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Abstract

In this talk, reproducing kernel Hilbert spaces generated by some elliptic
operators will be defined. The problem of existence of a corresponding
reproducing kernel will be refered to the regularity of a considered elliptic
operator.
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Abstract

Connections between reproducing kernels of considered Hilbert spaces and
Green’s functions of their corresponding elliptic operators will be described.
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STEP 1: The classical Bergman space
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What is the (regular) Bergman space ?

For a given domain Ω ⊂ CN consider the space :

L2
H(Ω) = {f ∈ O(Ω); ||f ||2Ω =

∫
Ω

|f |2dV < ∞}

with the scalar product ⟨f ,g⟩ =
∫
Ω

f gdV . This is a Hilbert space, called the

Bergman space.
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How the Bergman kernel appears ?

Fix a point w ∈ Ω and minimize the norm ||f ||Ω in the class
Ew = {f ∈ L2

H(Ω); f (w) = 1}. Since Ew is convex and closed, there exists a
unique extremal function of the problem posed above. Let us denote it by
ϕ(z,w). Bergman kernel function KD is defined as follows :

KΩ(z,w) =
ϕ(z,w)

||ϕ||2Ω

REMEMBER, w ∈ Ω IS ALREADY FIXED.
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Calculation of the Bergman kernel

If {φk}∞k=0 is an orthonormal complete system on Ω ⊂ CN , then

KΩ(z,w) =
∞∑

k=0

φk (z)φk (w)

So for Ω = D(0,1), we may take φk = λk zk ( by Taylor expansion of
holomorphic function ). Now (φk , φl) = 0 for k ̸= l and (φk , φk ) = 1 for
λk =

√
(k + 1)/π. Thus

KD(0,1)(z,w) =
∞∑

k=0

λk zkλk wk =
1
π

∞∑
k=0

(k + 1)(zw)k

=
1
π

∞∑
k=0

(k + 1)qk =
1
π

∞∑
k=0

(qk+1)′

=
1
π
(

∞∑
k=0

qk+1)′ =
1
π

1
(1 − q)2 =

1
π(1 − zw)2
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Weighted Bergman space

We can define the weighted Bergman space on a similar way.
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Weighted Bergman space

Let Ω ⊂ CN be a domain, and let W (Ω) be the set of weights on Ω, i.e., W (Ω)
is the set of all Lebesque measurable real - valued positive functions on Ω

(we consider two weights as equivalent if they are equal almost everywhere
with respect to the Lebesque measure on Ω).
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Weighted Bergman space

If µ ∈ W (Ω), we denote by L2(Ω, µ) the space of all Lebesque measurable
complex-valued µ-square integrable functions on Ω, equipped with the norm
|| · ||µ given by the scalar product

⟨f ,g⟩µ :=

∫
Ω

f (z)g(z)µ(z)dV , f ,g ∈ L2(Ω, µ).

Define L2
H(Ω, µ) := O(Ω) ∩ L2(Ω, µ).
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Admissible weights

We would like to know that L2
H(Ω, µ) is a Hilbert space for a given weight µ.

Thus we will be working with special class of weights, called „admissible”.

Definition (Admissible weight)
A weight µ ∈ W (Ω) is called an admissible weight, an a-weight for short, if
L2

H(Ω, µ) is a closed subspace of L2(Ω, µ) and for any z ∈ Ω the evaluation
functional Ez f = f (z) is continuous on L2

H(Ω, µ).

The set of all a-weights on Ω will be denoted by AW (Ω).

Remark
See that the definition of admissible weights provides that L2

H(Ω, µ) is a Hilbert
space and the reproducing kernel exists uniquely by the Riesz theorem.
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Admissible weights

Theorem (([Win, Corollary 3.1]))
Let µ ∈ W (Ω). If the function µ−a is locally integrable on Ω for some a > 0
then µ ∈ AW (Ω).
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Now, the space L2
H(Ω, µ) := O(Ω) ∩ L2(Ω, µ) is called the weighted Bergman

space.
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Weighted Bergman kernel function

Fix a point w ∈ Ω and minimize the norm ||f ||µ in the class
Ew = {f ∈ L2

H(Ω, µ); f (w) = 1}. Again, Ew is convex and closed, so there
exists exactly one function satisfying the problem posed above. Let us denote
it by ϕµ(z,w). Weighted Bergman kernel function KΩ is defined as follows :

KΩ, µ(z,w) =
ϕµ(z,w)

||ϕµ||2µ
.
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We can expand the weighted Bergman kernel by means of orthonormal
complete system, namely :

if {φk}∞k=0 is an orthonormal complete system on
Ω ⊂ CN , then

KΩ, µ(z,w) =
∞∑

k=0

φk (z)φk (w)
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The weighted Bergman kernel and the Green’s
function for a domain Ω ⊂ C

It is well known that a Green’s function for the Laplace operator takes the form

GΩ(z,w) = hΩ(z,w)− ln |z − w |,

where hΩ is harmonic w.r.t z ∈ Ω.

