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1. Introduction

The Pearcey integral with a positive large parameter 7:

(1.1) v(z1,z2;1m) = /exp {n (t4 + zat® + x1t) } dt.

Here the path of integration is taken as an infinite curve connecting distinct two valleys
of the integrand.

® There are three independent such paths and hence (1.1) yields three linearly
independent entire functions of the variable = = (21, z2) € C?.

® The integral is often used in the wave propagation theory and diffraction problems,
especially in a model of diffraction effects at a cusp caustic.
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It is easy to see that the Pearcey integral

v(z1,z2;m) = /exp {17 (t4 +oot? mlt)}dt.
is a solution to
(12) Q1v = (48? + 22om° 01 + a:1773) v =0,
. Q2v := (nda2 — (9%) v = 0.
Here we set 9; = 9/0z; (j = 1,2).

® This is a holonomic system of rank 3 in C? and the Pearcey integral gives a basis of
the analytic solution space.

® WKB solutions exp </ w) to this system can be considered by Aoki [A] and by
Hirose [H]. Here w = SMdxy + 5P dx,.

® Connection problems for WKB solutions are studied intensively by Hirose [H] and by
Honda-Kawai-Takei [HKT].
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We study (1.2) from a viewpoint slightly different from that of [H] and [HKT].

Let us consider n as an independent variable, not a large parameter. Then the Pearcey
integral satisfies not only (1.2) but

Q3v := (3101 + 22202 — 4nd,, — 1)v =0 (87, = (,%) .
This equation comes from the weighted homogeneity of the Pearcey integral with respect

to (z1,z2,7n) and it gives natural primitives /w. Hence we may consider WKB solutions

o[

by using such primitives.

In this talk, we will show

® The Borel transform i of thus constructed WKB solutions v are algebraic, hence
Y is resurgent.

® The Stokes set of the holonomic system (1.2) is semialgebraic.

® The singularity structure of ©p can be analyzed by using algebraic functions.
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2. The Pearcey system with a large paremeter

We start from the system of differential equations ([OK]):

P =0,
(2.1) Py =0,
Py =0

with
P, =40,02 + 27]13281 + 7]2$1,
Py = 403 + nz101 + 2nw20s + 1),
P3; =10y — 3%(: Q2).
This is equivalent to (1.2) because
Pr=n"1(Q1+40:1Q2),

P = 77_251Q1 + (477_2Q2 + 877_23% + 222)Q2,
Ql = 77P1 — 481P3.

Note that
Py =n"'01P1 +2(2n ' 02 + 22) Ps.
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Next we consider 1 as an independent complex variable.
® Then the systems (1.2) and (2.1) are subholonomic.

® To get a holonomic system, we add the following equation to (2.1):
(356181 + 22902 — 47]&7 - 1) w =0 (Qg.’l/} = O)

® This comes from the weighted homogeneity of the Pearcey integral with respect to
(331 , L2, T})
We set
Py = 32101 + 22202 — 47]8,] -1 (: Qg)

Let D be the Weyl algebra of the variables (x1,x2,7) and I the left ideal in D generated
by P; (i =1,2,3,4). We denote by M the left D-module defined by I, that is,
M =D/I.

We call M the Pearcey system with a large parameter.
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The proof of Theorem 2.1 follows Oaku’'s work ([Oakul).

Let I be the left ideal of D generated by P; (5 =1,2,3,4) and M the left D-module

defined by I:
M =D/I.

Then M is a holonomic system of rank 3.

® The system M characterizes the 3-dimensional linear subspace spanned by the
Pearcey integral in the space of analytic functions.

® There are four valleys of the Pearcey integral and hence we have six infinite paths of
integration connecting distinct two valleys. Any three of them are independent,
which give a basis of the solution space.

