
Summability and global property of transseries solution

Bedlewo, September 1, 2023

Summability and global property of transseries solution
of Hamiltonian system

Masafumi Yoshino
Hiroshima University, Japan
yoshinom@hiroshima-u.ac.jp



Contents

Contents of Talk

1 Notation and results

2 Transseries

3 Summability of transseries solution

4 Analytic continuation of Borel sum

5 Some definition

6 Connection of first integral

7 Proof of Theorems 1 and 2 - preparations-

8 Proof of Theorem 1

9 Acknowledgment



Notation and results

Consider the Hamiltonian system with n degrees of freedom

q̇j =
∂

∂pj
H, ṗj = − ∂

∂qj
H, j = 1, 2, . . . , n, (1)

where H is a Hamiltonian function and (q1, . . . , qn) and (p1, . . . , pn) are
the variables in Rn or in Cn (n ≥ 2). Let H := H0 + H1 with H0 and H1

given, respectively, by

H0 = q2σ1 p1 +
n∑

j=2

λjqjpj , (2)

H1 = −
n∑

j=2

q2j Bj(q1, q
2σ
1 p1, q), (3)

where Bj(q1, s, q)’s are holomorphic at the origin with respect to
(q1, s, q) ∈ C× C× Cn−1. (1) appears in the geometric problem related
to the geodesic flow. (cf. Taimanov).



Notation and results

Integrability

Eq. (1) is said to be Cω-Liouville integrable in some domain Ω if there
exist n first integrals ϕj ∈ Cω (j = 1, . . . , n) which are functionally
independent on an open dense set in Ω and Poisson commuting, i.e.,
{ϕj , ϕk} = 0, {H, ϕk} = 0. If ϕj ∈ C∞ (j = 1, . . . , n), then we say C∞-
Liouville integrable.
If, in addition, there exists 2n − 1 funtionally independent first integrals,
then we say that super integrable.



Notation and results

Assumption

Assume

Bν ≡ Bν(q1, q
2σ
1 p1, q) = Bν,0(q1, q) + q2σ1 p1Bν,1(q1, q), ν = 2, . . . , n,

(4)
where Bν,0 and Bν,1 are analytic at (q1, q) = (0, 0). Suppose that the
Poincaré condition holds

Re λj > 0, j = 2, 3, . . . , n. (5)

Suppose that the nonresonance condition holds, i.e.,

n∑
ν=2

λνkν − λj 6= 0, ∀ kν ∈ Z+, ν = 2, . . . , n, j = 2, . . . , n. (6)



Transseries

Definition (transseries)

Set λ = (λ2, . . . , λn). Consider the formal series solution
(q1(t), . . . , qn(t), p1(t), . . . , pn(t)) whose component has the following
form ∑

k≥k0, ℓ≥ℓ0

ck,ℓt
− ℓ

2σ−1 eλkt , (7)

where k = (k2, . . . , kn), λk = λ2k2 + · · ·+ λnkn, and where ck,ℓ’s are
complex constants and k0 is a multiinteger and ℓ0 ≥ 0 is an integer.
Remark. The series (7) is the special case of so-called transseries. In the
general case one considers the series without the restriction k ≥ k0.
Ecale considers more general form.



Transseries

Motivation

In a series of papers including [1] Balser introduced the notion of the
semi formal series and he showed that the general formal solution of the
initial value problem of a nonlinear ODE without resonance is expressed
as a semi formal series. Later, it was shown that the semi formal series is
a special class of the transseries. Heuristically speaking, the semi formal
series satisfies that the sume with respect to ℓ ≥ ℓ0 converges uniformly
in k and the restriction k ≥ k0 is omitted.
Possible next step:
1. Construction of formal solution in a resonant case.
2. Geometrical or algrbraic characterization of formal series. (Ecale’s
group).
3. What is the true solution ? (Summability, connection)



Transseries

Remark. By the results of a movable singular solution a general solution
may have infite number of movable singular points accumulating in every
direction. (no resurgence). In such a case the summability and the
classical definition of the connection problem seem impossible.
Object of the study. We look for the subclass of semi formal solutions
for the Hamiltonian equation for which the summability and the
connection problem are formulated and are studied. We follow the
complex analytic formulation being similar to the linear case. Indeed, we
use the Borel sum of the semi formal series. Then the analytic
continuation of the Borel sum is given and the connection problem is
formulated.
The advantage is that the solution with dense movable singular points
does not appear in these solutions. We study the Stokes function.



