An elementary approach of the connection formula for WKB solutions to the Pearcey system with a large parameter

Shofu Uchida (Kindai University)

Collaborators:
Takashi Aoki (Kindai University)
Takao Suzuki (Kindai University)

Complex Differential and Difference Equations II
August 29, 2023, 11:40-12:40

1. Introduction

The Pearcey integral with a positive large parameter η :

$$
\begin{equation*}
v\left(x_{1}, x_{2} ; \eta\right)=\int \exp \left\{\eta\left(t^{4}+x_{2} t^{2}+x_{1} t\right)\right\} d t \tag{1.1}
\end{equation*}
$$

Here the path of integration is taken as an infinite curve connecting distinct two valleys of the integrand.

- There are three independent such paths and hence (1.1) yields three linearly independent entire functions of the variable $x=\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2}$.
- The integral is often used in the wave propagation theory and diffraction problems, especially in a model of diffraction effects at a cusp caustic.

It is easy to see that the Pearcey integral

$$
v\left(x_{1}, x_{2} ; \eta\right)=\int \exp \left\{\eta\left(t^{4}+x_{2} t^{2}+x_{1} t\right)\right\} d t
$$

is a solution to

$$
\left\{\begin{array}{l}
Q_{1} v:=\left(4 \partial_{1}^{3}+2 x_{2} \eta^{2} \partial_{1}+x_{1} \eta^{3}\right) v=0 \tag{1.2}\\
Q_{2} v:=\left(\eta \partial_{2}-\partial_{1}^{2}\right) v=0
\end{array}\right.
$$

Here we set $\partial_{j}=\partial / \partial x_{j}(j=1,2)$.

- This is a holonomic system of rank 3 in \mathbb{C}^{2} and the Pearcey integral gives a basis of the analytic solution space.
- WKB solutions $\exp \left(\int \omega\right)$ to this system can be considered by Aoki [A] and by Hirose $[\mathrm{H}]$. Here $\omega=S^{(1)} d x_{1}+S^{(2)} d x_{2}$.
- Connection problems for WKB solutions are studied intensively by Hirose [H] and by Honda-Kawai-Takei [HKT].

We study (1.2) from a viewpoint slightly different from that of $[\mathrm{H}]$ and [HKT].
Let us consider η as an independent variable, not a large parameter. Then the Pearcey integral satisfies not only (1.2) but

$$
Q_{3} v:=\left(3 x_{1} \partial_{1}+2 x_{2} \partial_{2}-4 \eta \partial_{\eta}-1\right) v=0 \quad\left(\partial_{\eta}=\frac{\partial}{\partial \eta}\right)
$$

This equation comes from the weighted homogeneity of the Pearcey integral with respect to (x_{1}, x_{2}, η) and it gives natural primitives $\int \omega$. Hence we may consider WKB solutions

$$
\psi=\eta^{-1 / 2} \exp \left(\int \omega\right)
$$

by using such primitives.
In this talk, we will show

- The Borel transform ψ_{B} of thus constructed WKB solutions ψ are algebraic, hence ψ is resurgent.
- The Stokes set of the holonomic system (1.2) is semialgebraic.
- The singularity structure of ψ_{B} can be analyzed by using algebraic functions.

2. The Pearcey system with a large paremeter

We start from the system of differential equations ([OK]):

$$
\left\{\begin{array}{l}
P_{1} \psi=0 \tag{2.1}\\
P_{2} \psi=0 \\
P_{3} \psi=0
\end{array}\right.
$$

with

$$
\begin{aligned}
& P_{1}=4 \partial_{1} \partial_{2}+2 \eta x_{2} \partial_{1}+\eta^{2} x_{1} \\
& P_{2}=4 \partial_{2}^{2}+\eta x_{1} \partial_{1}+2 \eta x_{2} \partial_{2}+\eta \\
& P_{3}=\eta \partial_{2}-\partial_{1}^{2}\left(=Q_{2}\right)
\end{aligned}
$$

This is equivalent to (1.2) because

$$
\begin{aligned}
P_{1} & =\eta^{-1}\left(Q_{1}+4 \partial_{1} Q_{2}\right) \\
P_{2} & =\eta^{-2} \partial_{1} Q_{1}+\left(4 \eta^{-2} Q_{2}+8 \eta^{-2} \partial_{1}^{2}+2 x_{2}\right) Q_{2} \\
Q_{1} & =\eta P_{1}-4 \partial_{1} P_{3}
\end{aligned}
$$

Note that

$$
P_{2}=\eta^{-1} \partial_{1} P_{1}+2\left(2 \eta^{-1} \partial_{2}+x_{2}\right) P_{3}
$$

Next we consider η as an independent complex variable.

- Then the systems (1.2) and (2.1) are subholonomic.
- To get a holonomic system, we add the following equation to (2.1):

$$
\left(3 x_{1} \partial_{1}+2 x_{2} \partial_{2}-4 \eta \partial_{\eta}-1\right) \psi=0 \quad\left(Q_{3} \psi=0\right) .
$$

- This comes from the weighted homogeneity of the Pearcey integral with respect to $\left(x_{1}, x_{2}, \eta\right)$.
We set

$$
P_{4}=3 x_{1} \partial_{1}+2 x_{2} \partial_{2}-4 \eta \partial_{\eta}-1\left(=Q_{3}\right) .
$$

Let D be the Weyl algebra of the variables $\left(x_{1}, x_{2}, \eta\right)$ and I the left ideal in D generated by $P_{i}(i=1,2,3,4)$. We denote by M the left D-module defined by I, that is,

$$
M=D / I
$$

We call M the Pearcey system with a large parameter.

The proof of Theorem 2.1 follows Oaku's work ([Oaku]).

Theorem 2.1

Let I be the left ideal of D generated by $P_{j}(j=1,2,3,4)$ and M the left D-module defined by I :

$$
M=D / I
$$

Then M is a holonomic system of rank 3.

- The system M characterizes the 3-dimensional linear subspace spanned by the Pearcey integral in the space of analytic functions.
- There are four valleys of the Pearcey integral and hence we have six infinite paths of integration connecting distinct two valleys. Any three of them are independent, which give a basis of the solution space.