Thus

∂2GΩ

∂z∂w
=

∂

∂z

(
∂hW

∂w
− 1

2
∂

∂w
[
ln(z − w) + ln(z − w)

])
=

∂2hΩ

∂z∂w
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It can be shown that any domain Ω ⊂ C (or in Cn) may be written as

Ω =
∞⋃
j=1

Ωj , Ω1 ⋐ Ω2 ⋐ Ω3 ⋐ . . . ,

where ∂Ωj consists of a finite number of smooth Jordan curves (we do not
assume any regularity of ∂Ω), for any j ∈ N.

By Harnack’s theorem we have

lim
j→∞

∂2GΩj

∂z∂w
= lim

j→∞

∂2hΩj

∂z∂w
=

∂2hΩ

∂z∂w
=

∂2GΩ

∂z∂w
.
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It was shown in [Kra-Woj] that assuming Ω ⊂ C is a domain with L2(Ω) ̸= 0
and ϱ(z) = |µ(z)|2, where log ϱ is harmonic on a neighbourhood of Ω (and µ
has no zeros on Ω) the following connection between the weighted Bergman
kernel of the weighted Bergman space L2

H(Ω, ϱ) and the Green’s function of

the operator
∂

∂z

(
1

ϱ(z)
∂

∂z

)
holds:

KΩ, ρ(z,w) = − 2
πρ(z)ρ(w)

∂2GΩ, ρ(z,w)

∂z∂w
.

That is the improvement of the Garabedian’s result in [G].

We get the
classical Bermgan-Schiffer identity (see [B-S]) taking ϱ(z) = 1.
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∂

∂z

(
1

ϱ(z)
∂

∂z

)
holds:

KΩ, ρ(z,w) = − 2
πρ(z)ρ(w)

∂2GΩ, ρ(z,w)

∂z∂w
.
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STEP 2: A general Bergman space
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A general Bergman space

Consider a differential operator L =
∑

|α|≤m

Cα∂
α of order m ≥ 1 with constant

coefficients. As usual, we denote by α = (α1, . . . , αn), |α| = α1 + . . .+ αn,

∂α =
∂α1

∂xα1
. . .

∂αn

∂xαn
.

This time we consider (see [Mal]) the space

PL(Ω) = {u ∈ L2(Ω); Lu = 0},

where Ω ∈ Rn is a bounded, open set. It is called a (general) Bergman space.

So for L =
1
2

(
∂

∂x1
+ i

∂

∂x2

)
we get the classical Bergman space.

Taking L =
∂2

∂x2
1
+

∂2

∂x2
2

we get the space of harmonic L2-functions.
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A general Bergman space

The Bergman space PL(Ω) is a closed subspace of the space L2(Ω). Hence,
the projector

BPL(Ω)
: L2(Ω) → PL(Ω)

is properly defined. So there is a natural question on the representation of the
projector, in particular, under which conditions one has

BPL(Ω)
u(x) =

∫
Ω

K (x , y)u(y)dy?

The kernel K (x , y) of the above integral operator is called the Bergman
kernel. If the Bergman kernel exists, then

u(x) =
∫
Ω

K (x , y)u(y)dy

for any function u ∈ PL(Ω).

Paweł Wójcicki (WUT) Reproducing kernel Hilbert spaces generated by some elliptic operatorsCDDE II’2023 21 / 32



A general Bergman space

The Bergman space PL(Ω) is a closed subspace of the space L2(Ω). Hence,
the projector

BPL(Ω)
: L2(Ω) → PL(Ω)

is properly defined. So there is a natural question on the representation of the
projector, in particular, under which conditions one has

BPL(Ω)
u(x) =

∫
Ω

K (x , y)u(y)dy?

The kernel K (x , y) of the above integral operator is called the Bergman
kernel. If the Bergman kernel exists, then

u(x) =
∫
Ω

K (x , y)u(y)dy

for any function u ∈ PL(Ω).

