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THE NON-COMMUTATIVE LANDSCAPE

NC Topology

A Ă BpHq

NC Geometry

pA,H, Dq

Quantum metric
spaces

pX, Lq

}rD, xs}

Quantum groups

SUqp2q

NC Algebraic
topology

KKpA, Bq

QUESTION (RIEFFEL, 1990’S)

What is the non-commutative analogue of a compact metric space?

⇝ definition
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COMPACT QUANTUM METRIC SPACES

DEFINITION (RIEFFEL)

Let A be a unital C˚-algebra equipped with a seminorm
L : A Ñ r0, 8s satisfying that Lpx˚q “ Lpxq for all x P A. Then
pA, Lq is called a compact quantum metric space if

(i) Lp1q “ 0.
(ii) The set DompLq :“ ta P A | Lpaq ă 8u is dense in A.

(iii) dLpµ, νq :“ supt|µpaq ´ νpaq| : Lpaq ď 1u metrises the
weak˚-topology on SpAq.

In this case L is called a Lip-norm.

EXAMPLE
If pX, dq is a compact metric space then CpXq becomes a CQMS
by setting Ldpf q :“ sup

!

|f pxq´f pyq|

dpx,yq
: x ‰ y

)

.

⇝ NC examples
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EXAMPLES
§ If G α

ñ A is an ergodic, strongly continuous action of a
compact metric group on a unital C˚-algebra A.
Then one gets a Lip-norm [Rieffel, 1998] by setting

Lpaq :“ sup
"

}αgpaq ´ a}

dGpg, eq

ˇ

ˇ

ˇ
g P G, g ‰ e

*

Examples include:
(A) SUp2q ñ Mn`1pCq via conjugation with the pn ` 1q-

dimensional irreducible representation.
(B) T2 ñ CpT2

θq by rescaling generators on the NC torus.
§ If pA, H, Dq is a spectral triple then the Connes seminorm

LDpaq :“ }rD, as} pa P Aq

sometimes, but not always, gives rise to a CQMS
(examples coming soon).

⇝ q-GH-dist
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QUANTUM GROMOV-HAUSDORFF DISTANCES
§ A prominent feature is the analogue of the classical

Gromov-Hausdorff distance between compact metric
spaces

M1 M2 r

§ Rieffel’s original version [Rieffel, 2004] provides a distance
function distQ

GH between compact quantum metric spaces.
§ It is symmetric and satisfies the triangle inequality...

...but distance zero only means Lip-norm preserving
isomorphism of the underlying order unit spaces, and not
˚-isomorphism!

§ This is remedied by Latrémolière’s quantum propinquity
and the matricial distQ

GH due to Kerr and Li.
⇝ convergence results
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CONVERGENCE AND CONTINUITY RESULTS

1. Fuzzy spheres (i.e. matrix algebras) converge to the
classical 2-sphere S2 [Rieffel, 2004]

2. Non-commutative tori [Rieffel, 2004]

3. Spectral truncations [D’Andrea-Lizzi-Martinetti, 2014] [van Suijlekom,

2021]

4. Crossed products [Kaad-K, 2020]

5. Non-commutative solenoids [Latrémolière-Packer, 2017]

6. AF-algebras [Aguilar-Latrémolière, 2015]

7. Fractals [Landry-Lapidus-Latrémolière, 2021]
...

QUESTION

So what is left to do?

⇝metric vs differential
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METRIC- VERSUS DIFFERENTIAL NCG
§ A lot of current research goes into the connections between

Connes’ NCG and compact quantum metric spaces.
§ On the propinquity side, Latrémolière and co-authors are

currently working on a spectral propinquity.
This is applicable to spectral triples pA, H, Dq for which the
Connes seminorm LDpaq “ }rD, as} gives rise to a CQM
structure.
And is designed so that propinquity zero corresponds to
unitary equivalence of the spectral triples.
Convergence in spectral propinquity implies a “pointwise
convergence” of the Dirac operators’ spectra [Latrémolière,

2021].
§ Also the original approximation of S2 by fuzzy spheres is

being upgraded in a more geometric direction [van Suijlekom,

2021], [Rieffel, 2022] and so is the theory for NC solenoids
[Farsi-Landry-Larsen-Packer, 2022] ⇝ q-deformations
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q-DEFORMED SPACES

§ Also q-deformations is an active area of research
§ The quantised 2-sphere S2

q fits into a spectral triple
[Dąbrowski-Sitarz, 2003]

§ And the Connes seminorm gives a CQMS [Aguilar-Kaad, 2018]

§ Moreover, lim
qÑ1

S2
q “ S2 in distQ

GH [Aguilar-Kaad-K, 2021]

§ Also Woronowicz’ SUqp2q can be endowed with a Dirac
operator (not a full spectral triple) and a seminorm Lq
turning it into a CQMS [Kaad-K, 2022]

§ And also here we have lim
qÑ1

SUqp2q “ SUp2q [Kaad-K, 2022]

§ Ongoing work treats the quantum projective plane CP2
q,

the quantum 5-sphere and higher dimensional analogues
[Kaad-Mikkelsen]

Note the graph algebra connection via [Hong-Szymański, 2022]

⇝ groups
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q,

the quantum 5-sphere and higher dimensional analogues
[Kaad-Mikkelsen]

Note the graph algebra connection via [Hong-Szymański, 2022]
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q-DEFORMED SPACES
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⇝ groups

8 / 11



GROUP RELATED RESEARCH AVENUES

§ Given a discrete group Γ and a proper length function
ℓ : Γ Ñ Rě0 it is a difficult problem to determine if the
Dirac operator

Dℓpδγq :“ ℓpγqδγ

gives rise to a CQMS.
No counter examples known for word lenghts!
Positive results for hyperbolic and nilpotent groups
[Ozawa-Rieffel, 2005], [Christ-Rieffel, 2015], [Long-Wu, 2021] .

§ Much more work is needed in order to clarify this.
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