3. WKB solutions

We construct WKB solutions to M. The logarithmic derivatives of the unknown function with respect to x_{1} and x_{2} are denoted respectively by $S^{(1)}$ and $S^{(2)}([\mathrm{A}],[\mathrm{H}])$:

$$
S^{(1)}=\frac{\partial_{1} \psi}{\psi}, \quad S^{(2)}=\frac{\partial_{2} \psi}{\psi} .
$$

We can find $S^{(1)}$ and $S^{(2)}$ by using $Q_{j} \psi=0(j=1,2)$, which are equivalent to $P_{j} \psi=0$ ($j=1,2,3$):

$$
\left\{\begin{array}{l}
4\left(S^{(1)}\right)^{3}+2 \eta^{2} x_{2} S^{(1)}+\eta^{3} x_{1}+12 S^{(1)} \partial_{1} S^{(1)}+4 \partial_{1}^{2} S^{(1)}=0 \tag{3.1}\\
\eta S^{(2)}-\partial_{1} S^{(1)}-\left(S^{(1)}\right)^{2}=0
\end{array}\right.
$$

We seek formal solutions of the forms

$$
S^{(1)}=\sum_{k=-1}^{\infty} \eta^{-k} S_{k}^{(1)}, \quad S^{(2)}=\sum_{k=-1}^{\infty} \eta^{-k} S_{k}^{(2)}
$$

Leading terms:

$$
\begin{gather*}
4\left(S_{-1}^{(1)}\right)^{3}+2 x_{2} S_{-1}^{(1)}+x_{1}=0 \tag{3.2}\\
S_{-1}^{(2)}=\left(S_{-1}^{(1)}\right)^{2} \tag{3.3}
\end{gather*}
$$

Recurrence relations:

$$
\begin{aligned}
& S_{0}^{(1)}=-\frac{1}{2} \partial_{1} \log \left(6\left(S_{-1}^{(1)}\right)^{2}+x_{2}\right) \\
& S_{k}^{(1)}=-\frac{2}{6\left(S_{-1}^{(1)}\right)^{2}+x_{2}}\left(\sum_{\substack{k_{1}+k_{2}+k_{3}=k-2 \\
-1 \leq k_{1}, k_{2}, k_{3}<k}} S_{k_{1}}^{(1)} S_{k_{2}}^{(1)} S_{k_{3}}^{(1)}\right. \\
&\left.+3 \sum_{\substack{k_{1}+k_{2}=k-2 \\
-1 \leq k_{1}, k_{2}<k}} S_{k_{1}}^{(1)} \partial_{1} S_{k_{2}}^{(1)}+\partial_{1}^{2} S_{k-2}^{(1)}\right) \quad(k \geq 1), \\
& S_{k}^{(2)}=\partial_{1} S_{k-1}^{(1)}+\sum_{j=-1}^{k} S_{j}^{(1)} S_{k-j-1}^{(1)}(k \geq 0) .
\end{aligned}
$$

Lemma 3.1

Let $\omega=S^{(1)} d x_{1}+S^{(2)} d x_{2}$ denote the 1-form of formal series defined by $S^{(1)}$ and $S^{(2)}$ constructed as above. Then ω is closed.

In $[\mathrm{A}]$ and $[\mathrm{H}]$, a formal solution of the form $\exp \left(\int_{\left(a_{1}, a_{2}\right)}^{\left(x_{1}, x_{2}\right)} \omega\right)$ is called a WKB solution to (1.2). Here $\left(a_{1}, a_{2}\right)$ is a suitably fixed point.

The above construction of $S^{(1)}$ and $S^{(2)}$ does not use

$$
\begin{equation*}
P_{4} \psi=0 \quad\left(Q_{3} \psi=0\right) \tag{3.4}
\end{equation*}
$$

That is, η is considered to be a parameter. Thus the WKB solutions $\exp \left(\int_{\left(a_{1}, a_{2}\right)}^{\left(x_{1}, x_{2}\right)} \omega\right)$ have ambiguity of multiplicative constants that may depend on η.

Next we take (3.4) into account. We consider a formal solution of the form

$$
\eta^{-1 / 2} \exp \left(\int \omega\right)
$$

Then (3.4) makes a constraint for the choice of the primitive $\int \omega$, namely,

$$
\left\{\begin{array}{l}
\int \omega_{0}=-\frac{1}{2} \log \left(6\left(S_{-1}^{(1)}\right)^{2}+x_{2}\right) \tag{3.5}\\
\int \omega_{k}=-\frac{1}{4 k}\left(3 x_{1} S_{k}^{(1)}+2 x_{2} S_{k}^{(2)}\right) \quad(k \neq 0)
\end{array}\right.
$$

up to genuine additive constants. Here we set $\omega=\sum_{j=-1}^{\infty} \eta^{-j} \omega_{j}$.

From now on, we consider the WKB solutions to M of the form

$$
\psi=\eta^{-1 / 2} \exp \left(\int \omega\right)
$$

with the primitive $\int \omega$ taken as (3.5). Explicitly,

$$
\begin{align*}
& \psi=\frac{1}{\left(\eta\left(6\left(S_{-1}^{(1)}\right)^{2}+x_{2}\right)\right)^{1 / 2}} \exp \left(\frac{\eta}{4}\left(3 x_{1} S_{-1}^{(1)}+2 x_{2} S_{-1}^{(2)}\right)\right. \tag{3.6}\\
&\left.-\sum_{k=1}^{\infty} \eta^{-k} \frac{1}{4 k}\left(3 x_{1} S_{k}^{(1)}+2 x_{2} S_{k}^{(2)}\right)\right)
\end{align*}
$$

Let $S_{-1}^{(1), j}(j=1,2,3)$ denote the three roots of (3.2) and set $S_{-1}^{(2), j}=\left(S_{-1}^{(1), j}\right)^{2}$. Accordingly, we have three formal solutions $\left(S^{(1), j}, S^{(2), j}\right)(j=1,2,3)$ to (3.1).

Then we have three 1-forms $\omega^{(j)}=S^{(1), j} d x_{1}+S^{(2), j} d x_{2}$ and WKB solutions ψ_{j} ($j=1,2,3$) of the form (3.6).

The branch of $S_{-1}^{(1), j}$ will be specified later.

4. Turning point set and Stokes set

The turning point set and the Stokes set of M are the same as those of (1.2) which are introduced by $[\mathrm{A}],[\mathrm{H}]$. Let $j, k \in\{1,2,3\}$ and $j \neq k$.

- A point $x=\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2}$ is called a turning point of type (j, k) if

$$
\omega_{-1}^{(j)}=\omega_{-1}^{(k)}
$$

holds. The turning point set T is the set of all turning points of some type. Hence it coincides with the zeros of the discriminant:

$$
T=\left\{\left(x_{1}, x_{2}\right) \mid 27 x_{1}^{2}+8 x_{2}^{3}=0\right\} .
$$

- The Stokes set \mathcal{S} of the Pearcey system M is defined to be the union for all $j, k=1,2,3 ; j \neq k$ of the sets

$$
\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2} \mid \operatorname{Im} \int_{\tau}^{x}\left(\omega_{-1}^{(j)}-\omega_{-1}^{(k)}\right)=0\right\}
$$

where τ is a turning point of type (j, k). Note that we have to consider all of analytic continuation of $\int_{\tau}^{x}\left(\omega_{-1}^{(j)}-\omega_{-1}^{(k)}\right)$ with respect to x.

