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1. Introduction

The Pearcey integral with a positive large parameter η:

(1.1) v(x1, x2; η) =

∫
exp

{
η
(
t4 + x2t

2 + x1t
)}
dt.

Here the path of integration is taken as an infinite curve connecting distinct two valleys
of the integrand.

• There are three independent such paths and hence (1.1) yields three linearly
independent entire functions of the variable x = (x1, x2) ∈ C2.

• The integral is often used in the wave propagation theory and diffraction problems,
especially in a model of diffraction effects at a cusp caustic.
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It is easy to see that the Pearcey integral

v(x1, x2; η) =

∫
exp

{
η
(
t4 + x2t

2 + x1t
)}
dt.

is a solution to

(1.2)

{
Q1v :=

(
4∂3

1 + 2x2η
2∂1 + x1η

3) v = 0,

Q2v :=
(
η∂2 − ∂2

1

)
v = 0.

Here we set ∂j = ∂/∂xj (j = 1, 2).

• This is a holonomic system of rank 3 in C2 and the Pearcey integral gives a basis of
the analytic solution space.

• WKB solutions exp

(∫
ω

)
to this system can be considered by Aoki [A] and by

Hirose [H]. Here ω = S(1)dx1 + S(2)dx2.

• Connection problems for WKB solutions are studied intensively by Hirose [H] and by
Honda-Kawai-Takei [HKT].
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We study (1.2) from a viewpoint slightly different from that of [H] and [HKT].

Let us consider η as an independent variable, not a large parameter. Then the Pearcey
integral satisfies not only (1.2) but

Q3v := (3x1∂1 + 2x2∂2 − 4η∂η − 1) v = 0

(
∂η =

∂

∂η

)
.

This equation comes from the weighted homogeneity of the Pearcey integral with respect

to (x1, x2, η) and it gives natural primitives

∫
ω. Hence we may consider WKB solutions

ψ = η−1/2 exp

(∫
ω

)
by using such primitives.

In this talk, we will show

• The Borel transform ψB of thus constructed WKB solutions ψ are algebraic, hence
ψ is resurgent.

• The Stokes set of the holonomic system (1.2) is semialgebraic.

• The singularity structure of ψB can be analyzed by using algebraic functions.
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2. The Pearcey system with a large paremeter

We start from the system of differential equations ([OK]):

(2.1)


P1ψ = 0,

P2ψ = 0,

P3ψ = 0

with

P1 = 4∂1∂2 + 2ηx2∂1 + η2x1,

P2 = 4∂2
2 + ηx1∂1 + 2ηx2∂2 + η,

P3 = η∂2 − ∂2
1(= Q2).

This is equivalent to (1.2) because

P1 = η−1(Q1 + 4∂1Q2),

P2 = η−2∂1Q1 + (4η−2Q2 + 8η−2∂2
1 + 2x2)Q2,

Q1 = ηP1 − 4∂1P3.

Note that
P2 = η−1∂1P1 + 2(2η−1∂2 + x2)P3.
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Next we consider η as an independent complex variable.

• Then the systems (1.2) and (2.1) are subholonomic.

• To get a holonomic system, we add the following equation to (2.1):

(3x1∂1 + 2x2∂2 − 4η∂η − 1)ψ = 0 (Q3ψ = 0).

• This comes from the weighted homogeneity of the Pearcey integral with respect to
(x1, x2, η).

We set
P4 = 3x1∂1 + 2x2∂2 − 4η∂η − 1 (= Q3).

Let D be the Weyl algebra of the variables (x1, x2, η) and I the left ideal in D generated
by Pi (i = 1, 2, 3, 4). We denote by M the left D-module defined by I, that is,

M = D/I.

We call M the Pearcey system with a large parameter.
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The proof of Theorem 2.1 follows Oaku’s work ([Oaku]).

Theorem 2.1

Let I be the left ideal of D generated by Pj (j = 1, 2, 3, 4) and M the left D-module
defined by I:

M = D/I.

Then M is a holonomic system of rank 3.

• The system M characterizes the 3-dimensional linear subspace spanned by the
Pearcey integral in the space of analytic functions.

• There are four valleys of the Pearcey integral and hence we have six infinite paths of
integration connecting distinct two valleys. Any three of them are independent,
which give a basis of the solution space.
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3. WKB solutions

We construct WKB solutions to M . The logarithmic derivatives of the unknown function
with respect to x1 and x2 are denoted respectively by S(1) and S(2) ([A], [H]):

S(1) =
∂1ψ

ψ
, S(2) =

∂2ψ

ψ
.