7/4



3. WKB solutions

We construct WKB solutions to M. The logarithmic derivatives of the unknown function
with respect to 1 and z2 are denoted respectively by S and S® ([A], [H]):

o1y 2 021
S<l>:77 g — 2V
(G (0
We can find S and S® by using Q¢ = 0 (j = 1,2), which are equivalent to P;je) = 0
(j=1,23):
(31) {4(5“))3 +20°228W 4 Pz +1268W 9 5W 4 4975M =0,

nS® — 98" — (sM)? = 0.

We seek formal solutions of the forms

SO = 30 M s = 3 phe®)

k=—1 k=-—1
Leading terms:
(3.2) 48 42228 + 21 =0,
(3.3) 5@ = (sM)2.
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Recurrence relations:

SV = ﬁa log(6(S™))? + z2),

2 1) o(1) g(1)
U S— S ssils
1 k k k-
6(S<—1))2+952 Ky kothka=k—2 e
—1<kq, ko, kg<k

+3 > sPas + oS, | (k> 1),
k14 ko=k—2
—1<kq, ko<k

5 =050, + Z SV (k> 0).

j=—1

Let w = SMdz; + S@dzy denote the 1-form of formal series defined by S™) and S§®
constructed as above. Then w is closed.

(z1,22)
In [A] and [H], a formal solution of the form exp </
(

ay,az)

w) is called a WKB solution

0 (1.2). Here (a1, a2) is a suitably fixed point.
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The above construction of S and S does not use

(34) Pyp=0 (Qs¢ =0).

ai,az)

(z1,22)
That is, 1 is considered to be a parameter. Thus the WKB solutions exp (/ w)
(

have ambiguity of multiplicative constants that may depend on 7.

Next we take (3.4) into account. We consider a formal solution of the form

e ([2).

Then (3.4) makes a constraint for the choice of the primitive /w, namely,

1
[0 =5 low(6(5)? + ),

(35) 1
/wk - _E(?,xls,g” +22257)  (k #0)
up to genuine additive constants. Here we set w = Z nijwj.
j=-1
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From now on, we consider the WKB solutions to M of the form

oo

with the primitive /w taken as (3.5). Explicitly,

1
= 7 exp(g(i’)xls(jl) + 23325'(,21))

(3.6) (n (6 (s) "+ m))

oo

=Y o0t B 4+ 22052)).

k=1

Let S")7 (j = 1,2, 3) denote the three roots of (3.2) and set %7 = (§1)7)2,
Accordingly, we have three formal solutions (S, §:7) (j =1,2,3) to (3.1).

Then we have three 1-forms w¥) = S(l)’jdml + S<2>’jdx2 and WKB solutions ;
(j =1,2,3) of the form (3.6).

The branch of S(fl)’j will be specified later.
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4. Turning point set and Stokes set

The turning point set and the Stokes set of M are the same as those of (1.2) which are
introduced by [A], [H]. Let j,k € {1,2,3} and j # k.

® A point x = (z1,z2) € C? is called a turning point of type (j, k) if
W) = %)

holds. The turning point set T is the set of all turning points of some type. Hence it
coincides with the zeros of the discriminant:

T = {(x1,x2) | 2727 + 8x3 = 0}.

® The Stokes set S of the Pearcey system M is defined to be the union for all
jok =1,2,3;7 # k of the sets

{x: (z1,22) € CQ‘Im/ (w(,]f —w(fl)) :O},

where T is a turning point of type (j, k). Note that we have to consider all of
z .
analytic continuation of / (w(_ﬂ) — w(_kf) with respect to z.
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Using the primitive /w_1 given by (3.5), we see

/ @9 = W) = 2897 = SO Bar + 202(SE) + SO)) =1 Fan, @),

where 7 is a turning point of type (j, k). Since S(fl)’j, S&ll)’k are roots of the cubic

equation 4¢3 + 2z2¢ + 1 = 0, F is an algebraic function. More explicitly, F' is defined by

16F° + 322, (2723 — 23) F* 4 1623 (2727 — 23)” F? + 27 (2727 +823)" = 0.