Using the primitive $\int \omega_{-1}$ given by (3.5), we see

$$
\int_{\tau}^{x}\left(\omega_{-1}^{(j)}-\omega_{-1}^{(k)}\right)=\frac{1}{4}\left(S_{-1}^{(1), j}-S_{-1}^{(1), k}\right)\left(3 x_{1}+2 x_{2}\left(S_{-1}^{(1), j}+S_{-1}^{(1), k}\right)\right)=: F\left(x_{1}, x_{2}\right)
$$

where τ is a turning point of type (j, k). Since $S_{-1}^{(1), j}, S_{-1}^{(1), k}$ are roots of the cubic equation $4 \zeta^{3}+2 x_{2} \zeta+x_{1}=0, F$ is an algebraic function. More explicitly, F is defined by

$$
16 F^{6}+32 x_{2}\left(27 x_{1}^{2}-x_{2}^{3}\right) F^{4}+16 x_{2}^{2}\left(27 x_{1}^{2}-x_{2}^{3}\right)^{2} F^{2}+x_{1}^{2}\left(27 x_{1}^{2}+8 x_{2}^{3}\right)^{3}=0
$$

Thus we have

Theorem 4.1

The Stokes set \mathcal{S} of the Pearcey system M is described as

$$
\mathcal{S}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2} \mid \operatorname{Im} F\left(x_{1}, x_{2}\right)=0\right\}
$$

Hence it is a semialgebraic set as a subset of $\mathbb{C}^{2} \simeq \mathbb{R}^{4}$.

- The set of "crossing points" of Stokes surfaces is also semialgebraic.
- We may draw the figure of (a section of) Stokes set without numerical integration.

5. Borel transform of WKB solutions

Let $\psi_{j, B}$ be the Borel transform of the WKB solution

$$
\begin{aligned}
& \psi_{j}=\frac{1}{\left(\eta\left(6\left(S_{-1}^{(1), j}\right)^{2}+x_{2}\right)\right)^{1 / 2}} \exp \left(\frac{\eta}{4}\left(3 x_{1} S_{-1}^{(1), j}+2 x_{2} S_{-1}^{(2), j}\right)\right. \\
&\left.-\sum_{k=1}^{\infty} \eta^{-k} \frac{1}{4 k}\left(3 x_{1} S_{k}^{(1), j}+2 x_{2} S_{k}^{(2), j}\right)\right)
\end{aligned}
$$

for $j=1,2,3$ and $P_{k, B}$ the formal Borel transform of $P_{k}(k=1,2,3,4)$. The explicit forms of $P_{k, B}$'s are given as follows:

$$
\begin{aligned}
P_{1, B} & =4 \partial_{1} \partial_{2}+2 x_{2} \partial_{y} \partial_{1}+x_{1} \partial_{y}^{2} \\
P_{2, B} & =4 \partial_{2}^{2}+x_{1} \partial_{y} \partial_{1}+2 x_{2} \partial_{y} \partial_{2}+\partial_{y} \\
P_{3, B} & =\partial_{y} \partial_{2}-\partial_{1}^{2} \\
P_{4, B} & =3 x_{1} \partial_{1}+2 x_{2} \partial_{2}-4 \partial_{y}(-y)-1 \\
& \left(=3 x_{1} \partial_{1}+2 x_{2} \partial_{2}+4 y \partial_{y}+3\right) .
\end{aligned}
$$

Here y denotes the variable of the Borel plane. By the definition,

$$
P_{k, B} \psi_{j, B}=0
$$

holds for $j=1,2,3 ; k=1,2,3,4$.

Since $\left.S_{-1}^{(1), j}\right|_{x_{2}=0}$ is a root of the cubic equation $4 \zeta^{3}+x_{1}=0$ of ζ, we can specify the branch of $S_{-1}^{(1), j}$ and hence ψ_{j} by $\left.S_{-1}^{(1), j}\right|_{x_{2}=0}=-\frac{x_{1}^{1 / 3}}{4^{1 / 3}} e^{2 \pi i j / 3}$.

The Borel transform:

$$
\exp \left(\eta \varpi_{j}\right) \sum_{\ell=0}^{\infty} \eta^{-\frac{1}{2}-\ell} f_{\ell, j}\left(x_{1}, x_{2}\right)
$$

where $\varpi_{j}=\frac{1}{4}\left(3 x_{1} S_{-1}^{(1), j}+2 x_{2} S_{-1}^{(2), j}\right)$ and $f_{0, j}\left(x_{1}, x_{2}\right)=\left(6\left(S_{-1}^{(1), j}\right)^{2}+x_{2}\right)^{-\frac{1}{2}}$ ($j=1,2,3$).
$\psi_{j, B}$ has a singularity at $u_{j}:=-\varpi_{j}$ and $u=u_{j}$ satisfies

$$
\begin{equation*}
256 u^{3}-128 x_{2}^{2} u^{2}+16 x_{2}\left(9 x_{1}^{2}+x_{2}^{3}\right) u-x_{1}^{2}\left(27 x_{1}^{2}+4 x_{2}^{3}\right)=0 \tag{5.1}
\end{equation*}
$$

($j=1,2,3)$ and the Stokes set is also expressed in the form

$$
\bigcup_{j \neq k}\left\{\left(x_{1}, x_{2}\right) \mid \operatorname{Im}\left(u_{j}-u_{k}\right)=0\right\}
$$

in terms of the roots $u_{j}(j=1,2,3)$ of (5.1).

Let D_{B} be the Weyl algebra of the variable $\left(x_{1}, x_{2}, y\right)$ and I_{B} the left D_{B}-ideal generated by $P_{k, B}(k=1,2,3,4)$.

Theorem 5.1

Let M_{B} denote the left D_{B}-module defined by I_{B} :

$$
M_{B}=D_{B} / I_{B}
$$

Then M_{B} is a holonomic system of rank 3 .

- $P_{j}(j=1,2,3,4)$ are obtained from $Q_{k}(k=1,2,3)$ by applying the algorithm of Gröbner basis with respect the monomial order $\eta \succ x_{1} \succ x_{2}$ and by dividing some powers of η.
- The system $Q_{k} \psi=0(k=1,2,3)$ is holonomic of rank 3 , however, the system $Q_{k, B} \varphi=0(k=1,2,3)$ has rank 6 (pointed out by Hirose) whereas it is holonomic.
- In addition to 3 dimensional analytic solution space, it has 3 dimensional redundant solutions expressed in terms of the delta function:

$$
\psi=c_{0} x_{2}^{-3 / 2} \delta(\eta)+c_{1} x_{1} x_{2}^{-3} \delta(\eta)+c_{2}\left(x_{1}^{2} x_{2}^{-9 / 2} \delta(\eta)+\frac{4}{7} x_{2}^{-7 / 2} \delta^{\prime}(\eta)\right)
$$

where c_{0}, c_{1}, c_{2} are arbitrary constants.
Thus M_{B} characterizes the subspace of analytic functions spanned by $\psi_{j, B}(j=1,2,3)$.