Summability of transseries solution

Formal transseries and summability

We first construct a formal transseries solution.

Theorem 1

Suppose that (4), (5) and (6). Then there exists a formal transseries
solution (q1(t), . . . , qn(t), p1(t), . . . , pn(t)) of (1) in the domain
{t |Re(λj t) < 0, j = 2, . . . , n}.

Next we show the summability of the formal solutions.

Theorem 2

Assume (4), (5) and (6). Then the formal transseries solution
(q1(t), . . . , qn(t), p1(t), . . . , pn(t)) of (1) is (2σ − 1)- Borel summable in
every direction in {t |Re(λj t) > 0, j = 2, . . . , n}. There exists a
neighborhood Ω1 of q1 = 0 such that the Borel sum is the analytic
transseries solution of (1) in the set Ω1 ∩ {t |Re(λj t) < 0, j = 2, . . . , n}.

The proof of these theorems are given, after some preparations of first
integrals.



Analytic continuation of Borel sum

We study the analytic continuation of the Borel sum in Theroem 2. First
we extend Theorem 1

Theorem 3

Let ξ0 > 1. Suppose that (4),(5) and (6) are satisfied. Then there exists
a formal transseries solution (q1(t), . . . , qn(t), p1(t), . . . , pn(t)) of (1) in
the domain {t| |e(λj t | < ξ0, j = 2, . . . , n}.

We consider the analytic continuation of the Borel sum in Theorem 2.
Let E0 be the closed convex proper cone with vertex at the origin
containing S0(0)

S0(0) :=
{
z ∈ C | κzκ + λ · k = 0, ∀k ∈ Zn−1

+ \ {0}
}
, (8)

where λ = (λ2, . . . , λn). Define

C0 :=
{
z ∈ C| z = − t1−2σ

2σ − 1
, |eλj t | < ξ0, j = 2, . . . , n

}
. (9)



Analytic continuation of Borel sum

Then we have

Theorem 4

The Borel sum in Theorem 2 is analytically continued to the set
C0 ∩ E c

0 ∩ Ω1.

We omit the the proofs of Theorems 3 and 4.
We give some pictures of the set C0 ∩ E c

0 ∩ Ω1. Assume that
λj > 0, j = 2, 3, . . . , n. E0 is the singular direction of the Hamiltonian
system. We consider the cases σ = 1 and σ = 2.
We have E0 = {z |z ≤ 0} if σ = 1.



Analytic continuation of Borel sum

E0

Re z > 0

C0



Analytic continuation of Borel sum

E0

Re(λjz
−3) > 0

σ = 2, z



Some definition

Summability of transseries

Consider the formal series

ψ(q1, q) = qκ1

∞∑
n=0

vn(q)q
n
1 , (10)

where κ ≥ 1 is an integer and vn(q)’s are holomorphic in q ∈ V0 for some
open sets V0 independent of n. The formal κ- Borel transform B̂κ is
defined by

B̂κ(ψ)(ζ, q) :=
∞∑
n=0

vn(q)
ζn

Γ( n+κ
κ )

, (11)

where ζ is the dual variable of q1 and Γ(z) is the gamma function. For ϕ
in (10) we have

B̂κ(q
κ+1
1

d

dq1
ψ)(ζ, q) = κζκB̂κ(ψ)(ζ, q). (12)



Some definition

For the bisecting direction d ∈ R and the opening η > 0, define
S(d , η) := {z ∈ C; | arg z − d | < η/2}. For the neighborhood Ω0 ⊂ C of
the origin, define

Σ0 := Ω0 ∪ S(d , η). (13)

We say that the formal power series ψ(q1, q) is κ-summable with respect
to q1 in the direction d if there exist θ > 0 and a neighborhood Ω1 of
ζ = 0 such that B̂κ(ψ)(ζ, q) converges when (ζ, q) ∈ Ω1 × V0 and
B̂κ(ψ)(ζ, q) can be analytically continued to (ζ, q) ∈ S(d , η)× V0 and is
of exponential type of order κ in ζ ∈ S(d , η). Namely, there exist K0 > 0
and K2 > 0 such that

|B̂κ(ψ)(ζ, q)| ≤ K0e
K2|ζ|κ , ζ ∈ S(d , η), q ∈ V0.