Thus we have

Theorem 4.1

The Stokes set S of the Pearcey system M is described as
S = {(z1,22) € C* | Im F(x1,22) =0}.

Hence it is a semialgebraic set as a subset of C* ~ R*.

® The set of “crossing points” of Stokes surfaces is also semialgebraic.

® \We may draw the figure of (a section of) Stokes set without numerical integration.
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5. Borel transform of WKB solutions

Let ;B be the Borel transform of the WKB solution
1

(o (s7)"+ x))/

P = 5 exp(g(&uls(}f’j + 2$25£23’j)

> 1 . .
=Y Ba S 4 2ma8() ).
k=1

for j = 1,2,3 and Py p the formal Borel transform of P, (k =1,2,3,4) . The explicit
forms of Py g's are given as follows:

Pip = 40192 + 2220,0 + 2193,
P g = 483 + 210,01 + 222002 + 0y,
Py p = 0,02 — 07,
Py g = 32101 + 22202 — 40y(—y) — 1
(= 32101 + 22202 + 4y0y + 3).
Here y denotes the variable of the Borel plane. By the definition,
Py Y =0
holds for j =1,2,3;k =1,2,3,4.

14 /41



Since S<_11)’j is a root of the cubic equation 4¢* + 21 = 0 of ¢, we can specify the
xo=0

. . s
branch of 5"}’ and hence ¢, by S} =0 2/

xo=0 41/3

The Borel transform:

oo
1
exp(nw;) Y 02 foj(w1,22),
=0
1 , . ) _1

where w; = 1(3%5’91)‘] +22,8%7) and fo (21, 22) = (6(5‘91>’])2 + :rz) :
(j=1,2,3).
15, B has a singularity at u; := —w; and u = u; satisfies
(5.1) 256u° — 128z5u” + 16x2(927 + 25)u — x5 (2727 + 423) = 0

(4 =1,2,3) and the Stokes set is also expressed in the form

U{(@1,@2) [ Tm(u; — we) =0}

ik

in terms of the roots u; (7 =1,2,3) of (5.1).
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Let Dp be the Weyl algebra of the variable (x1,x2,y) and Ip the left Dp-ideal
generated by Py g (k=1,2,3,4).

Let Mp denote the left Dp-module defined by I5 :
Mp = Dg/I5.

Then Mp is a holonomic system of rank 3.

® P (j=1,2,3,4) are obtained from Qx (k = 1,2,3) by applying the algorithm of
Grobner basis with respect the monomial order >~ x1 > z2 and by dividing some
powers of 7.

® The system Qv = 0 (k = 1,2, 3) is holonomic of rank 3, however, the system
Qr,Be =0 (k=1,2,3) has rank 6 (pointed out by Hirose) whereas it is holonomic.

® |n addition to 3 dimensional analytic solution space, it has 3 dimensional redundant
solutions expressed in terms of the delta function:

_ _: _ 4 _ ,
0 = on 28(0) + cxaraz 5 + cx (et 20(0) + F3 ) )

where co, c1, co are arbitrary constants.

Thus Mp characterizes the subspace of analytic functions spanned by ¥; 5 (j = 1,2, 3).
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We go back to the Pearcey integral
v = /exp {7] (t4 + m2t2 + mlt)} dt
and rewrite the right-hand side by setting t* + z2t> + 21t = —y:

v= /exp(—ny)g(whxz,y)dy

Here g is defined by

1

g(I17I27y) = m t=t(x1

z2)

The path of integration is suitably modified and ¢ = t(x1, z2) is a root of the quartic
equation t* 4 z2t? + 21t = —y.

