PERIODIC SOLUTIONS TO SYMMETRIC NEWTONIAN SYSTEMS IN NEIGHBORHOODS OF ORBITS OF EQUILIBRIA

Piotr Stefaniak

The aim of this talk is to discuss the existence of periodic solutions to Newtonian systems of the form

$$\ddot{u}(t) = -\nabla U(u(t)). \tag{1}$$

in neighborhoods of equilibria. Allowing the potential U to be symmetric, we consider equilibria which are not necessarily isolated. More precisely, if the potential U is Γ -invariant for a compact Lie group Γ , the equilibria form orbits of the action of this group. Consequently, if dim $\Gamma \ge 1$, then it can happen that dim $\Gamma(u_0) \ge 1$, i.e., the critical point u_0 is not isolated in $(\nabla U)^{-1}(0)$.

Assuming these orbits of equilibria to be isolated, we apply equivariant bifurcation techniques to obtain a generalization of the classical Lyapunov center theorem. Our tool is an equivariant version of the Conley index given in [1]. To compare the indices we compute cohomological dimensions of some orbit spaces. To this end we use the results given in [2].

The talk is based on the paper [3].

References

- M. Izydorek, Equivariant Conley index in Hilbert spaces and applications to strongly indefinite problems, Nonlinear Anal., 51 (2002), 33–66.
- [2] T. Kawasaki, Cohomology of twisted projective spaces and lens complexes, Math. Ann., 206 (1973), 243–248.
- [3] A. Gołębiewska, M. Kowalczyk, S. Rybicki, P. Stefaniak Periodic solutions to symmetric Newtonian systems in neighborhoods of orbits of equilibria Electron. Res. Arch. 30(5) (2022), 1691–1707.

<u>Piotr Stefaniak</u>, Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń e-mail:cstefan@mat.umk.pl