For the sake of simplicity we denotes the analytic continuation with the
same notation. Then the κ- sum of the formal series ψ(q1, q), Ψ(q1, q) is
defined by the Laplace transform

Ψ(q1, q) :=

∫ ∞e id

0

e−(ζ/q1)
κ

B̂κ(ψ)(ζ, q)dζ
κ. (14)



Some definition

Summability of transseries.
Consider the transseries u given by (7). We write

u =
∑

k≥k0,ℓ≥0

ck,ℓt
−ℓ/(2σ−1)eλkt =

∑
k≥k0

eλktuk(t), (15)

where

uk(t) =
2σ−2∑
j=0

t−j/(2σ−1)uk,j(t), uk,j(t) =
∞∑

m=0

ck,m(2σ−1)+j t
−m. (16)

We say that u is κ- Borel summable in the direction d if there exist Σ0 in
(13) and the constant K0 such that, for every j , j = 0, . . . , 2σ − 1 and
every integer k ≥ 0 the formal κ- Borel transform of
fk,j(t) := eλktuk,j(t), Bκ(fk,j)(τ) is extended to the holomorphic function
on Σ0 of order 1 uniformly in k , namely there exist ∃Ck > 0 satisfying∑

k Ck <∞ such that

|B(fk,j)(τ)| ≤ Cke
K0|τ |κ , ∀τ ∈ Σ0, (17)

where τ is the dual variable of t.



Connection of first integral

Connection of first integral

Consider the Borel sum of formal first integrals of the Hamiltonian H
constructed in Theorem 14. Suppose that θ0 ∈ E0 is not an accumulation
point of E0. Let Σ1 and Σ2 be the sectors in q1-plane such that

θ0 ∈ Σ1 ∩ Σ2, Σ1 ∩ E0 = Σ2 ∩ E0 = {θ0}. (18)

Assume that the formal first integrals ϕ := (ϕ1, ϕ2, . . . , ϕν) and
ψ := (ψ1, ψ2, . . . , ψν) are Borel summable in Σ1 and Σ2, respectively,
(ν ≥ 1). By definition we see that ϕj ’s (or ψj ’s )) are functionally
independent and are polynomials in p1, p. Consider the connection
relation in the sector Σ1 ∩ Σ2

ϕ(q1, p1, q, p) = ψ(q1, p1, q, p) +m(q1, p1, q, p). (19)



Connection of first integral

Recall that every component mj(q1, p1, q, p) of m(q1, p1, q, p)
(j = 1, . . . , n) is the first integral of (1). Then we have

Theorem 5

Suppose that the eqution

q2σ1
dv

dq1
− 2λkv = Bk(q1, 0, 0) (20)

has no analytic solution v at the origin for k = 2, 3, . . . , n. Assume that
m(q1, p1, q, p) is analytic in some neighborhood of the origin. Then, for
every j = 1, 2, . . . , n there exists an analytic function of one variable ϕj at
the origin such that mj(q1, p1, q, p) = ϕj(H) in some neighborhood of the
origin.

The condition (16) of Theorem 9 holds for general Bk ’s. Theorem 9
follows from the well known result: Under the condition of Theorem 9
every analytic first integral of the Hamiltonian system of H is expressed
as f (H) for some analytic function of one variable, f (z).



Connection of first integral

Ω1

Ω2θ0

O

Figure: Choice of sectors



Connection of first integral

We consider the vanishing of the connection function m in (19). Let Ω1

and Ω2 be the adjacent sectors in the Borel plane whose boundaries has
the common singular direction θ0. (cf. Fig. 1). Then we have

Theorem 6

Assume that (5) and the Poincaré condition are satisfied. Suppose the
condition

Bj(q1, t, q) = B̃j(t, q), j = 2, . . . , n, (21)

are satisfied, where B̃j is a polynomial in t and analytic at q = 0. Then
m(q1, p1, q, p) in (19) vanishes as a formal power series.