The function g defined as above satisfies the quartic equation
(4x3 22 (36y — x3) + 16y(x5 — 4y)° — 27x1) g* + 2(—8x2y + 225 4+ 923) 9> — 8219+1 =0

and it is a solution to the holonomic system Mp.
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For general (z1,z2,y), there are four roots g (k =1,2,3,4) of the quartic equation,
which satisfy g1 + g2 + g3 + g4 = 0. Looking at the singularity of g, we find that any
three of gx's are linearly independent. Thus we have

The Borel transform 1; g of the WKB solution v, (5 = 1,2, 3) can be written as a linear
combination of any three of g's. In particular, 1, B's are algebraic. Hence ;'s are Borel
summable and resurgent.

We will see the explicit forms of v; g in terms of gi's.
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Since Py p; 8 =0, ¥, B has the weighted homogeneity
d)jaB()‘Smh )‘23727 )\4:11) = )\73#}ij($17 T2, y)

If 1 # 0, we have

i) Yy
V5B (1, 2/3° 4/3) = 9011/’]',B(1717I27y)~
xT x

1 1

We introduce new variables s, t by setting

__Y _ T2
YER YEN
Ty Ty

Then z1%; B can be considered as a function of (s, ).
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We set pg = 3/4%/3e*™4/3 (¢ = 1,2,3). Expansion of z1%;5|,_, at s = p;:

1/3
4/ o 2mid/3 ,)*1/2

Zﬂle,B|t:O = 7\/@ (S —Pj

7 —27ig
X (1* 9.91/3°¢ ’ J/B(S*pj)+0((sfpj)2))-

The branch is chosen as (s — p;)/2 > 0 if Im(s — p;) =0 and s — p; > 0. The branch
cut for the function (s — p;)'/? is taken as a half line with the negative real direction
starting at p; and the argument is taken as

—m <arg(s —p;) <™
for general s. Hence we have
(5.2) (pr—s) 2= (s —p1) P = —i(s —p1) V2
for s = e*™/35 (0 < 0 < p3),
(53) (p2—s) /2 =™ (s —pa) T2 = i(s —pa) 1/
for s = e'™/35 (0 < o < p3) and
(54) (s — )77 = "2 (s — o) = i(s — po) V2

for 0 < s < ps.

20/41



6. Analytic continuation of algebraic functions

We recall that the algebraic function g is defined by

1

g(z1,22,y) = m t(erm) ,

where t = t(x1,z2) is a root of t* + xat? + 21t = y. Since this has the same weighted
homogeneity as 1; 5, we can regard h = z1g as a function of (s,t). It follows from
Lemma 5.2 that h is a root of

(2565° — 1285°t° + 16st(t* + 9) — 4t> — 27)h* + (4t° — 165t + 18)h*> —8h +1 = 0.

We specify the branches h; (j = 1,2,3,4) of the algebraic function h near the origin by
their local behaviors:

1 4 i 2 T
hl(s,t):§+§e’23 s+§e23 t4---,

1 4 2m 2 _2mi
hz(S,t):§+§e23 stge Tt

1 4 2
h3(3,t):§+§8+§t+“',

ha(s,t) = —1 —2st — 45 + .- .
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Now we specify the branches g; of g by setting
gi=hj/z (j=1,2,3,4).
Let us consider the restriction of h to t = 0. It satisfies
(2565 — 27) h* + 181" — 8h + 1 = 0.

Here we also use & for h(s,0). Hence h(s,0) has a singularity at 5 = py(= 3/4%/3>/3)
(¢ =1,2,3). Taking the local expansions of the roots at s = py, we can specify the
branches h;é)(s,O)(j =1,2,3,4) near s = p¢ as

19 (s,0) = gs/iﬁfzg”(m —s) 210,
hg?(s,0) = — ﬁ_ o —5)72 1 0(),
W00 = V2 Lo, )

hff)(&O) = % + O(pe — s).

Here the branches of the square roots are chosen as (5.2)—(5.4). Since h is holomorphic
near t = 0, the branches h;a(s7 0) given above also specifies the branches hg-[)(s,t) of
h(s,t) near s = py if |¢| is sufficiently small.
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The following lemma shows how these branches are related.