We can find S(1) and S(2) by using Qjψ = 0 (j = 1, 2), which are equivalent to Pjψ = 0
(j = 1, 2, 3):

(3.1)

{
4(S(1))3 + 2η2x2S

(1) + η3x1 + 12S(1)∂1S
(1) + 4∂2

1S
(1) = 0,

ηS(2) − ∂1S
(1) − (S(1))2 = 0.

We seek formal solutions of the forms

S(1) =

∞∑
k=−1

η−kS
(1)
k , S(2) =

∞∑
k=−1

η−kS
(2)
k .

Leading terms:

4(S
(1)
−1)

3+2x2S
(1)
−1 + x1 = 0,(3.2)

S
(2)
−1 = (S

(1)
−1)

2.(3.3)
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Recurrence relations:

S
(1)
0 = −1

2
∂1 log(6(S

(1)
−1)

2 + x2),

S
(1)
k = − 2

6(S
(1)
−1)

2 + x2

 ∑
k1+k2+k3=k−2
−1≤k1, k2, k3<k

S
(1)
k1
S

(1)
k2
S

(1)
k3

+3
∑

k1+ k2=k−2
−1≤k1, k2<k

S
(1)
k1
∂1S

(1)
k2

+ ∂2
1S

(1)
k−2

 (k ≥ 1),

S
(2)
k = ∂1S

(1)
k−1 +

k∑
j=−1

S
(1)
j S

(1)
k−j−1 (k ≥ 0).

Lemma 3.1

Let ω = S(1)dx1 + S(2)dx2 denote the 1-form of formal series defined by S(1) and S(2)

constructed as above. Then ω is closed.

In [A] and [H], a formal solution of the form exp

(∫ (x1,x2)

(a1,a2)

ω

)
is called a WKB solution

to (1.2). Here (a1, a2) is a suitably fixed point.
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The above construction of S(1) and S(2) does not use

(3.4) P4ψ = 0 (Q3ψ = 0).

That is, η is considered to be a parameter. Thus the WKB solutions exp

(∫ (x1,x2)

(a1,a2)

ω

)
have ambiguity of multiplicative constants that may depend on η.

Next we take (3.4) into account. We consider a formal solution of the form

η−1/2 exp

(∫
ω

)
.

Then (3.4) makes a constraint for the choice of the primitive

∫
ω, namely,

(3.5)


∫
ω0 = −1

2
log(6(S

(1)
−1)

2 + x2),∫
ωk = − 1

4k
(3x1S

(1)
k + 2x2S

(2)
k ) (k ̸= 0)

up to genuine additive constants. Here we set ω =

∞∑
j=−1

η−jωj .
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From now on, we consider the WKB solutions to M of the form

ψ = η−1/2 exp

(∫
ω

)

with the primitive

∫
ω taken as (3.5). Explicitly,

ψ =
1(

η

(
6
(
S

(1)
−1

)2
+ x2

))1/2
exp
(η
4
(3x1S

(1)
−1 + 2x2S

(2)
−1)

−
∞∑

k=1

η−k 1

4k
(3x1S

(1)
k + 2x2S

(2)
k )
)
.

(3.6)

Let S
(1),j
−1 (j = 1, 2, 3) denote the three roots of (3.2) and set S

(2),j
−1 = (S

(1),j
−1 )2.

Accordingly, we have three formal solutions (S(1),j , S(2),j) (j = 1, 2, 3) to (3.1).

Then we have three 1-forms ω(j) = S(1),jdx1 + S(2),jdx2 and WKB solutions ψj

(j = 1, 2, 3) of the form (3.6).

The branch of S
(1),j
−1 will be specified later.
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4. Turning point set and Stokes set

The turning point set and the Stokes set of M are the same as those of (1.2) which are
introduced by [A], [H]. Let j, k ∈ {1, 2, 3} and j ̸= k.

• A point x = (x1, x2) ∈ C2 is called a turning point of type (j, k) if

ω
(j)
−1 = ω

(k)
−1

holds. The turning point set T is the set of all turning points of some type. Hence it
coincides with the zeros of the discriminant:

T = {(x1, x2) | 27x21 + 8x32 = 0 }.