Connection of first integral

Define the convex positive cone generated by λj (j = 2, 3, . . . , n),
Ω(λ2, . . . , λn) ≡ Ω(λ) by

Ω(λ) = {z =
n∑

j=2

tjλj | tj ≥ 0, j = 2, 3, . . . , n,
n∑

j=2

tj > 0}. (22)

Then we have

Theorem 7

Suppose (5) and that λj ’s (j = 2, . . . , n) satisfy the Poincaré condition.
Assume (4) with Bν,0(q1, q) (ν = 2, 3, . . . , n) being polynomials in q with
coefficients analytic at q1 = 0. Then there exists a system of super
integrable first integrals which are independent of p1. For such a system
of first integrals the connecting function m in (19) exists and it is
holomorphic in q1, q and p when q1 6= 0. There exists a neighborhood of
the origin U such that m is a single-valued function of q1 in
{q1 ∈ C ∩ U; q1 6= 0}. Moreover, m is not analytic at q1 = 0 provided m
does not vanish identically and the equation (20) has no analytic solution
v at the origin for k = 2, 3, . . . , n.



Proof of Theorems 1 and 2 - preparations-

Formal first integral in the class of formal transseries

For c ∈ C and α = (α2, . . . , αn) ∈ Zn−1, define

Ec ≡ Ec(q1) = exp

(
cq−2σ+1

1

2σ − 1

)
, Eα = Eα2

λ2
· · ·Eαn

λn
. (23)

We denote by ej the j-th unit vector, ej = (0, · · · , 1, · · · 0),
j = 2, 3, . . . , n.
We construct the first integral v of χH given by

v = ϕ(α)(q1, p1, q, p)E
α, (24)

where ϕ(α)(q1, p1, q, p) is the formal power series of q1, q, p1 and p of
the following form



Proof of Theorems 1 and 2 - preparations-

i) If α = 0, then

ϕ(0) ≡ ϕ
(0)
j = pjqj + U0,j + q2σ1 p1U1,j , j = 2, . . . , n, (25)

where

U0,j = U0,j(q1, q) =
∞∑
ν=0

U0,j,ν(q)q
ν
1 , (26)

U1,j = U1,j(q1, q) =
∞∑
ν=0

U1,j,ν(q)q
ν
1 , (27)

are the formal power series of q1 with coefficients analytic in q.
ii) If α = ej , (2 ≤ j ≤ n), then

ϕ(ej ) = pjq
2
j (1 + U2,j) + U0,j + q2σ1 p1U1,j , j = 2, . . . , n, (28)

where U0,j , U1,j and U2,j are the formal power series of q1 with
coefficients analytic in q.
iii) If α = −ej , (2 ≤ j ≤ n), then

ϕ(−ej ) = pj(1 + U2,j) + U0,j + q2σ1 p1U1,j , j = 2, . . . , n, (29)

where U0,j , U1,j and U2,j are the formal power series of q1 with
coefficients analytic in q.



Proof of Theorems 1 and 2 - preparations-

Formal first integral

Let χH be the Hamiltonian vector field of H.

Definition 8

We say that v in (24) is the formal first integral of χH if the following
conditions are satisfied.
(i) χHv = 0 as a formal power series.

(ii) If α = 0, then ϕ(0) ≡ ϕ
(0)
j , (j = 2, . . . , n) satisfies (25), (26) and (27)

with U0,j,ν(q)’s and U1,j,ν(q)’s analytic in some neighborhood of the
origin q = 0 independent of ν and j . If α = ej (resp. α = −ej),
(j = 2, . . . , n), then ϕ(α) has the form (28) (resp. (29)), with U0,j ’s,
U1,j ’s and U2,j ’s satisfying the same conditions as the case α = 0.



Proof of Theorems 1 and 2 - preparations-

Gevrey order

Definition 9

We say that the formal series U0,j in (26) is Gevrey of order s (in short,
s- Gevrey), for some s ≥ 0, if there exist a neighborhood of the origin
q = 0, Ω0 and constants C > 0, K > 0 for which

sup
q∈Ω0

|U0,j,ν(q)| ≤ CK νΓ(1 + sν),

hold for all ν ≥ 0, where Γ denotes the Gamma function. If both U0,j and

U1,j are s-Gevrey, then we say that ϕ
(0)
j is s-Gevrey. We say that ϕ(ej ) (

resp. ϕ(−ej )) is s-Gevrey if U0,j , U1,j and U2,j are s-Gevrey.



Proof of Theorems 1 and 2 - preparations-

The following theorem shows the superintegrability in a formal transseries.

Theorem 10

Assume (5) and (6). Then χH has the formal first integrals, ϕ
(0)
j , ϕ(ej )E ej

and ϕ(−ej )E−ej , (j = 2, . . . , n), which are (2σ − 1)- Gevrey.