We go back to the Pearcey integral

$$
v=\int \exp \left\{\eta\left(t^{4}+x_{2} t^{2}+x_{1} t\right)\right\} d t
$$

and rewrite the right-hand side by setting $t^{4}+x_{2} t^{2}+x_{1} t=-y$:

$$
v=\int \exp (-\eta y) g\left(x_{1}, x_{2}, y\right) d y
$$

Here g is defined by

$$
g\left(x_{1}, x_{2}, y\right)=\left.\frac{1}{4 t^{3}+2 x_{2} t+x_{1}}\right|_{t=t\left(x_{1}, x_{2}\right)}
$$

The path of integration is suitably modified and $t=t\left(x_{1}, x_{2}\right)$ is a root of the quartic equation $t^{4}+x_{2} t^{2}+x_{1} t=-y$.

Lemma 5.2

The function g defined as above satisfies the quartic equation
$\left(4 x_{1}^{2} x_{2}\left(36 y-x_{2}^{2}\right)+16 y\left(x_{2}^{2}-4 y\right)^{2}-27 x_{1}^{4}\right) g^{4}+2\left(-8 x_{2} y+2 x_{2}^{3}+9 x_{1}^{2}\right) g^{2}-8 x_{1} g+1=0$ and it is a solution to the holonomic system M_{B}.

For general $\left(x_{1}, x_{2}, y\right)$, there are four roots $g_{k}(k=1,2,3,4)$ of the quartic equation, which satisfy $g_{1}+g_{2}+g_{3}+g_{4}=0$. Looking at the singularity of g_{k}, we find that any three of g_{k} 's are linearly independent. Thus we have

Theorem 5.3

The Borel transform $\psi_{j, B}$ of the WKB solution $\psi_{j}(j=1,2,3)$ can be written as a linear combination of any three of g_{k} 's. In particular, $\psi_{j, B}$'s are algebraic. Hence ψ_{j} 's are Borel summable and resurgent.

We will see the explicit forms of $\psi_{j, B}$ in terms of g_{k} 's.

Since $P_{4, B} \psi_{j, B}=0, \psi_{j, B}$ has the weighted homogeneity

$$
\psi_{j, B}\left(\lambda^{3} x_{1}, \lambda^{2} x_{2}, \lambda^{4} y\right)=\lambda^{-3} \psi_{j, B}\left(x_{1}, x_{2}, y\right)
$$

If $x_{1} \neq 0$, we have

$$
\psi_{j, B}\left(1, \frac{x_{2}}{x_{1}^{2 / 3}}, \frac{y}{x_{1}^{4 / 3}}\right)=x_{1} \psi_{j, B}\left(x_{1}, x_{2}, y\right)
$$

We introduce new variables s, t by setting

$$
s=\frac{y}{x_{1}^{4 / 3}}, \quad t=\frac{x_{2}}{x_{1}^{2 / 3}} .
$$

Then $x_{1} \psi_{j, B}$ can be considered as a function of (s, t).

We set $p_{\ell}=3 / 4^{4 / 3} e^{2 \pi i \ell / 3}(\ell=1,2,3)$. Expansion of $\left.x_{1} \psi_{j, B}\right|_{t=0}$ at $s=p_{j}$:

$$
\begin{aligned}
\left.x_{1} \psi_{j, B}\right|_{t=0}=-\frac{4^{1 / 3}}{\sqrt{6 \pi}} & e^{-2 \pi i j / 3}\left(s-p_{j}\right)^{-1 / 2} \\
& \times\left(1-\frac{7}{9 \cdot 2^{1 / 3}} e^{-2 \pi i j / 3}\left(s-p_{j}\right)+O\left(\left(s-p_{j}\right)^{2}\right)\right)
\end{aligned}
$$

The branch is chosen as $\left(s-p_{j}\right)^{1 / 2}>0$ if $\operatorname{Im}\left(s-p_{j}\right)=0$ and $s-p_{j}>0$. The branch cut for the function $\left(s-p_{j}\right)^{1 / 2}$ is taken as a half line with the negative real direction starting at p_{j} and the argument is taken as

$$
-\pi<\arg \left(s-p_{j}\right) \leq \pi
$$

for general s. Hence we have

$$
\begin{equation*}
\left(p_{1}-s\right)^{-1 / 2}=e^{-\pi i / 2}\left(s-p_{1}\right)^{-1 / 2}=-i\left(s-p_{1}\right)^{-1 / 2} \tag{5.2}
\end{equation*}
$$

for $s=e^{2 \pi i / 3} \sigma\left(0<\sigma<p_{3}\right)$,

$$
\begin{equation*}
\left(p_{2}-s\right)^{-1 / 2}=e^{\pi i / 2}\left(s-p_{2}\right)^{-1 / 2}=i\left(s-p_{2}\right)^{-1 / 2} \tag{5.3}
\end{equation*}
$$

for $s=e^{4 \pi i / 3} \sigma\left(0<\sigma<p_{3}\right)$ and

$$
\begin{equation*}
\left(p_{3}-s\right)^{-1 / 2}=e^{\pi i / 2}\left(s-p_{3}\right)^{-1 / 2}=i\left(s-p_{3}\right)^{-1 / 2} \tag{5.4}
\end{equation*}
$$

for $0<s<p_{3}$.

6. Analytic continuation of algebraic functions

We recall that the algebraic function g is defined by

$$
g\left(x_{1}, x_{2}, y\right)=\left.\frac{1}{4 t^{3}+2 x_{2} t+x_{1}}\right|_{t=t\left(x_{1}, x_{2}\right)}
$$

where $t=t\left(x_{1}, x_{2}\right)$ is a root of $t^{4}+x_{2} t^{2}+x_{1} t=y$. Since this has the same weighted homogeneity as $\psi_{j, B}$, we can regard $h=x_{1} g$ as a function of (s, t). It follows from Lemma 5.2 that h is a root of

$$
\left(256 s^{3}-128 s^{2} t^{2}+16 s t\left(t^{3}+9\right)-4 t^{3}-27\right) h^{4}+\left(4 t^{3}-16 s t+18\right) h^{2}-8 h+1=0
$$

We specify the branches $h_{j}(j=1,2,3,4)$ of the algebraic function h near the origin by their local behaviors:

$$
\begin{aligned}
& h_{1}(s, t)=\frac{1}{3}+\frac{4}{9} e^{-\frac{2 \pi i}{3}} s+\frac{2}{9} e^{\frac{2 \pi i}{3}} t+\cdots \\
& h_{2}(s, t)=\frac{1}{3}+\frac{4}{9} e^{\frac{2 \pi i}{3}} s+\frac{2}{9} e^{-\frac{2 \pi i}{3}} t+\cdots \\
& h_{3}(s, t)=\frac{1}{3}+\frac{4}{9} s+\frac{2}{9} t+\cdots \\
& h_{4}(s, t)=-1-2 s t-4 s^{3}+\cdots
\end{aligned}
$$