• The Stokes set S of the Pearcey system M is defined to be the union for all
j, k = 1, 2, 3; j ̸= k of the sets{

x = (x1, x2) ∈ C2
∣∣∣ Im ∫ x

τ

(ω
(j)
−1 − ω

(k)
−1 ) = 0

}
,

where τ is a turning point of type (j, k). Note that we have to consider all of

analytic continuation of

∫ x

τ

(ω
(j)
−1 − ω

(k)
−1 ) with respect to x.
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Using the primitive

∫
ω−1 given by (3.5), we see

∫ x

τ

(ω
(j)
−1 − ω

(k)
−1 ) =

1

4
(S

(1),j
−1 − S

(1),k
−1 )(3x1 + 2x2(S

(1),j
−1 + S

(1),k
−1 )) =: F (x1, x2),

where τ is a turning point of type (j, k). Since S
(1),j
−1 , S

(1),k
−1 are roots of the cubic

equation 4ζ3 +2x2ζ + x1 = 0, F is an algebraic function. More explicitly, F is defined by

16F 6 + 32x2
(
27x21 − x32

)
F 4 + 16x22

(
27x21 − x32

)2
F 2 + x21

(
27x21 + 8x32

)3
= 0.

Thus we have

Theorem 4.1

The Stokes set S of the Pearcey system M is described as

S = {(x1, x2) ∈ C2 | ImF (x1, x2) = 0 }.

Hence it is a semialgebraic set as a subset of C2 ≃ R4.

• The set of “crossing points” of Stokes surfaces is also semialgebraic.

• We may draw the figure of (a section of) Stokes set without numerical integration.
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5. Borel transform of WKB solutions

Let ψj,B be the Borel transform of the WKB solution

ψj =
1(

η

(
6
(
S

(1),j
−1

)2
+ x2

))1/2
exp
(η
4
(3x1S

(1),j
−1 + 2x2S

(2),j
−1 )

−
∞∑

k=1

η−k 1

4k
(3x1S

(1),j
k + 2x2S

(2),j
k )

)
.

for j = 1, 2, 3 and Pk,B the formal Borel transform of Pk (k = 1, 2, 3, 4) . The explicit
forms of Pk,B ’s are given as follows:

P1,B = 4∂1∂2 + 2x2∂y∂1 + x1∂
2
y ,

P2,B = 4∂2
2 + x1∂y∂1 + 2x2∂y∂2 + ∂y,

P3,B = ∂y∂2 − ∂2
1 ,

P4,B = 3x1∂1 + 2x2∂2 − 4∂y(−y)− 1

( = 3x1∂1 + 2x2∂2 + 4y∂y + 3).

Here y denotes the variable of the Borel plane. By the definition,

Pk,Bψj,B = 0

holds for j = 1, 2, 3; k = 1, 2, 3, 4.
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Since S
(1),j
−1

∣∣∣
x2=0

is a root of the cubic equation 4ζ3 + x1 = 0 of ζ, we can specify the

branch of S
(1),j
−1 and hence ψj by S

(1),j
−1

∣∣∣
x2=0

= −x
1/3
1

41/3
e2πij/3.

The Borel transform:

exp(ηϖj)
∞∑
ℓ=0

η−
1
2
−ℓfℓ,j(x1, x2),

where ϖj =
1

4
(3x1S

(1),j
−1 + 2x2S

(2),j
−1 ) and f0,j(x1, x2) =

(
6(S

(1),j
−1 )2 + x2

)− 1
2

(j = 1, 2, 3).

ψj,B has a singularity at uj := −ϖj and u = uj satisfies

(5.1) 256u3 − 128x22u
2 + 16x2(9x

2
1 + x32)u− x21(27x

2
1 + 4x32) = 0

(j = 1, 2, 3) and the Stokes set is also expressed in the form⋃
j ̸=k

{(x1, x2) | Im(uj − uk) = 0 }

in terms of the roots uj (j = 1, 2, 3) of (5.1).
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Let DB be the Weyl algebra of the variable (x1, x2, y) and IB the left DB-ideal
generated by Pk,B (k = 1, 2, 3, 4).

Theorem 5.1

Let MB denote the left DB-module defined by IB :

MB = DB/IB .

Then MB is a holonomic system of rank 3.

• Pj (j = 1, 2, 3, 4) are obtained from Qk (k = 1, 2, 3) by applying the algorithm of
Gröbner basis with respect the monomial order η ≻ x1 ≻ x2 and by dividing some
powers of η.

• The system Qkψ = 0 (k = 1, 2, 3) is holonomic of rank 3, however, the system
Qk,Bφ = 0 (k = 1, 2, 3) has rank 6 (pointed out by Hirose) whereas it is holonomic.

• In addition to 3 dimensional analytic solution space, it has 3 dimensional redundant
solutions expressed in terms of the delta function:

ψ = c0x
−3/2
2 δ(η) + c1x1x

−3
2 δ(η) + c2

(
x21x

−9/2
2 δ(η) +

4

7
x
−7/2
2 δ′(η)

)
,

where c0, c1, c2 are arbitrary constants.