For the proof we prepare a lemma.
Let Rj > 0 (j = 2, . . . , n) be given. Set V0 :=

∏n
j=2{zj | |zj | < Rj}. Let

O(V0) be the set of holomorphic functions in V0 continuous up to the
boundary. Set M0(q) :=

∏n
j=2(Rj − |qj |). For f ∈ O(V0) we define the

norm ‖f ‖ and the weighted norm ‖|f |‖ by

‖f ‖ := sup
q∈V0

|f (q)|, ‖|f |‖ := sup
q∈V0

|f (q)M0(q)|.

O(V0) is the Banach space with the norm ‖| · |‖.



Proof of Theorems 1 and 2 - preparations-

Let λ := (λ2, . . . , λn) and α = (α2, . . . , αn). Consider the equation

Lu ≡

(
n∑

ν=2

λνqν
∂u

∂qν
− λ · α

)
u = f ∈ O(V0), f = O(|q|). (30)

Then we have

Lemma 11

Let α = 0,±ej , j = 2, . . . , n. Assume (5) and (6). Then there exists a
constant K > 0 such that, for every f ∈ O(V0) with f = O(|q|) there
exist a unique holomorphic solution u of (30) in O(V0) such that
‖|u|‖ ≤ K‖f ‖.

The lemma is easily proved by Cauchy’s integral formula in a polydisk.
By Lemma 15 we prove Theorem 14 by estimating the coefficients of
formal series by the recurrence relation.



Proof of Theorem 1

Preparatory lemma. (Theorem 1)

Define
C :=

{
z ∈ C|Re (λjz2σ−1) > 0 j = 2, . . . , n

}
. (31)

Let ϕ
(0)
j and ϕ(−ej )E−ej (j = 2, . . . , n) be the formal first integrals given

by the preceeding theorem. Let Cj , C̃j and C0 be constants. For z ∈ C,
we solve the system of equations for q, p, p1

ϕ
(0)
j = Cj , ϕ

(−ej )E−ej = C̃j , H = C0, j = 2, . . . , n, (32)

where H = H0 + H1 is given by

H = z2σp1 +
n∑

j=2

λjqjpj +
n∑

j=2

q2j Bj(z , z
2σp1, q). (33)



Proof of Theorem 1

Here the unknown quantities are

q = q(z ,T ), p = p(z ,T ), p1 = p1(z ,T ), (34)

where

q =
∞∑
n=0

cnz
n, cn = cn(T

−1), T = (Tj)j , Tj = C̃jE
ej , (35)

is a formal series of z with cn(T
−1) convergent in T in some

neighborhood of T = ∞. The Tayler series of p has the same form as q.
As for p1 we have

p1z
2σ =

∞∑
n=0

ρnz
n, ρn = ρn(T

−1), (36)

with ρn(T
−1) convergent in T in some neighborhood of T = ∞.



Proof of Theorem 1

By (25) and (29) we have

pjqj + Ãj(z , z
2σp1, q) = Cj , j = 2, . . . , n, (37)

pj(1 + Dj(z , q)) + D̃j(z , z
2σp1, q) = Tj , j = 2, . . . , n, (38)

H = C0. (39)

Then we have

Lemma 12

Assume (5). Then (37)-(39) has the formal solution (q, p, p1) for z ∈ C
given by (34), (35) and (36).

The proof is the calculation of the recurrence formula.



Proof of Theorem 1

Construction of formal transseries solution
Let z satisfy ż = z2σ. Namely

t = − z1−2σ

2σ − 1
. (40)

Let q ≡ q(z), p1 ≡ p1(z) and p ≡ p(z) be the formal series given by
Lemma 12. By (40) they are the transseries of t. The exponential part is
given by eλkt for k ≥ −1. For the sake of simplicity we write the
transseries with the same letter q ≡ q(t), p1 ≡ p1(t) and p ≡ p(t). Then
we have

Lemma 13

Suppose that (5) and (6) are satisfied. Then there exists a formal
transseries solution q1(t) of q̇1 = Hp1 in {t|Re(λj t) < 0, j = 2, . . . , n}
such that (q1(t), q(t), p1(t), p(t)) is the formal transseries solution of (1)
in {t|Re(λj t) < 0, j = 2, . . . , n}.