Now we specify the branches g_{j} of g by setting

$$
g_{j}=h_{j} / x_{1} \quad(j=1,2,3,4)
$$

Let us consider the restriction of h to $t=0$. It satisfies

$$
\left(256 s^{3}-27\right) h^{4}+18 h^{2}-8 h+1=0
$$

Here we also use h for $h(s, 0)$. Hence $h(s, 0)$ has a singularity at $s=p_{\ell}\left(=3 / 4^{4 / 3} e^{2 \pi i \ell / 3}\right)$ ($\ell=1,2,3$). Taking the local expansions of the roots at $s=p_{\ell}$, we can specify the branches $h_{j}^{(\ell)}(s, 0)(j=1,2,3,4)$ near $s=p_{\ell}$ as

$$
\begin{aligned}
h_{1}^{(\ell)}(s, 0) & =\frac{1}{2^{5 / 6} \sqrt{3}} e^{-\frac{2 \pi i}{3} \ell}\left(p_{\ell}-s\right)^{-1 / 2}+O(1) \\
h_{2}^{(\ell)}(s, 0) & =-\frac{1}{2^{5 / 6} \sqrt{3}} e^{-\frac{2 \pi i}{3} \ell}\left(p_{\ell}-s\right)^{-1 / 2}+O(1), \\
h_{3}^{(\ell)}(s, 0) & =\frac{4+i \sqrt{2}}{18}+O\left(p_{\ell}-s\right), \\
h_{4}^{(\ell)}(s, 0) & =\frac{4-i \sqrt{2}}{18}+O\left(p_{\ell}-s\right) .
\end{aligned}
$$

Here the branches of the square roots are chosen as (5.2)-(5.4). Since h is holomorphic near $t=0$, the branches $h_{j}^{(\ell)}(s, 0)$ given above also specifies the branches $h_{j}^{(\ell)}(s, t)$ of $h(s, t)$ near $s=p_{\ell}$ if $|t|$ is sufficiently small.

The following lemma shows how these branches are related.

Lemma 6.1

The branches $h_{j}^{(\ell)}(j=1,2,3,4 ; \ell=1,2,3)$ and $h_{j}(j=1,2,3,4)$ satisfy the relations

$$
\begin{align*}
& h_{1}(s, 0)=h_{4}^{(3)}(s, 0)=h_{2}^{(1)}(s, 0)=h_{3}^{(2)}(s, 0), \\
& h_{2}(s, 0)=h_{3}^{(3)}(s, 0)=h_{4}^{(1)}(s, 0)=h_{2}^{(2)}(s, 0), \tag{6.1}\\
& h_{3}(s, 0)=h_{1}^{(3)}(s, 0)=h_{3}^{(1)}(s, 0)=h_{4}^{(2)}(s, 0), \\
& h_{4}(s, 0)=h_{2}^{(3)}(s, 0)=h_{1}^{(1)}(s, 0)=h_{1}^{(2)}(s, 0)
\end{align*}
$$

for $|s|<p_{3}$.

7. Relationship between Borel tranform of WKB solutions and

 algebraic functionsRecall

$$
\psi_{j}=\frac{1}{\left(\eta\left(6\left(S_{-1}^{(1), j}\right)^{2}+x_{2}\right)\right)^{1 / 2}} \exp \left(\frac{\eta}{4}\left(3 x_{1} S_{-1}^{(1), j}+2 x_{2} S_{-1}^{(2), j}\right)\right.
$$

$$
\left.-\sum_{k=1}^{\infty} \eta^{-k} \frac{1}{4 k}\left(3 x_{1} S_{k}^{(1), j}+2 x_{2} S_{k}^{(2), j}\right)\right)
$$

This can be expanded in the form

$$
\exp \left(\eta \varpi_{j}\right) \sum_{\ell=0}^{\infty} \eta^{-\frac{1}{2}-\ell} f_{\ell, j}\left(x_{1}, x_{2}\right)
$$

where $\varpi_{j}=\frac{1}{4}\left(3 x_{1} S_{-1}^{(1), j}+2 x_{2} S_{-1}^{(2), j}\right)$ and $f_{0, j}\left(x_{1}, x_{2}\right)=\left(6\left(S_{-1}^{(1), j}\right)^{2}+x_{2}\right)^{-\frac{1}{2}}$ ($j=1,2,3$).

By using Theorem 5.3, we obtain

$$
x_{1} \psi_{\ell, B}=\sum_{k=1}^{4} C_{k}^{(\ell)} h_{k}^{(\ell)}(s, t)
$$

where $C_{k}^{(\ell)}(k=1,2,3,4)$ is a constant independent of s and t. Comparing the coefficients for the power of $\left(s-p_{\ell}\right)$ on its both sides, we have

$$
\begin{aligned}
\left.x_{1} \psi_{1, B}\right|_{t=0} & =\frac{i}{\sqrt{\pi}}\left(h_{2}^{(1)}-h_{1}^{(1)}\right) \\
\left.x_{1} \psi_{2, B}\right|_{t=0} & =-\frac{i}{\sqrt{\pi}}\left(h_{2}^{(2)}-h_{1}^{(2)}\right) \\
\left.x_{1} \psi_{3, B}\right|_{t=0} & =-\frac{i}{\sqrt{\pi}}\left(h_{2}^{(3)}-h_{1}^{(3)}\right)
\end{aligned}
$$

Consequently, we have

$$
\begin{aligned}
\left.x_{1} \psi_{1, B}\right|_{t=0} & =\frac{i}{\sqrt{\pi}}\left(h_{1}-h_{4}\right), \\
\left.x_{1} \psi_{2, B}\right|_{t=0} & =-\frac{i}{\sqrt{\pi}}\left(h_{2}-h_{4}\right), \\
\left.x_{1} \psi_{3, B}\right|_{t=0} & =\frac{i}{\sqrt{\pi}}\left(h_{3}-h_{4}\right)
\end{aligned}
$$

Since $x_{1} \psi_{j, B}$ are holomorphic at $t=0$, we can obtain the expressions of it in terms of g_{k} 's.

Theorem 7.1

Under the notation given above, if $\left|x_{2}\right|$ is sufficiently small, the Borel transform of the WKB solution ψ_{k} to the Pearcey system is expressed in the form

$$
\psi_{k, B}=(-1)^{k-1} \frac{i}{\sqrt{\pi}}\left(g_{k}-g_{4}\right)
$$

for $k=1,2,3$. If we take a new branch cut of $\psi_{k, B}$ as the half-line starting from u_{k} with the positive real direction, the above relation is written in the form

$$
\psi_{k, B}=\frac{i}{\sqrt{\pi}} \Delta_{u_{k}} g_{4} .
$$

Here $\Delta_{u_{k}} g_{4}$ denotes the discontinuity of g_{4} along the branch cut of $\psi_{k, B}$.

