
Introduction Improved classification Equivariant isomorphism Semiprojectivity

Classification and structure

Søren Eilers
eilers@math.ku.dk

Department of Mathematical Sciences
University of Copenhagen

January 16, 2023



Introduction Improved classification Equivariant isomorphism Semiprojectivity

Contents

1 Introduction

2 Improved classification

3 Equivariant isomorphism

4 Semiprojectivity



Introduction Improved classification Equivariant isomorphism Semiprojectivity

Outline

1 Introduction

2 Improved classification

3 Equivariant isomorphism

4 Semiprojectivity



Introduction Improved classification Equivariant isomorphism Semiprojectivity

Observation

Most classification results by K-theoretic invariants apply to classes
of C∗-algebras A enjoying at least one of the following properties:

A is simple

A is stably finite with real rank zero

A is purely infinite

Takeaway

The classification theory for graph C∗-algebras applies in some
cases satisfying none of these properties.
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Definition

A graph is a tuple (E0, E1, r, s) with

r, s : E1 → E0

and E0 and E1 countable sets.

We think of e ∈ E1 as an edge from s(e) to r(e) and often
represent graphs visually

◦ +3 •
�� (( •hh // ◦

or by an adjacency matrix

AE =


0 0 0 0
∞ 1 1 0
0 1 0 0
0 0 1 0
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Singular and regular vertices

Definitions

Let E be a graph and v ∈ E0.

v is a sink if |s−1({v})| = 0

v is an infinite emitter if |s−1({v})| =∞

Definition

v is singular if v is a sink or an infinite emitter. v is regular if it is
not singular.

◦ +3 •
�� (( •hh // ◦
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Graph algebras

Definition

The graph C∗-algebra C∗(E) is given as the universal C∗-algebra
generated by mutually orthogonal projections {pv : v ∈ E0} and
partial isometries {se : e ∈ E1} with mutually orthogonal ranges
subject to the Cuntz-Krieger relations

1 s∗ese = pr(e)
2 ses

∗
e ≤ ps(e)

3 pv =
∑

s(e)=v ses
∗
e for every regular v

C∗(E) is unital precisely when E has finitely many vertices.
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Observation

γz(pv) = pv γz(se) = zse

induces a gauge action T 7→ Aut(C∗(E))

Theorem

Gauge invariant ideals are induced by hereditary and saturated
sets of vertices V :

s(e) ∈ V =⇒ r(e) ∈ V
r(s−1(v)) ⊆ V =⇒ [v ∈ V or v is singular]

and when there are no breaking vertices, all such ideals arise this
way.
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The gauge simple case

Theorem

If a graph C∗-algebra has no non-trivial gauge invariant ideals, it is
either

a simple AF algebra;

a Kirchberg algebra; or

C(T)⊗K(H) for some Hilbert space H.

It is easy to tell from the graph which case occurs: The first case
occurs when the graph has no cycles; the second when one vertex
supports several cycles.
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Filtered K-theory

Definition

Let A be a C∗-algebra with only finitely many gauge invariant
ideals. The collection of all sequences

K0(J/I) // K0(K/I) // K0(K/J)

��
K1(K/J)

OO

K1(K/I)oo K1(J/I)oo

with gauge invariant I / J / K / A is called the filtered K-theory of
A and denoted FKγ(A). Equipping all K0-groups with order we
arrive at the ordered, filtered K-theory FKγ,+(A).

FKγ,+(C∗(E)) is readily computable when |E0| <∞.
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The unital case

Theorem (E-Restorff-Ruiz-Sørensen)

Let C∗(E) and C∗(F ) be unital graph algebras. Then the
following are equivalent

1 C∗(E)⊗K ' C∗(F )⊗K
2 There is a finite sequence of moves of type

(S),(R),(O),(I),(C),(P)

and their inverses, leading from E to F .

3 FKγ,+(C∗(E)) ' FKγ,+(C∗(F ))

The classification result is strong, and isomorphism is decidable.
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The unital case

Theorem (E-Restorff-Ruiz-Sørensen, Arklint-E-Ruiz)

Let C∗(E) and C∗(F ) be unital graph algebras. Then the
following are equivalent

1 C∗(E) ' C∗(F )
2 There is a finite sequence of moves of type

(R+),(O),(I+),(C+),(P+)

and their inverses, leading from E to F .

3 (FKγ,+(C∗(E)), [1C∗(E)]) ' (FKγ,+(C∗(F )), [1C∗(F )])

The classification result is strong, and isomorphism is decidable.
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Weaknesses of [ERRS]

Unitality required

Finitely many gauge invariant ideals

Internal classification only
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The gauge simple case

Theorem

The invariant

K∗(−) = [K0(−),K0(−)+,K1(−)]

is complete for the class of gauge simple graph algebras up to
stable isomorphism.

Theorem

If a C∗-algebra A is either

an AF algebra;

a Kirchberg algebra with UCT; or

C(T)⊗K(H) for some Hilbert space H.

and if for some graph E we have K∗(A) ' K∗(C∗(E)), then
A⊗K ' C∗(E)⊗K.
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Working conjecture [E-Restorff-Ruiz 2010]

FKγ,+(−) is a complete invariant, up to stable isomorphism, for
graph C∗-algebras of real rank zero (i.e., with no subquotients)
and finitely many ideals.