Theorem 1 follows from Lemma 13.



Proof of Theorem 1

Summability of first integrals

Set κ = 2σ − 1 and λ := (λ2, . . . , λn). Let α = (α2, . . . , αn) ∈ Zn−1
+ and

k = (k2, . . . , kn) ∈ Zn−1
+ . Define

S0(α) :=
{
z ∈ C | κzκ + λ · (k − α) = 0, ∀k ∈ Zn−1

+ \ {0}
}
. (41)

Let Bν,0 and Bν,1 be given by (4). Assume

Bν,0(q1, q) = O(qκ1 ), Bν,1(q1, q) = O(qκ1 ), ν = 2, . . . , n. (42)

Then we have

Theorem 14

Assume (4), (5), (6) and (42). Let v = Eαϕ(α) (α = 0,±ej , j = 2, . . . , n)
be the formal first integrals given by Theorem 10. Then ϕ(α) is
κ-summable with respect to q1 in every direction d such that d 6∈ S0(α).



Proof of Theorem 1

Sketch of proof of Theorem 2

We prove the theorem by five steps.
Step 1. Consider (37)-(39). If we show the summability of q we have the
summability of p and p1 as well.
Set κ = 2σ − 1. Let t and z satisfy t = −κ−1z−κ. Let z0 be such that
Re(λjz

−κ
0 ) > 0. Define Σ0 by (13) with d = arg z0. We show that there

exist constants C0 > 0, C1 > 0 and η > 0 such that, for Σ0 given by (13)
with d = arg z0 we have

|κzκ + λjk | ≥ C0|z |κ, ∀z , |z | > C1, z ∈ Σ0, (43)

|κzκ + λjk | > C0, ∀z , |z | ≤ C1, z ∈ Σ0, (44)

for j = 2, . . . , n and k = 1, 2, . . ..



Proof of Theorem 1

Step 2. By deleting the unknown functions p, p1, q1 from (37)-(39) we
obtain the equation of q. Let ζ be the dual variable of z . Let

q0 =
∞∑
n=0

cn(ξ)z
n (45)

be the formal series solution. Define q̃ by

q = q̃ + ρ, ρ =
κ−1∑
n=0

cn(ξ)z
n. (46)

Clearly we have q̃ = O(zκ). Rewriting q̃ as q we are reduced to solving
the equation of q

q = G (z , q, ξ). (47)



Proof of Theorem 1

Step 3. G (z , q, ξ) is the formal power series of z with coefficients being
holomorphic in ξ and q in some neighborhood of the origin ξ = 0, q = 0
which is uniform among the coefficients. By expanding the coefficients in
the power series of ξ and q and rearranging them we obtain the series of
ξ and q whose coefficients are the formal series of z . We show that the
coefficients of the series of G with respect to ξ and q are summable in z
which are uniform among the coefficients. We denote the uniform
summability property by (P).
By the definition of G = (Gj) it is sufficient to show that (P) holds for
the first integrals constructed in Theorem 10. Let C (z , q, ξ) be any
formal first integral constructed in Theorem 10. For every pair of
multiintegers m ≥ 0, n ≥ 0 we consider the coefficient of qmξn of the
Tayler series of C (z , q, ξ)



Proof of Theorem 1

Cm,n(z) =
1

(2πi)2

∫∫
|wj |=ϵ1,|sν |=ϵ2

C (z ,w , s)

wm+1sn+1
dwds, (48)

where ϵ1 > 0 and ϵ2 > 0 are small constants. Let Ĉ (ζ,w , ξ) be the
formal Borel transform of C (z ,w , ξ) with respect to z , where ζ is the
dual variable of z . By the formal Borel transform of (48) we have

Ĉm,n(ζ) =
1

(2πi)2

∫∫
|wj |=ϵ1,|sν |=ϵ2

Ĉ (ζ,w , s)

wm+1sn+1
dwds. (49)

Since C (z ,w , s) is Borel summable, there exist Σ0 in (13) and the
neighborhoods V0 and V1 of q = 0 and ξ = 0, respectively, such that
Ĉ (ζ,w , s) is holomorphic in (ζ,w , s) ∈ Σ0 × V0 × V1. Moreover,
Ĉ (ζ,w , s) is of exponential order of one in ζ ∈ Σ0 for every
(w , s) ∈ V0 × V1.