The branches hy) (1 =1,2,3,4;£=1,2,3) and h; (j =1,2,3,4) satisfy the relations
ha(s,0) = b (5,0) = h{" (s, 0) = h§ (5,0),

Gt ha(s,0) = hEY (5,0) = b (5,0) = A" (5,0),
ha(s,0) = h{¥(s,0) = A" (s,0) = h{?(s,0),
ha(s,0) = b8 (s,0) = (M (s,0) = h{?(s,0)

for |s| < ps.
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7. Relationship between Borel tranform of WKB solutions and

algebraic functions

Recall
1 . .
Py = ; 73 exp(Z(Smls(_ll)’J + 21‘25(_21)’J)
(1).5
ety )
o~k 1 (1).5 (2).3
_ Zy] 4—k(3m15‘k —|—2.’EQSk ))
k=1

This can be expanded in the form

n

[NE

(w1, w2),

M8

exp(nw;)

£=0

N[

where w; =
(1=1,2,3).

1 . . . _
168N+ 2025%)7) and fo (21, 22) = (6(5’(_11)’7)2 + 332)
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By using Theorem 5.3, we obtain

where C,ie) (k=1,2,3,4) is a constant independent of s and t. Comparing the
coefficients for the power of (s — p¢) on its both sides, we have

Consequently, we have

Since z1%;,B are holomorphic at ¢ = 0, we can obtain the expressions of it in terms of

gk's.

4

oipen =Y CLORY (s,1),

k=1

wBl,_, = #(hél) —h{"),
21, 5|, = fﬁw? — 1),
13.8|,_ = —%(hég) — h).

z11,B|,_, = ﬁ(m — ha),
18|, = —%(hz — ha),
CEl’¢3,B|t:0 = ﬁ(hg, — ha).
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Under the notation given above, if |z2| is sufficiently small, the Borel transform of the
WKB solution 1 to the Pearcey system is expressed in the form

5 = H)“ﬁ@k — g4)

for k =1,2,3. If we take a new branch cut of ¥ g as the half-line starting from u; with
the positive real direction, the above relation is written in the form

(3
ﬁAuk‘gzl.

Here Ay, ga denotes the discontinuity of g4 along the branch cut of ¢ 5.

Ve, B =

® g=ygi (k=1,2,3,4) are the roots of
(4z3 22 (36y —x3) + 16y (z5 —4y)* —27z1) g* +2(—8xay+225 +927) g* —8z19+1 = 0.
® The branch of gi are specified by

1 4 _ i/ 1 4 T
x1gl|t:O:§+§e 2 /35—&—0(52)7 $192|t:o:§+§€2 /38+O(52),
1 4
‘Tlg?"t:o: §+§s+0(52), 1194‘t:O:—1+O(3).
Here we sets:%, t:%.
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8. Connection formula

Using Theorem 7.1, we can take analytic continuation with respect to y of ¥, if |z2| is
small (£=1,2,3).

Recall: The singularity u, of 1, B is given by

1
Up = —Z(les(,ll)’g + 2:1025(,21)’@)

1/3

_ Ty 2mie/3
xo=0 B 41/3 '
Since h = z1g is holomorphic at ¢t = 0, we can specify the branches g; (j = 1,2, 3,4) of
gatzy=0and g\ atue (j =1,2,3,4;¢=1,2,3) by setting

and the branch of S(_ll)’Z is specified by S(_ll)’e

¢ ¢
2195,z = hi(,0) - @19;7],_ = 1" (5,0),

respectively (s = y/;r:‘ll/g, t= xg/xf/B). Relations (6.1) yield the following relations for
small |z2]:

g1 =95 =gl = g?,
92 =95 =g = g7,
gs =gV =g{" = g{¥,

g1=g3" =g = gi?.

(8.1)
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Notation:

Let f be an analytic function germ (possibly 2-valued) at y = wug (x1,x2 are fixed).