Thus MB characterizes the subspace of analytic functions spanned by ψj,B (j = 1, 2, 3).
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We go back to the Pearcey integral

v =

∫
exp

{
η
(
t4 + x2t

2 + x1t
)}
dt

and rewrite the right-hand side by setting t4 + x2t
2 + x1t = −y:

v =

∫
exp(−ηy)g(x1, x2, y)dy.

Here g is defined by

g(x1, x2, y) =
1

4t3 + 2x2t+ x1

∣∣∣∣
t=t(x1,x2)

.

The path of integration is suitably modified and t = t(x1, x2) is a root of the quartic
equation t4 + x2t

2 + x1t = −y.

Lemma 5.2

The function g defined as above satisfies the quartic equation

(4x21x2(36y− x22) + 16y(x22 − 4y)2 − 27x41) g
4 +2(−8x2y+2x32 +9x21) g

2 − 8x1g+1 = 0

and it is a solution to the holonomic system MB .
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For general (x1, x2, y), there are four roots gk (k = 1, 2, 3, 4) of the quartic equation,
which satisfy g1 + g2 + g3 + g4 = 0. Looking at the singularity of gk, we find that any
three of gk’s are linearly independent. Thus we have

Theorem 5.3

The Borel transform ψj,B of the WKB solution ψj (j = 1, 2, 3) can be written as a linear
combination of any three of gk’s. In particular, ψj,B ’s are algebraic. Hence ψj ’s are Borel
summable and resurgent.

We will see the explicit forms of ψj,B in terms of gk’s.
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Since P4,Bψj,B = 0, ψj,B has the weighted homogeneity

ψj,B(λ
3x1, λ

2x2, λ
4y) = λ−3ψj,B(x1, x2, y).

If x1 ̸= 0, we have

ψj,B

(
1,

x2

x
2/3
1

,
y

x
4/3
1

)
= x1ψj,B(x1, x2, y).

We introduce new variables s, t by setting

s =
y

x
4/3
1

, t =
x2

x
2/3
1

.

Then x1ψj,B can be considered as a function of (s, t).
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We set pℓ = 3/44/3e2πiℓ/3 (ℓ = 1, 2, 3). Expansion of x1ψj,B |t=0 at s = pj :

x1ψj,B

∣∣
t=0

= − 41/3√
6π

e−2πij/3(s− pj)
−1/2

×
(
1− 7

9 · 21/3
e−2πij/3(s− pj) +O

(
(s− pj)

2)) .
The branch is chosen as (s− pj)

1/2 > 0 if Im(s− pj) = 0 and s− pj > 0. The branch
cut for the function (s− pj)

1/2 is taken as a half line with the negative real direction
starting at pj and the argument is taken as

−π < arg(s− pj) ≤ π

for general s. Hence we have

(p1 − s)−1/2 = e−πi/2(s− p1)
−1/2 = −i(s− p1)

−1/2(5.2)

for s = e2πi/3σ (0 < σ < p3),

(p2 − s)−1/2 = eπi/2(s− p2)
−1/2 = i(s− p2)

−1/2(5.3)

for s = e4πi/3σ (0 < σ < p3) and

(p3 − s)−1/2 = eπi/2(s− p3)
−1/2 = i(s− p3)

−1/2(5.4)

for 0 < s < p3.
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6. Analytic continuation of algebraic functions

We recall that the algebraic function g is defined by

g(x1, x2, y) =
1

4t3 + 2x2t+ x1

∣∣∣∣
t=t(x1,x2)

,

where t = t(x1, x2) is a root of t4 + x2t
2 + x1t = y. Since this has the same weighted

homogeneity as ψj,B , we can regard h = x1g as a function of (s, t). It follows from
Lemma 5.2 that h is a root of

(256s3 − 128s2t2 + 16st(t3 + 9)− 4t3 − 27)h4 + (4t3 − 16st+ 18)h2 − 8h+ 1 = 0.

We specify the branches hj (j = 1, 2, 3, 4) of the algebraic function h near the origin by
their local behaviors:

h1(s, t) =
1

3
+

4

9
e−

2πi
3 s+

2

9
e

2πi
3 t+ · · · ,

h2(s, t) =
1

3
+

4

9
e

2πi
3 s+

2

9
e−

2πi
3 t+ · · · ,

h3(s, t) =
1

3
+

4

9
s+

2

9
t+ · · · ,

h4(s, t) = −1− 2st− 4s3 + · · · .
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Now we specify the branches gj of g by setting

gj = hj/x1 (j = 1, 2, 3, 4).

Let us consider the restriction of h to t = 0. It satisfies(
256s3 − 27

)
h4 + 18h2 − 8h+ 1 = 0.