- $g=g_{k}(k=1,2,3,4)$ are the roots of

$$
\left(4 x_{1}^{2} x_{2}\left(36 y-x_{2}^{2}\right)+16 y\left(x_{2}^{2}-4 y\right)^{2}-27 x_{1}^{4}\right) g^{4}+2\left(-8 x_{2} y+2 x_{2}^{3}+9 x_{1}^{2}\right) g^{2}-8 x_{1} g+1=0
$$

- The branch of g_{k} are specified by

$$
\begin{aligned}
\left.x_{1} g_{1}\right|_{t=0}=\frac{1}{3}+\frac{4}{9} e^{-2 \pi i / 3} s+O\left(s^{2}\right),\left.\quad x_{1} g_{2}\right|_{t=0} & =\frac{1}{3}+\frac{4}{9} e^{2 \pi i / 3} s+O\left(s^{2}\right) \\
\left.x_{1} g_{3}\right|_{t=0} & =\frac{1}{3}+\frac{4}{9} s+O\left(s^{2}\right),\left.\quad x_{1} g_{4}\right|_{t=0}
\end{aligned}=-1+O(s) . ~ \$
$$

Here we set $s=\frac{y}{x_{1}^{4 / 3}}, \quad t=\frac{x_{2}}{x_{1}^{2 / 3}}$.

8. Connection formula

Using Theorem 7.1, we can take analytic continuation with respect to y of $\psi_{\ell, B}$ if $\left|x_{2}\right|$ is small $(\ell=1,2,3)$.

Recall: The singularity u_{ℓ} of $\psi_{\ell, B}$ is given by

$$
u_{\ell}=-\frac{1}{4}\left(3 x_{1} S_{-1}^{(1), \ell}+2 x_{2} S_{-1}^{(2), \ell}\right)
$$

and the branch of $S_{-1}^{(1), \ell}$ is specified by $\left.S_{-1}^{(1), \ell}\right|_{x_{2}=0}=-\frac{x_{1}^{1 / 3}}{4^{1 / 3}} e^{2 \pi i \ell / 3}$.
Since $h=x_{1} g$ is holomorphic at $t=0$, we can specify the branches $g_{j}(j=1,2,3,4)$ of g at $x_{2}=0$ and $g_{j}^{(\ell)}$ at $u_{\ell}(j=1,2,3,4 ; \ell=1,2,3)$ by setting

$$
\left.x_{1} g_{j}\right|_{t=0}=h_{j}(s, 0),\left.\quad x_{1} g_{j}^{(\ell)}\right|_{t=0}=h_{j}^{(\ell)}(s, 0),
$$

respectively $\left(s=y / x_{1}^{4 / 3}, t=x_{2} / x_{1}^{2 / 3}\right.$). Relations (6.1) yield the following relations for small $\left|x_{2}\right|$:

$$
\left\{\begin{array}{l}
g_{1}=g_{4}^{(3)}=g_{2}^{(1)}=g_{3}^{(2)} \tag{8.1}\\
g_{2}=g_{3}^{(3)}=g_{4}^{(1)}=g_{2}^{(2)} \\
g_{3}=g_{1}^{(3)}=g_{3}^{(1)}=g_{4}^{(2)} \\
g_{4}=g_{2}^{(3)}=g_{1}^{(1)}=g_{1}^{(2)}
\end{array}\right.
$$

Notation:
Let f be an analytic function germ (possibly 2 -valued) at $y=u_{\ell}$ (x_{1}, x_{2} are fixed).

- $c_{\ell k}^{*} f$: the analytic continuation of f along the segment $u_{\ell} u_{k}$.
- $c_{\ell}^{*} f$: another branch of f if f has a square-root type singularity at $y=u_{\ell}$.
- $c_{\ell}^{*} f=f$ if f is holomorphic at $y=u_{\ell}$.

Using (8.1), we can take analytic continuation of $g_{j}^{(\ell)}$ to the possible singularity u_{k} :

$$
\begin{gathered}
\left\{\begin{array}{lll}
c_{12}^{*} g_{1}^{(1)}=g_{1}^{(2)}, & c_{13}^{*} g_{1}^{(1)}=g_{2}^{(3)}, & c_{23}^{*} g_{1}^{(2)}=g_{2}^{(3)}, \\
c_{12}^{*} g_{2}^{(1)}=g_{3}^{(2)}, & c_{13}^{*} g_{2}^{(1)}=g_{4}^{(3)}, & c_{23}^{*} g_{2}^{(2)}=g_{3}^{(3)}, \\
c_{12}^{*} g_{3}^{(1)}=g_{4}^{(2)}, & c_{13}^{*} g_{3}^{(1)}=g_{1}^{(3)}, & c_{23}^{*} g_{3}^{(2)}=g_{4}^{(3)}, \\
c_{12}^{*} g_{4}^{(1)}=g_{2}^{(2)}, & c_{13}^{*} g_{4}^{(1)}=g_{3}^{(3)}, & c_{23}^{*} g_{4}^{(2)}=g_{1}^{(3)},
\end{array}\right. \\
\left\{\begin{array}{lll}
c_{1}^{*} g_{1}^{(1)}=g_{2}^{(1)}, & c_{1}^{*} g_{2}^{(1)}=g_{1}^{(1)}, & c_{1}^{*} g_{3}^{(1)}=g_{3}^{(1)}, \\
c_{1}^{*} g_{4}^{(1)}=g_{4}^{(1)} \\
c_{2}^{*} g_{1}^{(2)}=g_{2}^{(2)}, & c_{2}^{*} g_{2}^{(2)}=g_{1}^{(2)}, & c_{2}^{*} g_{3}^{(2)}=g_{3}^{(2)}, \\
c_{2}^{*} g_{4}^{(2)}=g_{4}^{(2)} \\
c_{3}^{*} g_{1}^{(3)}=g_{2}^{(3)}, & c_{3}^{*} g_{2}^{(3)}=g_{1}^{(3)}, & c_{3}^{*} g_{3}^{(3)}=g_{3}^{(3)}, \\
c_{3}^{*} g_{4}^{(3)}=g_{4}^{(3)}
\end{array}\right.
\end{gathered}
$$

Consider the case $x_{1}^{4 / 3}>0$. If $\left|x_{2}\right|$ is sufiiciently small, then

$$
u_{\ell} \sim p_{\ell} x_{1}^{4 / 3}=3 / 4^{4 / 3} e^{2 \pi i \ell / 3} x_{1}^{4 / 3}
$$

Take the half lines in the y-plane starting at $u_{k}(k=1,2,3)$ with the positive real direction as new branch cuts of $\psi_{\ell, B}$.