® cuf
° ¢ f:
e c;f = fif f is holomorphic at y = u,.

the analytic continuation of f along the segment weuy.

another branch of f if f has a square-root type singularity at y = w,.

Using (8.1), we can take analytic continuation of g]@) to the possible singularity uy:

gtV =g, chagV =0, chsgl® =68,
cagt? =9, chagl? =9, gl = Y,
chags? = 9P, chags? =9tV gl =g,
chagi? = g8, chgl? =iV, gl =gt
cgtV =g, gV =g, cigl” =g, cigf? =gV,
g =g, ag® =g, gl =9, e =g,
o =gV, gl =g, gl =9, gl =g
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Consider the case i/ > 0. If |z is sufiiciently small, then

wp ~ pgx?/?’ _ 3/44/362772*2/3%/3.

Take the half lines in the y-plane starting at ux (k = 1,2, 3) with the positive real
direction as new branch cuts of v, p.

Choose the branch of ¢, g near y = u¢ as 0 < arg(y/m;l/?’ —uy) <27 (£ =1,2,3).

Discontinuity: For a function f defined near y = u, analytic outside {u¢}, we set

A fy) = fy) = Fue + (y — ue)e’™)

fory € {ug + s|s>0}. Its analytic continuation is also denoted by A, f.

Abbreviation:

AukCZk'(/}é,B = Auka,B (Z i k)a
AujCZjCZCde)Z,B = Auij,B (], k,€ : distinct).
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Theorem 8.1

Fix a point ¢ = (¢1,0) (g1 > 0). For a point z = (x1,x2) and distinct ¢, j, k, we assume
that the point wug (t1,t2) does not cross the segment w; (¢1,t2) ur (t1,t2) when a point
(t1,t2) moves along the segment gz. Then we have

(8.2) Autes = (—1) Y 5,
(8.3) Au,thes =0
for k, 0 =1,2,3;k # £.

® \We can track the possible singularities uy's of 1, g when x1, 22 vary.

® If the paths of analytic continuation cj, and c;cjcpy, of ¥ B's are deformed
suitably, the discontinuity formulas (8.2), (8.3) keep hold.

® Thus we can deduce, in principle, connection formulas of WKB solutions 1, across
the Stokes set in a neighborhood of arbitrary generic point on the Stokes set.
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Proof We prove (8.2), (8.3) for £ =1,k = 3. Theorem 7.1 and (8.1) yield

b i) (1)
V1,8 ﬁ(m g4) = f(gz -9)
and .
* 1 3 3
cistrs = —=(ol” — "),
) 3 )
Since Au3g4 =0 and TAuagé ) = ﬁAusgﬁl = 3.5, we have (8.2).
Since (:]‘29;1> = g§2>, Cla g( = g§2), cggéz) = gé and c3g (2> gf), we have
* % ) 2 2
cacio,B = \F(ng ) gé ))~
Moreover, 0239(2> = gfl ) and c’2‘3g£2> = g§3> yield
* k k. /L.
Ca3CaC12W1,B = ( ©® 9§3>)-

3

Using Au3g3 = Auggf) = 0, we obtain (8.3). Other cases can be proved similarly.
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Example Analytic continuation from () = (0.15,0) to £*® = (0.45 + 0.694, 0.5 + 0.5i):

Sections of the Stokes set
For 2 = 0 and for zo = 0.5 + 0.251:

©0.15 0.15

z=2% = (0.15,0) z=2% = (0.15,0.5 + 0.25)
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For zo = (1 414)/2:

z = (217,05 + 0.5i)
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Uy
o U3
Uy “
| 1’!2
. Us
(5} ) U.Q
) e U3
. " (0.15,1/2)
| 23 —
" 2 =(0.15,0.32)
l'( = u2
=™ = (0.15,0) : .
Uy o | “.3
Uu
uy | ..
ug
us .