Here we also use h for h(s, 0). Hence h(s, 0) has a singularity at s = pℓ(= 3/44/3e2πiℓ/3)
(ℓ = 1, 2, 3). Taking the local expansions of the roots at s = pℓ, we can specify the

branches h
(ℓ)
j (s, 0)(j = 1, 2, 3, 4) near s = pℓ as

h
(ℓ)
1 (s, 0) =

1

25/6
√
3
e−

2πi
3

ℓ(pℓ − s)−1/2 +O(1),

h
(ℓ)
2 (s, 0) = − 1

25/6
√
3
e−

2πi
3

ℓ(pℓ − s)−1/2 +O(1),

h
(ℓ)
3 (s, 0) =

4 + i
√
2

18
+O(pℓ − s),

h
(ℓ)
4 (s, 0) =

4− i
√
2

18
+O(pℓ − s).

Here the branches of the square roots are chosen as (5.2)–(5.4). Since h is holomorphic

near t = 0, the branches h
(ℓ)
j (s, 0) given above also specifies the branches h

(ℓ)
j (s, t) of

h(s, t) near s = pℓ if |t| is sufficiently small.
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The following lemma shows how these branches are related.

Lemma 6.1

The branches h
(ℓ)
j (j = 1, 2, 3, 4; ℓ = 1, 2, 3) and hj (j = 1, 2, 3, 4) satisfy the relations

h1(s, 0) = h
(3)
4 (s, 0) = h

(1)
2 (s, 0) = h

(2)
3 (s, 0),

h2(s, 0) = h
(3)
3 (s, 0) = h

(1)
4 (s, 0) = h

(2)
2 (s, 0),

h3(s, 0) = h
(3)
1 (s, 0) = h

(1)
3 (s, 0) = h

(2)
4 (s, 0),

h4(s, 0) = h
(3)
2 (s, 0) = h

(1)
1 (s, 0) = h

(2)
1 (s, 0)

(6.1)

for |s| < p3.
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7. Relationship between Borel tranform of WKB solutions and
algebraic functions

Recall

ψj =
1(

η

(
6
(
S

(1),j
−1

)2
+ x2

))1/2
exp
(η
4
(3x1S

(1),j
−1 + 2x2S

(2),j
−1 )

−
∞∑

k=1

η−k 1

4k
(3x1S

(1),j
k + 2x2S

(2),j
k )

)
.

This can be expanded in the form

exp(ηϖj)
∞∑
ℓ=0

η−
1
2
−ℓfℓ,j(x1, x2),

where ϖj =
1

4
(3x1S

(1),j
−1 + 2x2S

(2),j
−1 ) and f0,j(x1, x2) =

(
6(S

(1),j
−1 )2 + x2

)− 1
2

(j = 1, 2, 3).
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By using Theorem 5.3, we obtain

x1ψℓ,B =

4∑
k=1

C
(ℓ)
k h

(ℓ)
k (s, t),

where C
(ℓ)
k (k = 1, 2, 3, 4) is a constant independent of s and t. Comparing the

coefficients for the power of (s− pℓ) on its both sides, we have

x1ψ1,B

∣∣
t=0

=
i√
π
(h

(1)
2 − h

(1)
1 ),

x1ψ2,B

∣∣
t=0

= − i√
π
(h

(2)
2 − h

(2)
1 ),

x1ψ3,B

∣∣
t=0

= − i√
π
(h

(3)
2 − h

(3)
1 ).

Consequently, we have

x1ψ1,B

∣∣
t=0

=
i√
π
(h1 − h4),

x1ψ2,B

∣∣
t=0

= − i√
π
(h2 − h4),

x1ψ3,B

∣∣
t=0

=
i√
π
(h3 − h4).

Since x1ψj,B are holomorphic at t = 0, we can obtain the expressions of it in terms of
gk’s.
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Theorem 7.1

Under the notation given above, if |x2| is sufficiently small, the Borel transform of the
WKB solution ψk to the Pearcey system is expressed in the form

ψk,B = (−1)k−1 i√
π
(gk − g4)

for k = 1, 2, 3. If we take a new branch cut of ψk,B as the half-line starting from uk with
the positive real direction, the above relation is written in the form

ψk,B =
i√
π
∆ukg4.

Here ∆ukg4 denotes the discontinuity of g4 along the branch cut of ψk,B .

• g = gk (k = 1, 2, 3, 4) are the roots of

(4x21x2(36y−x22)+16y(x22−4y)2−27x41) g
4+2(−8x2y+2x32+9x21) g

2−8x1g+1 = 0.

