equations, Complex Di�erential and Di�erence Equations,

391-408. De Gruyter Proc. Math., 2020.

A. Shirai, Maillet type theorem for nonlinear partial di¨erential

equations and Newton polygons, J. Math. Soc. Japan, 53 (2001)

565�587.



References ii

P. Remy, Gevrey Order and Summability of Formal Series Solutions of

Certain Classes of Inhomogeneous Linear Integro-Di�erential

Equations with Variable Coe�cients, J. Dyn. Control Syst. 23 (2017),

853�878.

P. Remy, Gevrey regularity of the solutions of some inhomogeneous

nonlinear partial di�erential equations, Electron. J. Di�erential

Equations 2023(6), 1-28, 2023.

P. Remy, M. Suwi«ska, On Gevrey regularity of solutions for

inhomogeneous nonlinear moment partial di�erential equations, in

preparation.

M. Suwi«ska, Gevrey estimates of formal solutions of certain moment

partial di�erential equations with variable coe�cients, J. Dyn. Control

Syst. 27, 355�370, 2021.

A. Yonemura, Newton Polygons and Formal Gevrey Classes, Publ.

RIMS Kyoto Univ. 26 (1990), 197�204.