)/2)
i, (1414)/
251, (
+0.
/2) z® =(0.15
+1)
15,(1
) = (0.
] T
0.257)
0.5+
= (0.15,
@ = (
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o
Us - o2
o Uy 2 of up U3 u,z.: .
. . H .
. uy U
U
w u3 w wf * 3

(M = (0.15 4+ 0.37i,

1J2rz)

2® = (0.15 4 0.454, 1) 2 = (0.15 + 0.564,

o
o us Uz - W us
. . 02 3 Uy 02 -
. 1
. uy Us
! R .
oo o0 ol 1 oo
o Uq 1 i
s o
o 5 o7 o R T T R TR T M T TR TR T

(19 = (0.15+0.69,

1+4
2

)

M) = (0.2240.694, 1) 22 = (0.28 4 0.69i,

)

144
2

)
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Section of Stokes regions Dy, for 2 = 0.5 + 0.54.

Let U% denote the Borel sum of v for & = (x1,2) € Dg.
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5
), w1 never

During the analytic continuation of ¢, g (in z-variable) from @ to
crosses the moving segment usus. Near z = 2, Im(us — u2) ~ 0 and 13 is dominant.
Hence there are no Stokes phenomena for 11,92 between D; and D2. Modifying the

path of integration of the definition of ¥} and using Theorem 8.1, we have

Ty = U3,
Uy = U3,
Ui =02 vl

Let D3 be the Stokes region containing x = (0.15 + 0.44, (1 +4)/2). In the process of the
analytic continuation from M to (7, us crosses the (moving) segment uju2 once. It
follows from Theorem 8.1 that Ay, 1.5 = 0 for = (7. Hence we have

U7 =17,
U3 =3,
U2 =03,

This means that between there is no Stokes phenomenon for i, between D2 and Ds.
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On the other hand, us never crosses the segment w1 us during the analytic continuation
from 1) to z(® . Therefore, if we denote by D, the Stokes region containing z(*, we
have

TP = U] — 03,
U3 =5,
Us = 03,

Let D5 and Dg denote the Stokes region containing z'" and ') respectively. Similar
discussion as above shows

Uy =07,

U5 =03,

U3 =03 — U3
and

U5 = vl — vl

U5 = S,

U5 =05,

We note that w2 never crosses the segment ujius during the analytic continuation, while
u3 crosses once again when x moves from z® to (12,
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As is pointed out in [A] and [H], the restriction of the Pearcey system to 2 =c¢ (cis a
constant) yields the equation investigated by Berk-Nevins-Roberts [BNR]. The restriction

of the Pearcey system to x2 = c is given by
(8.4) Ry =0 (i=1,2,3),
where we set x; = x and

Ri = (8¢>n + 32en*)0; + (8¢ nz — 6cx + 2Tna”)d,
+ (32en — 360°2%)d, + 4% + 67072 — Inz”® — 2,
Ry = 8¢n0,0: + (2037] —4dc+ 97]m2)8,; - 127]2m8,, + Zn’z — 3nz,

Ry = 2¢02 + 3zn0, — 477287, —n.

We call (8.4) the BNR system. Restricting our discussions concerning the Pearcey system

to 2 = ¢, we obtain the counterparts for the BNR system. It can be seen from the
discussion in [HKT, Theorem A.1.1], [H], [T] that the WKB solutions to the BNR

equation
(402 4 200, + 21> )b =0 (c#0)

are Borel summable under the general assumption.
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9. Summary and concluding remarks

® The Borel transform of the WKB solutions to the Pearcey system with a large
parameter are algebraic.

® The Stokes set of the Pearcey system is semialgebraic.

® Explicit forms of the Borel transform of the WKB solutions can be given in terms of
the algebraic function coming from the integral representation of the Pearcey
function.

® Analytic continuation of the Borel transform can be obtained by using the algebraic
function.

® Connection formula of the Borel transform can be given by using analytic
continuation of the algebraic function.

® \We expect that the Pearcey system gives a WKB theoretic canonical form of the
2-dimensional holonomic systems with a large parameter having a cusp turning point
set.
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