• The branch of gk are specified by

x1g1
∣∣
t=0

=
1

3
+

4

9
e−2πi/3s+O(s2), x1g2

∣∣
t=0

=
1

3
+

4

9
e2πi/3s+O(s2),

x1g3
∣∣
t=0

=
1

3
+

4

9
s+O(s2), x1g4

∣∣
t=0

= −1 +O(s).

Here we set s =
y

x
4/3
1

, t =
x2

x
2/3
1

.
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8. Connection formula

Using Theorem 7.1, we can take analytic continuation with respect to y of ψℓ,B if |x2| is
small (ℓ = 1, 2, 3).

Recall: The singularity uℓ of ψℓ,B is given by

uℓ = −1

4
(3x1S

(1),ℓ
−1 + 2x2S

(2),ℓ
−1 )

and the branch of S
(1),ℓ
−1 is specified by S

(1),ℓ
−1

∣∣∣
x2=0

= −x
1/3
1

41/3
e2πiℓ/3.

Since h = x1g is holomorphic at t = 0, we can specify the branches gj (j = 1, 2, 3, 4) of

g at x2 = 0 and g
(ℓ)
j at uℓ (j = 1, 2, 3, 4; ℓ = 1, 2, 3) by setting

x1gj
∣∣
t=0

= hj(s, 0), x1g
(ℓ)
j

∣∣
t=0

= h
(ℓ)
j (s, 0),

respectively (s = y/x
4/3
1 , t = x2/x

2/3
1 ). Relations (6.1) yield the following relations for

small |x2|:

(8.1)



g1 = g
(3)
4 = g

(1)
2 = g

(2)
3 ,

g2 = g
(3)
3 = g

(1)
4 = g

(2)
2 ,

g3 = g
(3)
1 = g

(1)
3 = g

(2)
4 ,

g4 = g
(3)
2 = g

(1)
1 = g

(2)
1 .
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Notation:
Let f be an analytic function germ (possibly 2-valued) at y = uℓ (x1, x2 are fixed).

• c∗ℓkf : the analytic continuation of f along the segment uℓuk.

• c∗ℓf : another branch of f if f has a square-root type singularity at y = uℓ.

• c∗ℓf = f if f is holomorphic at y = uℓ.

Using (8.1), we can take analytic continuation of g
(ℓ)
j to the possible singularity uk:

c∗12g
(1)
1 = g

(2)
1 , c∗13g

(1)
1 = g

(3)
2 , c∗23g

(2)
1 = g

(3)
2 ,

c∗12g
(1)
2 = g

(2)
3 , c∗13g

(1)
2 = g

(3)
4 , c∗23g

(2)
2 = g

(3)
3 ,

c∗12g
(1)
3 = g

(2)
4 , c∗13g

(1)
3 = g

(3)
1 , c∗23g

(2)
3 = g

(3)
4 ,

c∗12g
(1)
4 = g

(2)
2 , c∗13g

(1)
4 = g

(3)
3 , c∗23g

(2)
4 = g

(3)
1 ,

c∗1g
(1)
1 = g

(1)
2 , c∗1g

(1)
2 = g

(1)
1 , c∗1g

(1)
3 = g

(1)
3 , c∗1g

(1)
4 = g

(1)
4 ,

c∗2g
(2)
1 = g

(2)
2 , c∗2g

(2)
2 = g

(2)
1 , c∗2g

(2)
3 = g

(2)
3 , c∗2g

(2)
4 = g

(2)
4 ,

c∗3g
(3)
1 = g

(3)
2 , c∗3g

(3)
2 = g

(3)
1 , c∗3g

(3)
3 = g

(3)
3 , c∗3g

(3)
4 = g

(3)
4 .
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Consider the case x
4/3
1 > 0. If |x2| is sufiiciently small, then

uℓ ∼ pℓx
4/3
1 = 3/44/3e2πiℓ/3x

4/3
1 .

Take the half lines in the y-plane starting at uk (k = 1, 2, 3) with the positive real
direction as new branch cuts of ψℓ,B .

Choose the branch of ψℓ,B near y = uℓ as 0 ≤ arg(y/x
4/3
1 − uℓ) < 2π (ℓ = 1, 2, 3).

Discontinuity: For a function f defined near y = uℓ analytic outside {uℓ}, we set

∆uℓf(y) = f(y)− f(uℓ + (y − uℓ)e
2πi)

for y ∈ {uℓ + s | s ≥ 0 }. Its analytic continuation is also denoted by ∆uℓf .