Paweł Wójcicki (WUT) Reproducing kernel Hilbert spaces generated by some elliptic operatorsCDDE II’2023 21 / 32



Existence of the kernel

Theorem ([Mal])
Assume that an embedding

PL(Ω) ↪→ C(Ω)

exists. Then there exists the Bergman kernel K (x , y) and

K (x , y) = f1(x)f1(y) + f2(x)f2(y) + . . .

where f1, f2, . . . is an orthonormal basis in the Bergman space PL(Ω).

Take a point x ∈ Ω and consider the linear functional

Φx : PL(Ω) → C,

given by
Φx(u) = u(x), u ∈ PL(Ω).

The embedding PL(Ω) ↪→ C(Ω) implies the continuity of the operator Φx .

Paweł Wójcicki (WUT) Reproducing kernel Hilbert spaces generated by some elliptic operatorsCDDE II’2023 22 / 32



Existence of the kernel

Theorem ([Mal])
Assume that an embedding

PL(Ω) ↪→ C(Ω)

exists. Then there exists the Bergman kernel K (x , y) and

K (x , y) = f1(x)f1(y) + f2(x)f2(y) + . . .

where f1, f2, . . . is an orthonormal basis in the Bergman space PL(Ω).

Take a point x ∈ Ω and consider the linear functional

Φx : PL(Ω) → C,

given by
Φx(u) = u(x), u ∈ PL(Ω).

The embedding PL(Ω) ↪→ C(Ω) implies the continuity of the operator Φx .

Paweł Wójcicki (WUT) Reproducing kernel Hilbert spaces generated by some elliptic operatorsCDDE II’2023 22 / 32



Existence of the kernel

Since the space PL(Ω) ↪→ C(Ω) is a closed subspace of the Hilbert space
L2(Ω), it is Hilbert space too. So by the Riesz representation theorem there
exists exactly one function φx ∈ PL(Ω) with

Φx(u) = ⟨u, φx⟩L2(Ω), ∀u ∈ PL(Ω).

It turns out (see [Mal]) that the function

K (x , y) = φx(y), x , y ∈ Ω

is the Bergman kernel (reproducing kernel of the space PL(Ω)).

As in the
classical case, this Bergman kernel resolves the variational problem on the
minimal norm in PL(Ω).
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Existence of the kernel

Thus the problem is the existence of an embedding

PL(Ω) ↪→ C(Ω).

It turns out that it exists for

(1) the Cauchy-Riemann operator L =
1
2

(
∂

∂x1
+ i

∂

∂x2

)
(the classical

Bergman space),

(2) L =
∂2

∂x2
1
+

∂2

∂x2
2

(the classical space of harmonic L2 functions),

(3) L is the heat operator L =
∂u
∂t

− c
n∑

i=1

∂2

∂x2
i

(4) arbitrary elliptic operator L

(5) arbitrary hypoelliptic operator L
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The Bergman kernel and the Green’s function

Assume that L is a real elliptic operator of order l >
n
2

. Denote G(x , y) the

Green’s function of the operator LL′, where L =
∑
|α|≤l

Cα∂
α and

L′ =
∑
|α|≤l

(−1)|α|Cα∂
α is the adjoint differential operator. Define a distribution

Λ ∈ D′(Ω× Ω) by the formula

(Λ, φ) =

∫
Ω

φ(x , x)dx , φ ∈ C∞
0 (Ω× Ω)

(so it is vanishing outside the diagonal). Then

K (x , y) = Λ− L′
xL′

y G(x , y),

where K (x , y) is the reproducing kernel of the space PL(Ω).
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STEP 3: Linear operators with nonconstant
coefficients
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It was shown in [Żyn-Sad-Kra-Wój] that if Ω is a domain in R2 with the
boundary of class C1 and L is a strongly elliptic operator of 2nd order:

Lf = −
2∑

i,j=1

∂

∂xj

(
aij(x1, x2)

∂f
∂xi

)
+

2∑
i=1

bi(x1, x2)
∂f
∂xi

+ c(x1, x2)f ,

where aij ∈ C1(Ω),bi , c ∈ L∞(Ω), then the space PL(Ω) has the reproducing
kernel K (x , y).

On the other hand the space PL(Ω) for Ω = D(0,1) ⊂ R2 and L =
∂2

∂x∂y
does NOT have any reproducing kernel ([Żyn-Sad-Kra-Wój]).
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STEP 4: Further research should involve other
operators L and the relationship between the
weighted Bergman kernel of weighted space

PL(Ω) and the corresponding Green’s function.
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Thank You for your attention!
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