Equivariant isomorphism 00000

Semiprojectivity

Classification and structure

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

January 16, 2023

Equivariant isomorphism 00000

Semiprojectivity

2 Improved classification

3 Equivariant isomorphism

Equivariant isomorphism 00000

Semiprojectivity

Outline

Improved classification

- 3 Equivariant isomorphism
- ④ Semiprojectivity

Observation

Most classification results by K-theoretic invariants apply to classes of C^* -algebras \mathfrak{A} enjoying at least one of the following properties:

- \mathfrak{A} is simple
- \mathfrak{A} is stably finite with real rank zero
- \mathfrak{A} is purely infinite

Takeaway

The classification theory for graph $C^{\ast}\mbox{-algebras}$ applies in some cases satisfying none of these properties.

Equivariant isomorphism 00000

Semiprojectivity

Definition

A graph is a tuple $\left(E^{0},E^{1},r,s\right)$ with

$$r,s:E^1 \to E^0$$

and E^0 and E^1 countable sets.

We think of $e \in E^1$ as an edge from s(e) to r(e) and often represent graphs visually

or by an adjacency matrix

$$\mathsf{A}_E = \begin{bmatrix} 0 & 0 & 0 & 0\\ \infty & 1 & 1 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Equivariant isomorphism 00000

Semiprojectivity

Singular and regular vertices

Definitions

Let E be a graph and $v \in E^0$.

- v is a *sink* if $|s^{-1}(\{v\})| = 0$
- v is an *infinite emitter* if $|s^{-1}(\{v\})| = \infty$

Definition

v is singular if v is a sink or an infinite emitter. v is regular if it is not singular.

Improved classification 0000000

Equivariant isomorphism 00000

Semiprojectivity

Graph algebras

Definition

The graph C^* -algebra $C^*(E)$ is given as the universal C^* -algebra generated by mutually orthogonal projections $\{p_v : v \in E^0\}$ and partial isometries $\{s_e : e \in E^1\}$ with mutually orthogonal ranges subject to the Cuntz-Krieger relations

v

1
$$s_e^* s_e = p_{r(e)}$$

2 $s_e s_e^* \le p_{s(e)}$
3 $p_v = \sum_{s(e)=v} s_e s_e^*$ for every regular

 $C^*(E)$ is unital precisely when E has finitely many vertices.

Observation

$$\gamma_z(p_v) = p_v \qquad \gamma_z(s_e) = zs_e$$

induces a gauge action $\mathbb{T} \mapsto \operatorname{Aut}(C^*(E))$

Theorem

Gauge invariant ideals are induced by **hereditary** and **saturated** sets of vertices V:

•
$$s(e) \in V \Longrightarrow r(e) \in V$$

•
$$r(s^{-1}(v)) \subseteq V \Longrightarrow [v \in V \text{ or } v \text{ is singular}]$$

and when there are no **breaking vertices**, all such ideals arise this way.

Improved classification

Equivariant isomorphism 00000

Semiprojectivity

The gauge simple case

Theorem

If a graph C^* -algebra has no non-trivial gauge invariant ideals, it is either

- a simple AF algebra;
- a Kirchberg algebra; or

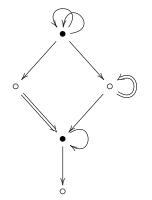
 $\neg C(\mathbb{T}) \otimes \mathbb{K}(H)$ for some Hilbert space H.

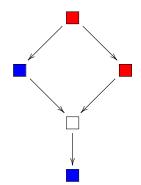
It is easy to tell from the graph which case occurs: The first case occurs when the graph has no cycles; the second when one vertex supports several cycles.

mproved classification

Equivariant isomorphism 00000

Semiprojectivity





Improved classification

Equivariant isomorphism 00000

Semiprojectivity

Filtered *K*-theory

Definition

Let ${\mathfrak A}$ be a $C^*\text{-algebra}$ with only finitely many gauge invariant ideals. The collection of all sequences

with gauge invariant $\mathfrak{I} \triangleleft \mathfrak{J} \triangleleft \mathfrak{K} \triangleleft \mathfrak{A}$ is called the *filtered K-theory* of \mathfrak{A} and denoted $FK^{\gamma}(\mathfrak{A})$. Equipping all K_0 -groups with order we arrive at the *ordered*, *filtered K-theory* $FK^{\gamma,+}(\mathfrak{A})$.

 $FK^{\gamma,+}(C^*(E))$ is readily computable when $|E^0| < \infty$.

The unital case

Theorem (E-Restorff-Ruiz-Sørensen)

Let $C^*(E)$ and $C^*(F)$ be unital graph algebras. Then the following are equivalent

$$C^*(E) \otimes \mathbb{K} \simeq C^*(F) \otimes \mathbb{K}$$

There is a finite sequence of moves of type (S),(R),(O),(I),(C),(P)

and their inverses, leading from E to F.

3
$$FK^{\gamma,+}(C^*(E)) \simeq FK^{\gamma,+}(C^*(F))$$

The classification result is strong, and isomorphism is decidable.