No counterexamples are known, not even allowing for
subquotients, but then we would have to say:

Conjecture

FKγ,+(−) is a complete invariant, up to stable isomorphism, for
graph C∗-algebras with finitely many gauge invariant ideals.
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Unmixed graph C∗-algebras: General classification

Theorem

When a graph algebra has only finitely many gauge invariant
ideals, and they are exclusively of one type , , or , then
FKγ,+(−) is a complete invariant up to stable isomorphism.

The case was done by Elliott with no ideal restrictions in
1978.

The case was solved by Bentmann and Meyer in 2014, but
using a different invariant. Unpublished work by Restorff and
Ruiz shows that the FKγ,+(−) invariant is complete too.

The case can be shown from [ERRS] by passing to a
(unital) full corner
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Unmixed graph C∗-algebras: External classification

Theorem

If a C∗-algebra A is either

an AF algebra;

a purely infinite C∗-algebra with finitely many ideals and UCT;

and if for some graph E we have FKγ,+(A) ' FKγ,+(C∗(E)),
where E must be finite with no sinks in the latter case, then
A⊗K ' C∗(E)⊗K.

The case was done by Elliott 1978.

The case was done by Bentmann, proving that there are no
“phantom Cuntz-Krieger” algebras.
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Mixed graph C∗-algebras

Case Classified? Strongly?
// √

(f.g.)
// √

(f.g.)

// // (f.g) ÷
// // (f.g) ÷
// // √

(f.g)
// // √

÷
// // √

÷
// // √

(f.g)

// // // ÷ ÷
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Avenues for progress?

Ordering the Bentmann-Meyer invariant

Elliott intertwining with select morphisms and unital building
blocks

Fullness

Semiprojectivity

Algebraic methods, cf. the Abrams-Tomforde conjectures
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Preserving γ

C∗(E)

γ

��

ϕ // C∗(F )

γ

��
C∗(E) ϕ

// C∗(F )

C∗(E)⊗K

γ⊗idK
��

ϕ // C∗(F )⊗K

γ⊗idK
��

C∗(E)⊗K ϕ
// C∗(F )⊗K

Note that such ϕ must preserve

C∗(E)γ = {x ∈ C∗(E) | ∀t ∈ T : γt(x) = x}
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Fixed point algebra

◦ +3 •
�� (( •hh // ◦

Theorem

C∗(E)γ is itself a corner of a graph C∗-algebra which is AF. It is
best described as 10C∗(E ×1 Z)10 with 10 and E ×1 Z as
indicated below.
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Conjecture

Definition

For E a graph with finitely many vertices we define the dimension
triple by

DT (E) := (K0(C
∗(E ×1 Z)),K0(C

∗(E ×1 Z))+, σ∗)

Here, σ is the natural right shift on E ×1 Z.

Conjecture (Hazrat, E-Ruiz)

(C∗(E), γ) ' (C∗(F ), γ)⇐⇒ (DT (E), [10]) ' (DT (F ), [10])
(C∗(E)⊗K, γ ⊗ idK) ' (C∗(F ), γ ⊗ idK)⇐⇒
(DT (E), I([10])) ' (DT (F ), I([10]))

The conjecture is known to hold when C∗(E) is AF, or a simple
Cuntz-Krieger algebra, and in a few other cases.
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Avenues for progress?

Cuntz-Pimsner algebras

Equivariant KK-theory

Shift equivalence

Algebraic methods, cf. the Hazrat conjectures
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Definition

A is semiprojective when

A

��xx
B/I1 // B/I2 // . . . // B/In0

// . . . // B/
⋃
In

This notion due to Blackadar is a key concept in all C∗-algebra
theory, including classification.

Definition

A is weakly semiprojective when

A

��xx∏∞
n=1Bn

//
∏∞
n=1Bn/

∑∞
n=1Bn
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Theorem

Let C∗(E) be a gauge simple graph C∗-algebra.

When C∗(E) is AF , it is semiprojective precisely when it is
unital.

When C∗(E) is a Kirchberg algebra, it is semiprojective
precisely when it has finitely generated K∗. (Spielberg)

When C∗(E) ' C(T)⊗K(H), it is semiprojective precisely
when it is unital (i.e. dimH <∞).

Corollary (Szymański)

Any simple and unital graph C∗-algebra is semiprojective.
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Theorem

Let C∗(E) be a gauge simple graph C∗-algebra.

When C∗(E) is AF , it is weakly semiprojective precisely when
it is unital.

When C∗(E) is a Kirchberg algebra, it is weakly
semiprojective precisely when K∗ is a direct sum of cyclic
groups. (Spielberg, Lin)

When C∗(E) ' C(T)⊗K(H), it is weakly semiprojective
precisely when it is unital (i.e. dimH <∞).
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Lemma (E-Katsura)

Among the unital graph algebrs with one non-trivial ideals, we have

Semiprojective ¬ Semiprojective
// //

// ? //

// ?



Introduction Improved classification Equivariant isomorphism Semiprojectivity

Theorem (E-Katsura)

Let C∗(E) be a unital graph algebra. The following are equivalent

C∗(E) is semiprojective

C∗(E) is weakly semiprojective

There are no // or // subquotients
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Avenues for progress?

The case

Weak semiprojectivity of AF algebras

F.g. of ordered groups
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