Choose the branch of $\psi_{\ell, B}$ near $y=u_{\ell}$ as $0 \leq \arg \left(y / x_{1}^{4 / 3}-u_{\ell}\right)<2 \pi(\ell=1,2,3)$.
Discontinuity: For a function f defined near $y=u_{\ell}$ analytic outside $\left\{u_{\ell}\right\}$, we set

$$
\Delta_{u_{\ell}} f(y)=f(y)-f\left(u_{\ell}+\left(y-u_{\ell}\right) e^{2 \pi i}\right)
$$

for $y \in\left\{u_{\ell}+s \mid s \geq 0\right\}$. Its analytic continuation is also denoted by $\Delta_{u_{\ell}} f$.
Abbreviation:

$$
\begin{aligned}
\Delta_{u_{k}} c_{\ell k}^{*} \psi_{\ell, B} & =\Delta_{u_{k}} \psi_{\ell, B} \quad(\ell \neq k) \\
\Delta_{u_{j}} c_{k j}^{*} c_{k}^{*} c_{\ell k}^{*} \psi_{\ell, B} & =\tilde{\Delta}_{u_{j}} \psi_{\ell, B} \quad(j, k, \ell: \text { distinct })
\end{aligned}
$$

Theorem 8.1

Fix a point $q=\left(q_{1}, 0\right)\left(q_{1}>0\right)$. For a point $x=\left(x_{1}, x_{2}\right)$ and distinct ℓ, j, k, we assume that the point $u_{\ell}\left(t_{1}, t_{2}\right)$ does not cross the segment $u_{j}\left(t_{1}, t_{2}\right) u_{k}\left(t_{1}, t_{2}\right)$ when a point $\left(t_{1}, t_{2}\right)$ moves along the segment $q x$. Then we have

$$
\begin{align*}
& \Delta_{u_{k}} \psi_{\ell, B}=(-1)^{\ell} \psi_{k, B}, \tag{8.2}\\
& \tilde{\Delta}_{u_{k}} \psi_{\ell, B}=0 \tag{8.3}
\end{align*}
$$

for $k, \ell=1,2,3 ; k \neq \ell$.

- We can track the possible singularities u_{k} 's of $\psi_{\ell, B}$ when x_{1}, x_{2} vary.
- If the paths of analytic continuation $c_{\ell k}^{*}$ and $c_{k j}^{*} c_{k}^{*} c_{\ell k}^{*}$ of $\psi_{\ell, B}$'s are deformed suitably, the discontinuity formulas (8.2), (8.3) keep hold.
- Thus we can deduce, in principle, connection formulas of WKB solutions ψ_{ℓ} across the Stokes set in a neighborhood of arbitrary generic point on the Stokes set.

Proof We prove (8.2), (8.3) for $\ell=1, k=3$. Theorem 7.1 and (8.1) yield

$$
\psi_{1, B}=\frac{i}{\sqrt{\pi}}\left(g_{1}-g_{4}\right)=\frac{i}{\sqrt{\pi}}\left(g_{2}^{(1)}-g_{1}^{(1)}\right)
$$

and

$$
c_{13}^{*} \psi_{1, B}=\frac{i}{\sqrt{\pi}}\left(g_{4}^{(3)}-g_{2}^{(3)}\right)
$$

Since $\Delta_{u_{3}} g_{4}^{(3)}=0$ and $\frac{i}{\sqrt{\pi}} \Delta_{u_{3}} g_{2}^{(3)}=\frac{i}{\sqrt{\pi}} \Delta_{u_{3}} g_{4}=\psi_{3, B}$, we have (8.2).
Since $c_{12}^{*} g_{2}^{(1)}=g_{3}^{(2)}, c_{12}^{*} g_{1}^{(1)}=g_{1}^{(2)}, c_{2}^{*} g_{3}^{(2)}=g_{3}^{(2)}$ and $c_{2}^{*} g_{1}^{(2)}=g_{2}^{(2)}$, we have

$$
c_{2}^{*} c_{12}^{*} \psi_{1, B}=\frac{i}{\sqrt{\pi}}\left(g_{3}^{(2)}-g_{2}^{(2)}\right)
$$

Moreover, $c_{23}^{*} g_{3}^{(2)}=g_{4}^{(3)}$ and $c_{23}^{*} g_{2}^{(2)}=g_{3}^{(3)}$ yield

$$
c_{23}^{*} c_{2}^{*} c_{12}^{*} \psi_{1, B}=\frac{i}{\sqrt{\pi}}\left(g_{4}^{(3)}-g_{3}^{(3)}\right)
$$

Using $\Delta_{u_{3}} g_{3}^{(3)}=\Delta_{u_{3}} g_{4}^{(3)}=0$, we obtain (8.3). Other cases can be proved similarly.

Example Analytic continuation from $x^{(1)}=(0.15,0)$ to $x^{(13)}=(0.45+0.69 i, 0.5+0.5 i)$:
Sections of the Stokes set
For $x_{2}=0$ and for $x_{2}=0.5+0.25 i$:

$$
x=x^{(1)}=(0.15,0)
$$

$x=x^{(4)}=(0.15,0.5+0.25 i)$

For $x_{2}=(1+i) / 2$:

$x^{(1)}=(0.15,0)$

$x^{(4)}=(0.15,0.5+0.25 i)$

$x^{(2)}=(0.15,0.32)$

$x^{(5)}=(0.15,(1+i) / 2) \quad x^{(6)}=(0.15+0.25 i,(1+i) / 2)$

$x^{(7)}=\left(0.15+0.37 i, \frac{1+i}{2}\right)$
$x^{(8)}=\left(0.15+0.45 i, \frac{1+i}{2}\right)$

$$
x^{(10)}=\left(0.15+0.69 i, \frac{1+i}{2}\right)
$$

$$
x^{(11)}=\left(0.22+0.69 i, \frac{1+i}{2}\right) \quad x^{(12)}=\left(0.28+0.69 i, \frac{1+i}{2}\right)
$$

Section of Stokes regions \mathcal{D}_{k} for $x_{2}=0.5+0.5 i$.

Let Ψ_{ℓ}^{k} denote the Borel sum of ψ_{ℓ} for $x=\left(x_{1}, x_{2}\right) \in \mathcal{D}_{k}$.

During the analytic continuation of $\psi_{\ell, B}$ (in x-variable) from $x^{(1)}$ to $x^{(5)}, u_{1}$ never crosses the moving segment $u_{2} u_{3}$. Near $x=x^{(4)}, \operatorname{Im}\left(u_{3}-u_{2}\right) \sim 0$ and ψ_{3} is dominant. Hence there are no Stokes phenomena for ψ_{1}, ψ_{2} between \mathcal{D}_{1} and \mathcal{D}_{2}. Modifying the path of integration of the definition of Ψ_{3}^{1} and using Theorem 8.1, we have

$$
\left\{\begin{aligned}
\Psi_{1}^{1} & =\Psi_{1}^{2} \\
\Psi_{2}^{1} & =\Psi_{2}^{2} \\
\Psi_{3}^{1} & =\Psi_{3}^{2}-\Psi_{2}^{2}
\end{aligned}\right.
$$

Let \mathcal{D}_{3} be the Stokes region containing $x=(0.15+0.4 i,(1+i) / 2)$. In the process of the analytic continuation from $x^{(1)}$ to $x^{(7)}, u_{3}$ crosses the (moving) segment $u_{1} u_{2}$ once. It follows from Theorem 8.1 that $\Delta_{u_{2}} \psi_{1, B}=0$ for $x=x^{(7)}$. Hence we have

$$
\left\{\begin{array}{l}
\Psi_{1}^{2}=\Psi_{1}^{3} \\
\Psi_{2}^{2}=\Psi_{2}^{3} \\
\Psi_{3}^{2}=\Psi_{3}^{3}
\end{array}\right.
$$

This means that between there is no Stokes phenomenon for ψ_{ℓ} between \mathcal{D}_{2} and \mathcal{D}_{3}.