The unital case

Theorem (E-Restorff-Ruiz-Sørensen, Arklint-E-Ruiz)

Let $C^*(E)$ and $C^*(F)$ be unital graph algebras. Then the following are equivalent

$$C^*(E) \simeq C^*(F)$$

There is a finite sequence of moves of type (R+),(O),(I+),(C+),(P+)

and their inverses, leading from E to F.

 $(FK^{\gamma,+}(C^*(E)), [1_{C^*(E)}]) \simeq (FK^{\gamma,+}(C^*(F)), [1_{C^*(F)}])$

The classification result is strong, and isomorphism is decidable.

Improved classification

Equivariant isomorphism 00000

Semiprojectivity

Introduction

2 Improved classification

- 3 Equivariant isomorphism
- ④ Semiprojectivity

Improved classification

Equivariant isomorphism 00000

Semiprojectivity

Weaknesses of [ERRS]

- Unitality required
- Finitely many gauge invariant ideals
- Internal classification only

Improved classification 0000000

Equivariant isomorphism 00000

Semiprojectivity

The gauge simple case

Theorem

The invariant

$$K_*(-) = [K_0(-), K_0(-)_+, K_1(-)]$$

is complete for the class of gauge simple graph algebras up to stable isomorphism.

Theorem

- If a C^* -algebra $\mathfrak A$ is either
 - an AF algebra;
 - a Kirchberg algebra with UCT; or

 $\Box C(\mathbb{T}) \otimes \mathbb{K}(H)$ for some Hilbert space H.

and if for some graph E we have $K_*(\mathfrak{A}) \simeq K_*(C^*(E))$, then $\mathfrak{A} \otimes \mathbb{K} \simeq C^*(E) \otimes \mathbb{K}$.

Working conjecture [E-Restorff-Ruiz 2010]

 $FK^{\gamma,+}(-)$ is a complete invariant, up to stable isomorphism, for graph C^* -algebras of real rank zero (*i.e.*, with no subquotients) and finitely many ideals.

No counterexamples are known, not even allowing for \square subquotients, but then we would have to say:

Conjecture

 $FK^{\gamma,+}(-)$ is a complete invariant, up to stable isomorphism, for graph C^* -algebras with finitely many gauge invariant ideals.

Unmixed graph C^* -algebras: General classification

Theorem

When a graph algebra has only finitely many gauge invariant ideals, and they are exclusively of one type , , or , then $FK^{\gamma,+}(-)$ is a complete invariant up to stable isomorphism.

- The case was done by Elliott with no ideal restrictions in 1978.
- The case was solved by Bentmann and Meyer in 2014, but using a different invariant. Unpublished work by Restorff and Ruiz shows that the FK^{γ,+}(−) invariant is complete too.
- The ____ case can be shown from [ERRS] by passing to a (unital) full corner

Equivariant isomorphism 00000 Semiprojectivity

Unmixed graph C^* -algebras: External classification

Theorem

If a C^* -algebra \mathfrak{A} is either

an AF algebra;

a purely infinite C^* -algebra with finitely many ideals and UCT; and if for some graph E we have $FK^{\gamma,+}(\mathfrak{A}) \simeq FK^{\gamma,+}(C^*(E))$, where E must be finite with no sinks in the latter case, then $\mathfrak{A} \otimes \mathbb{K} \simeq C^*(E) \otimes \mathbb{K}$.

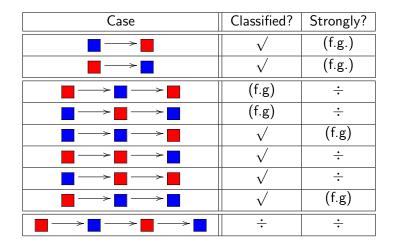
- The case was done by Elliott 1978.
- The case was done by Bentmann, proving that there are no "phantom Cuntz-Krieger" algebras.

Improved classification

Equivariant isomorphism 00000

Semiprojectivity

Mixed graph C^* -algebras



Avenues for progress?

- Ordering the Bentmann-Meyer invariant
- Elliott intertwining with select morphisms and unital building blocks
- Fullness
- Semiprojectivity
- Algebraic methods, cf. the Abrams-Tomforde conjectures

Equivariant isomorphism •0000

Semiprojectivity

Introduction

- Improved classification
- 3 Equivariant isomorphism
- 4 Semiprojectivity

Improved classification 00000000

Equivariant isomorphism $0 \bullet 000$

Semiprojectivity

Preserving γ

$$C^{*}(E) \xrightarrow{\varphi} C^{*}(F)$$

$$\gamma \downarrow \qquad \gamma \downarrow$$

$$C^{*}(E) \xrightarrow{\varphi} C^{*}(F)$$

$$C^{*}(E) \otimes \mathbb{K} \xrightarrow{\varphi} C^{*}(F) \otimes \mathbb{K}$$
$$\gamma \otimes \mathrm{id}_{\mathbb{K}} \downarrow \qquad \gamma \otimes \mathrm{id}_{\mathbb{K}} \downarrow$$
$$C^{*}(E) \otimes \mathbb{K} \xrightarrow{\varphi} C^{*}(F) \otimes \mathbb{K}$$

Note that such φ must preserve

$$C^*(E)^{\gamma} = \{ x \in C^*(E) \mid \forall t \in \mathbb{T} : \gamma_t(x) = x \}$$

Improved classification

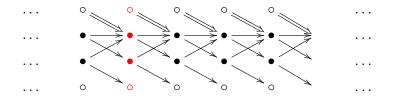
Equivariant isomorphism 00000

Semiprojectivity

Fixed point algebra

Theorem

 $C^*(E)^\gamma$ is itself a corner of a graph C^* -algebra which is AF. It is best described as $1^0C^*(E\times_1\mathbb{Z})1^0$ with 1^0 and $E\times_1\mathbb{Z}$ as indicated below.