Proof of Theorem 1

By the scale change of the variables q 7→ ϵq and ξ 7→ ϵξ we may assume
that V0 and V1 contain a disk with sufficiently large radius. Therefore, by
(49) we have the summability of Cm,n(z) uniformly in m and n. In the
following we assume the condition.
Step 4. We prove the summability of q as the transseries. It is sufficient
to show the summability with respect to the variable z instead of t.
Expand cn(ξ) in (45) in the power series of ξ and consider

q(z) =
∑
j≥0

ξjqj(z). (50)

By (46) it is sufficient to show the summability of q in (47). Note that,
by the definition of the summability of the transseries it is sufficient to
show the uniform summability of qj ’s and the convergence of the sum
(50) with qj replaced by its Borel sum.
If j = 0, then the summability of q0 ≡ 0 is trivial. Suppose that the
uniform summability of qj for j = 0, . . . , k − 1 holds. Namely, the formal
Borel transform of qj , q̂j is holomorphic in Σ0 and has the same
exponential order for j = 0, . . . , k − 1. Consider qk . Substitute (50) into
(47).
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Since G is analytic at q = 0 we consider the term

Cℓ(ξ, z)(
∑

j,|j|>0

qjξ
j)ℓ, (51)

where ℓ ≥ 0 is a multiinteger and Cℓ(ξ, z) is analytic in ξ and a formal
power series of z . Expand Cℓ(ξ, z) in the power series of ξ,

Cℓ(ξ, z) =
∑

|ν|≥1 Kℓ,ν(z)ξ
ν . We introduce the weight ϵj0 in front of qj by

the scale change ξ 7→ ϵ0ξ (cf. step 4), where ϵ0 > 0 is a sufficiently small
number. Then the coefficient of ξk appearing from G (z , q, ξ) is given by

∑ Kℓ,ν(z)ℓ!ϵ
|k|
0

m1! · · ·mµ!
qm1

j1
qm2

j2
· · · qmµ

jµ
, (52)

where the summation is taken over the pair of multiintegers, m1, . . . ,mµ

satisfying

m1 + · · ·+mµ = ℓ, j1|m1|+ j2|m2|+ · · ·+ jµ|mµ| = k − ν, (53)

where µ is an integer and j1, . . . , jµ ≥ 0 are multiintegers.
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By the result of Step 3 Kℓ,ν(z) is uniformly summable in ℓ and ν and∑
ℓ,ν ‖Kℓ,ν‖ <∞. By (52) and (47) we see that the formal Borel

transform of qk(z), q̂k(ζ) is holomorphic in Σ0 and has the same
exponential order as q̂j ’s.
It remains to estimate ‖qk‖, where ‖qk‖ is a certain maximal norm.
Suppose that

‖qj‖ ≤ K1ϵ
|j|
2 , |j | < |k |, (54)

for some positive constants K1 and ϵ2, where ϵ2 is chosen sufficiently
small. Take ϵ0 ≤ 1 and 2ϵ0 < ϵ2. We have∑ ℓ!

m1! · · ·mµ!
(‖qj1‖)m1(‖qj2‖)m2 · · · (‖qjµ‖)mµ (55)

≤
∑ ℓ!

m1! · · ·mµ!
(K1ϵ

|j1|
2 )|m1|(K1ϵ

|j2|
2 )|m2| · · · (K1ϵ

|jµ|
2 )|mµ|

≤ (K1

∑
j,|j|>0

ϵ
|j|
2 )|ℓ| ≤ (CK1ϵ2)

|ℓ|,

where the summation is taken over all combinations satisfying (53) and

where C satisfies
∑

j,|j|>0 ϵ
|j|
2 ≤ Cϵ2.
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Then the term (52) is estimated by

ϵk2
∑
ℓ,ν

(CK1ϵ2)
|ℓ|‖Kℓ,ν‖. (56)

By taking ϵ2 sufficiently small we have∑
ℓ ̸=0,ν

(CK1ϵ2)
|ℓ|‖Kℓ,ν‖ ≤ K1

2
. (57)

On the other hand we may assume ‖K0,ν‖ ≤ K1/2 since ν ≥ 1. Hence
(56) is estimated by K1ϵ

n
2, which proves the convergence of the sum.

Step 5. We prove the summability of q1. If we prove the summability of
q1 and q, then we have the summability of p1 and p as well.
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