On the other hand, u_{2} never crosses the segment $u_{1} u_{3}$ during the analytic continuation from $x^{(1)}$ to $x^{(8)}$. Therefore, if we denote by \mathcal{D}_{4} the Stokes region containing $x^{(9)}$, we have

$$
\left\{\begin{aligned}
\Psi_{1}^{3} & =\Psi_{1}^{4}-\Psi_{3}^{4} \\
\Psi_{2}^{3} & =\Psi_{2}^{4}, \\
\Psi_{3}^{3} & =\Psi_{3}^{4} .
\end{aligned}\right.
$$

Let \mathcal{D}_{5} and \mathcal{D}_{6} denote the Stokes region containing $x^{(11)}$ and $x^{(13)}$, respectively. Similar discussion as above shows

$$
\left\{\begin{array}{l}
\Psi_{1}^{4}=\Psi_{1}^{5} \\
\Psi_{2}^{4}=\Psi_{2}^{5} \\
\Psi_{3}^{4}=\Psi_{3}^{5}-\Psi_{2}^{5}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\Psi_{1}^{5}=\Psi_{1}^{6}-\Psi_{2}^{6}, \\
\Psi_{2}^{5}=\Psi_{2}^{6} \\
\Psi_{3}^{5}=\Psi_{3}^{6}
\end{array}\right.
$$

We note that u_{2} never crosses the segment $u_{1} u_{3}$ during the analytic continuation, while u_{3} crosses once again when x moves from $x^{(8)}$ to $x^{(12)}$.

As is pointed out in $[\mathrm{A}]$ and $[\mathrm{H}]$, the restriction of the Pearcey system to $x_{2}=c$ (c is a constant) yields the equation investigated by Berk-Nevins-Roberts [BNR]. The restriction of the Pearcey system to $x_{2}=c$ is given by

$$
\begin{equation*}
R_{i} \psi=0 \quad(i=1,2,3), \tag{8.4}
\end{equation*}
$$

where we set $x_{1}=x$ and

$$
\begin{aligned}
R_{1}= & \left(8 c^{3} \eta+32 c \eta^{2}\right) \partial_{\eta}^{2}+\left(8 c^{3} \eta x-6 c x+27 \eta x^{3}\right) \partial_{x} \\
& \quad+\left(32 c \eta-36 \eta^{2} x^{2}\right) \partial_{\eta}+4 c^{3} \eta+6 c^{2} \eta^{2} x^{2}-9 \eta x^{2}-2 c \\
& =8 c \eta \partial_{\eta} \partial_{x}+\left(2 c^{3} \eta-4 c+9 \eta x^{2}\right) \partial_{x}-12 \eta^{2} x \partial_{\eta}+c^{2} \eta^{2} x-3 \eta x \\
R_{2}= & \\
R_{3}= & 2 c \partial_{x}^{2}+3 x \eta \partial_{x}-4 \eta^{2} \partial_{\eta}-\eta
\end{aligned}
$$

We call (8.4) the BNR system. Restricting our discussions concerning the Pearcey system to $x_{2}=c$, we obtain the counterparts for the BNR system. It can be seen from the discussion in [HKT, Theorem A.1.1], [H], [T] that the WKB solutions to the BNR equation

$$
\left(4 \partial_{x}^{3}+2 c \eta^{2} \partial_{x}+x \eta^{3}\right) \psi=0 \quad(c \neq 0)
$$

are Borel summable under the general assumption.

9. Summary and concluding remarks

- The Borel transform of the WKB solutions to the Pearcey system with a large parameter are algebraic.
- The Stokes set of the Pearcey system is semialgebraic.
- Explicit forms of the Borel transform of the WKB solutions can be given in terms of the algebraic function coming from the integral representation of the Pearcey function.
- Analytic continuation of the Borel transform can be obtained by using the algebraic function.
- Connection formula of the Borel transform can be given by using analytic continuation of the algebraic function.
- We expect that the Pearcey system gives a WKB theoretic canonical form of the 2-dimensional holonomic systems with a large parameter having a cusp turning point set.

References

[A] T. Aoki: Toward the exact WKB analysis of holonomic systems, RIMS Kôkyûroku 1433 (2005), 1-8 (in Japanese).
[AKT] T. Aoki, T. Kawai and Y. Takei: The Bender-Wu analysis and the Voros theory, Special Functions, ICM-90 Satellite Conference Proceedings, Springer, 1991, 1-29.
[ASU1] T. Aoki, T. Suzuki and S. Uchida: An elementary proof of the Voros connection formula for WKB solutions to the Airy equation with a large parameter, to appear in RIMS Kôkyûroku Bessatsu.
[ASU2] T. Aoki, T. Suzuki and S. Uchida: The Borel transform of the WKB solution to the Pearcey system, submitted, available at https://arxiv.org/abs/2303.02694.
[BNR] H. L. Berk, W. M. Nevins and K. V. Roberts: New Stokes' line in WKB theory, J. Math. Phys. 23 (1982), 988-1002.
[H] S. Hirose: On the Stokes geometry for the Pearcey system and the $(1,4)$ hypergeometric system, RIMS Kôkyûroku Bessatsu 40 (2013), 243-292.
[HKT] N. Honda, T. Kawai and Y. Takei: Virtual turning points, Springer Briefs in Mathematical Physics 4, 2015, Springer.
[Oaku] T. Oaku: Computation of the characteristic variety and the singular locus of a system of differential equations with polynomial coefficients. Japan J. Indust. Appl. Math., 11 (1994), 485-497.
[OK] K. Okamoto and H. Kimura: On particular solutions of the Garnier systems and the hypergeometric functions of several variables, Quart. J. Math. Oxford (2) 37 (1986), 61-80.
[P] T. Pearcey: The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic, Phil. Mag., 37 (1946), 311-317.
[T] Y. Takei: Integral representation for ordinary differential equations of Laplace type and exact WKB analysis (Exact steepest descent method), RIMS Kôkyûroku, 1168 (2000), 80-92.
[V] A. Voros: The return of the quartic oscillator. The complex WKB method, Annales de I'I. H. P., section A, tome 39, n ${ }^{\circ} 3$ (1983), 211-338.

Thank you for your attention.