Abbreviation:

∆ukc
∗
ℓkψℓ,B = ∆ukψℓ,B (ℓ ̸= k),

∆uj c
∗
kjc

∗
kc

∗
ℓkψℓ,B = ∆̃ujψℓ,B (j, k, ℓ : distinct).
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Theorem 8.1

Fix a point q = (q1, 0) (q1 > 0). For a point x = (x1, x2) and distinct ℓ, j, k, we assume
that the point uℓ (t1, t2) does not cross the segment uj (t1, t2)uk (t1, t2) when a point
(t1, t2) moves along the segment qx. Then we have

∆ukψℓ,B = (−1)ℓψk,B ,(8.2)

∆̃ukψℓ,B = 0(8.3)

for k, ℓ = 1, 2, 3; k ̸= ℓ.

• We can track the possible singularities uk’s of ψℓ,B when x1, x2 vary.

• If the paths of analytic continuation c∗ℓk and c∗kjc
∗
kc

∗
ℓk of ψℓ,B ’s are deformed

suitably, the discontinuity formulas (8.2), (8.3) keep hold.

• Thus we can deduce, in principle, connection formulas of WKB solutions ψℓ across
the Stokes set in a neighborhood of arbitrary generic point on the Stokes set.
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Proof We prove (8.2), (8.3) for ℓ = 1, k = 3. Theorem 7.1 and (8.1) yield

ψ1,B =
i√
π
(g1 − g4) =

i√
π
(g

(1)
2 − g

(1)
1 )

and

c∗13ψ1,B =
i√
π
(g

(3)
4 − g

(3)
2 ).

Since ∆u3g
(3)
4 = 0 and

i√
π
∆u3g

(3)
2 =

i√
π
∆u3g4 = ψ3,B , we have (8.2).

Since c∗12g
(1)
2 = g

(2)
3 , c∗12g

(1)
1 = g

(2)
1 , c∗2g

(2)
3 = g

(2)
3 and c∗2g

(2)
1 = g

(2)
2 , we have

c∗2c
∗
12ψ1,B =

i√
π
(g

(2)
3 − g

(2)
2 ).

Moreover, c∗23g
(2)
3 = g

(3)
4 and c∗23g

(2)
2 = g

(3)
3 yield

c∗23c
∗
2c

∗
12ψ1,B =

i√
π
(g

(3)
4 − g

(3)
3 ).

Using ∆u3g
(3)
3 = ∆u3g

(3)
4 = 0, we obtain (8.3). Other cases can be proved similarly.
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Example Analytic continuation from x(1) = (0.15, 0) to x(13) = (0.45+0.69i, 0.5+0.5i):

Sections of the Stokes set
For x2 = 0 and for x2 = 0.5 + 0.25i:

0.15 0.15

x = x(1) = (0.15, 0) x = x(4) = (0.15, 0.5 + 0.25i)
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For x2 = (1 + i)/2:

x
(5)
1

x
(6)
1

x
(7)
1

x
(8)
1

x
(9)
1

x
(10)
1

x
(11)
1 x

(12)
1 x

(13)
1

x = (x
(j)
1 , 0.5 + 0.5i)
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u1

u2

u3

u1

u2

u3

u1

u2

u3

x(1) = (0.15, 0) x(2) = (0.15, 0.32) x(3) = (0.15, 1/2)

u1

u2

u3

u1

u2

u3

u1

u2

u3

x(4) = (0.15, 0.5 + 0.25i) x(5) = (0.15, (1 + i)/2) x(6) = (0.15 + 0.25i, (1 + i)/2)
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u1
u2

u3

u1
u2u3

u1 u2u3

x(7) = (0.15 + 0.37i, 1+i
2

) x(8) = (0.15 + 0.45i, 1+i
2

) x(9) = (0.15 + 0.56i, 1+i
2

)

u1

u2u3

u1

u2
u3

u1
u2

u3

x(10) = (0.15+0.69i, 1+i
2

) x(11) = (0.22+0.69i, 1+i
2

) x(12) = (0.28+0.69i, 1+i
2

)
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x
(5)
1

x
(6)
1

x
(7)
1

x
(8)
1

x
(9)
1

x
(10)
1

x
(11)
1 x

(12)
1 x

(13)
1

Section of Stokes regions Dk for x2 = 0.5 + 0.5i.

D4 D5 D6

D3 D1

D2

Let Ψk
ℓ denote the Borel sum of ψℓ for x = (x1, x2) ∈ Dk.
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During the analytic continuation of ψℓ,B (in x-variable) from x(1) to x(5), u1 never
crosses the moving segment u2u3. Near x = x(4), Im(u3 − u2) ∼ 0 and ψ3 is dominant.
Hence there are no Stokes phenomena for ψ1, ψ2 between D1 and D2. Modifying the
path of integration of the definition of Ψ1

3 and using Theorem 8.1, we have
Ψ1

1 = Ψ2
1,

Ψ1
2 = Ψ2

2,

Ψ1
3 = Ψ2

3 −Ψ2
2.