Improved classification 00000000

Equivariant isomorphism 00000

Semiprojectivity

Conjecture

Definition

For E a graph with finitely many vertices we define the $\ensuremath{\mathbf{dimension}}$ $\ensuremath{\mathbf{triple}}$ by

$$\mathcal{DT}(E) := (K_0(C^*(E \times_1 \mathbb{Z})), K_0(C^*(E \times_1 \mathbb{Z}))_+, \sigma_*)$$

Here, σ is the natural right shift on $E \times_1 \mathbb{Z}$.

Conjecture (Hazrat, E-Ruiz)

• $(C^*(E), \gamma) \simeq (C^*(F), \gamma) \iff (\mathcal{DT}(E), [1^0]) \simeq (\mathcal{DT}(F), [1^0])$

• $(C^*(E) \otimes \mathbb{K}, \gamma \otimes \mathrm{id}_{\mathbb{K}}) \simeq (C^*(F), \gamma \otimes \mathrm{id}_{\mathbb{K}}) \iff$ $(\mathcal{DT}(E), I([1^0])) \simeq (\mathcal{DT}(F), I([1^0]))$

The conjecture is known to hold when $C^*(E)$ is AF, or a simple Cuntz-Krieger algebra, and in a few other cases.

Improved classification 0000000

Equivariant isomorphism 00000

Semiprojectivity

Avenues for progress?

- Cuntz-Pimsner algebras
- Equivariant *KK*-theory
- Shift equivalence
- Algebraic methods, cf. the Hazrat conjectures

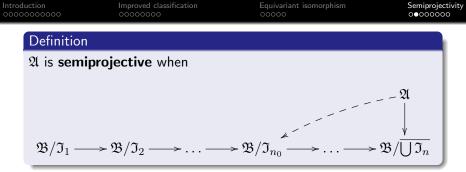
Equivariant isomorphism 00000

Semiprojectivity •0000000

Outline

Introduction

- 2 Improved classification
- 3 Equivariant isomorphism



This notion due to Blackadar is a key concept in all C^* -algebra theory, including classification.

Definition

 ${\mathfrak A}$ is weakly semiprojective when

$$\prod_{n=1}^{\infty} \mathfrak{B}_{n} \xrightarrow{} \prod_{n=1}^{\infty} \mathfrak{B}_{n} / \sum_{n=1}^{\infty} \mathfrak{B}_{n}$$

Theorem

Let $C^*(E)$ be a gauge simple graph C^* -algebra.

When $C^*(E)$ is AF, it is semiprojective precisely when it is unital.

When $C^*(E)$ is a Kirchberg algebra, it is semiprojective precisely when it has finitely generated K_* . (Spielberg)

When $C^*(E) \simeq C(\mathbb{T}) \otimes \mathbb{K}(H)$, it is semiprojective precisely when it is unital (i.e. $\dim H < \infty$).

Corollary (Szymański)

Any simple and unital graph C^* -algebra is semiprojective.

Theorem

- Let $C^*(E)$ be a gauge simple graph C^* -algebra.
 - When $C^*(E)$ is AF, it is weakly semiprojective precisely when it is unital.
 - When $C^*(E)$ is a Kirchberg algebra, it is weakly semiprojective precisely when K_* is a direct sum of cyclic groups. (Spielberg, Lin)

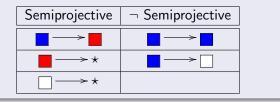
When $C^*(E) \simeq C(\mathbb{T}) \otimes \mathbb{K}(H)$, it is weakly semiprojective precisely when it is unital (i.e. $\dim H < \infty$).

Equivariant isomorphism 00000

Semiprojectivity

Lemma (E-Katsura)

Among the unital graph algebrs with one non-trivial ideals, we have



Equivariant isomorphism 00000

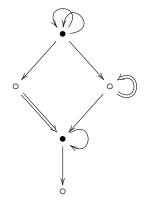
Theorem (E-Katsura)

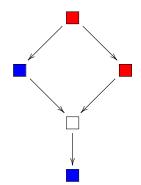
Let $C^*(E)$ be a unital graph algebra. The following are equivalent

- $C^*(E)$ is semiprojective
- $C^*(E)$ is weakly semiprojective
- There are no _____ or _____ subquotients

Equivariant isomorphism 00000

Semiprojectivity 00000000





Improved classification

Equivariant isomorphism 00000

Semiprojectivity

Avenues for progress?

- The case
- Weak semiprojectivity of AF algebras
- F.g. of ordered groups