Let D3 be the Stokes region containing x = (0.15+ 0.4i, (1 + i)/2). In the process of the
analytic continuation from x(1) to x(7), u3 crosses the (moving) segment u1u2 once. It
follows from Theorem 8.1 that ∆u2ψ1,B = 0 for x = x(7). Hence we have

Ψ2
1 = Ψ3

1,

Ψ2
2 = Ψ3

2,

Ψ2
3 = Ψ3

3.

This means that between there is no Stokes phenomenon for ψℓ between D2 and D3.
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On the other hand, u2 never crosses the segment u1u3 during the analytic continuation
from x(1) to x(8). Therefore, if we denote by D4 the Stokes region containing x(9), we
have 

Ψ3
1 = Ψ4

1 −Ψ4
3,

Ψ3
2 = Ψ4

2,

Ψ3
3 = Ψ4

3.

Let D5 and D6 denote the Stokes region containing x(11) and x(13), respectively. Similar
discussion as above shows 

Ψ4
1 = Ψ5

1,

Ψ4
2 = Ψ5

2,

Ψ4
3 = Ψ5

3 −Ψ5
2

and 
Ψ5

1 = Ψ6
1 −Ψ6

2,

Ψ5
2 = Ψ6

2,

Ψ5
3 = Ψ6

3.

We note that u2 never crosses the segment u1u3 during the analytic continuation, while
u3 crosses once again when x moves from x(8) to x(12).
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As is pointed out in [A] and [H], the restriction of the Pearcey system to x2 = c (c is a
constant) yields the equation investigated by Berk-Nevins-Roberts [BNR]. The restriction
of the Pearcey system to x2 = c is given by

(8.4) Riψ = 0 (i = 1, 2, 3),

where we set x1 = x and

R1 = (8c3η + 32cη2)∂2
η + (8c3ηx− 6cx+ 27ηx3)∂x

+ (32cη − 36η2x2)∂η + 4c3η + 6c2η2x2 − 9ηx2 − 2c,

R2 = 8cη∂η∂x + (2c3η − 4c+ 9ηx2)∂x − 12η2x∂η + c2η2x− 3ηx,

R3 = 2c∂2
x + 3xη∂x − 4η2∂η − η.

We call (8.4) the BNR system. Restricting our discussions concerning the Pearcey system
to x2 = c, we obtain the counterparts for the BNR system. It can be seen from the
discussion in [HKT, Theorem A.1.1], [H], [T] that the WKB solutions to the BNR
equation

(4∂3
x + 2cη2∂x + xη3)ψ = 0 (c ̸= 0)

are Borel summable under the general assumption.
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9. Summary and concluding remarks

• The Borel transform of the WKB solutions to the Pearcey system with a large
parameter are algebraic.

• The Stokes set of the Pearcey system is semialgebraic.

• Explicit forms of the Borel transform of the WKB solutions can be given in terms of
the algebraic function coming from the integral representation of the Pearcey
function.

• Analytic continuation of the Borel transform can be obtained by using the algebraic
function.

• Connection formula of the Borel transform can be given by using analytic
continuation of the algebraic function.

• We expect that the Pearcey system gives a WKB theoretic canonical form of the
2-dimensional holonomic systems with a large parameter having a cusp turning point
set.
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Japanese).

[AKT] T. Aoki, T. Kawai and Y. Takei: The Bender-Wu analysis and the Voros theory, Special Functions,
ICM-90 Satellite Conference Proceedings, Springer, 1991, 1–29.

[ASU1] T. Aoki, T. Suzuki and S. Uchida: An elementary proof of the Voros connection formula for WKB
solutions to the Airy equation with a large parameter, to appear in RIMS Kôkyûroku Bessatsu.
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Kôkyûroku Bessatsu 40 (2013), 243–292.

[HKT] N. Honda, T. Kawai and Y. Takei: Virtual turning points, Springer Briefs in Mathematical Physics 4,
2015, Springer.

[Oaku] T. Oaku: Computation of the characteristic variety and the singular locus of a system of differential
equations with polynomial coefficients. Japan J. Indust. Appl. Math., 11 (1994), 485-497.

[OK] K. Okamoto and H. Kimura: On particular solutions of the Garnier systems and the hypergeometric
functions of several variables, Quart. J. Math. Oxford (2) 37 (1986), 61–80.

[P] T. Pearcey: The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic, Phil.
Mag., 37 (1946), 311–317.

[T] Y. Takei: Integral representation for ordinary differential equations of Laplace type and exact WKB
analysis (Exact steepest descent method), RIMS Kôkyûroku, 1168 (2000), 80–92.
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