Principal equivariant spectral triples

Operator algebras that one can see Graph algebras kick-off meeting

Bram Mesland

Mathematisch Instituut Universiteit Leiden, Netherlands

January 17th, 2023

Noncommutative differential geometry connects geometry to C^* -algebras via spectral triples.

Principal bundles are a central notion in geometry and physics:

- *G* compact Lie group;
- *P* a compact *G*-space on which *G* acts freely and properly with quotient B := P/G;
- C^* -algebras C(P) and $C(B) \simeq C(P)^G$;
- $\pi: P \rightarrow B$ smooth Riemannian submersion;
- $\pi_!$: $K^*(P) \to K^*(B)$ associated wrong way map in K-theory;
- $\pi_!$ is induced by a class $[\pi_!] \in KK_*(C(P), C(B))$.

In recent joint work with B. Ćaćić we studied these structures on an abstract $G-C^*$ -algebra A.

Definition (Ellwood)

A G-C*-algebra is principal if the map

$$\Phi: A \otimes A \rightarrow C(G, A), \quad \Phi(a_1 \otimes a_2)(g) := \alpha_g(a_1)a_2,$$

has dense range.

Fact: G acts freely on $P \Leftrightarrow C(P)$ is a principal G-algebra. Thus principal G-algebras

give a notion of noncommutative topological principal bundles. We have extended this notion to the context of *G*-spectral triples.

Definition

A G-spectral triple (A, H, D) consists of

- a Hilbert space $H = H_+ \oplus H_-$ such that A and G are covariantly represented on H_{\pm} ;
- $D = \begin{pmatrix} 0 & D_- \\ D_+ & 0 \end{pmatrix}$ for a closed *G*-invariant operator $D_+ : H_+ \to H_-$, $D_- := D_+^*$ such that $a(1 + D^2)^{-1}$ is compact a operator,
- a dense subalgebra $\mathcal{A} \subset A$ such that for $a \in \mathcal{A}$ the commutators $[D_+, a]$ are bounded.

In particular (A, H, D) defines a class in K-homology $K_G^*(A)$.

Given $(\mathcal{A}, \mathcal{H}, D)$ we can form $(\mathcal{A}^G, \mathcal{H}^G, D^G)$ which is a spectral triple as well. The inclusion $\mathcal{A}^G \to \mathcal{A}$ can be viewed as the analogue of $\pi : \mathcal{P} \to \mathcal{B}$.

For a pair of C*-algebras Kasparov constructed graded abelian group $KK_*(A, B)$ such that

- $KK_*(\mathbb{C}, A) \simeq K_*(A)$, the K-theory of A;
- $KK_*(A, \mathbb{C}) \simeq K^*(A)$, the K-homology of A;
- associative, bilinear product $KK_i(A, B) \times KK_j(B, C) \rightarrow KK_{i+j}(A, C);$
- recovers index pairing via $KK_0(\mathbb{C}, A) \times KK_0(A, \mathbb{C}) \to KK_0(\mathbb{C}, \mathbb{C}) = \mathbb{Z};$
- $x \in KK_*(A, B)$ defines a map $K^*(A) \to K^*(B)$;
- Question: can we think of x ∈ KK_{*}(A, B) as being induced by a "morphism" of spectral triples?

Correspondences for manifolds

Let M and N be manifolds. A geometric correspondence is a diagram

$$M \xleftarrow{f} (Z, E) \xrightarrow{g} N,$$

where Z is a manifold, E a vector bundle, f a smooth proper map and g a smooth K-oriented map.

Theorem (Connes-Skandalis)

The group $KK_*(C_0(M), C_0(N))$ is exhausted by equivalence classes of geometric correspondences and the Kasparov product

 $KK_*(C_0(M), C_0(L)) \times KK_0(C_0(L), C_0(N)) \rightarrow KK_0(C_0(M), C_0(N)),$

is, up to transversality, given by the fiber product of correspondences:

$$\begin{bmatrix} M \xleftarrow{f_1} (Z_1, E_1) \xrightarrow{g_1} L \end{bmatrix} \otimes \begin{bmatrix} L \xleftarrow{f_2} (Z_2, E_2) \xrightarrow{g_2} N \end{bmatrix}$$
$$= \begin{bmatrix} M \xleftarrow{f_1} (Z_1 \times_L Z_2, E_1 \times_L E_2) \xrightarrow{g_2} N \end{bmatrix}$$

KK-theory is given by homotopy classes of generalised smooth maps.

Correspondences in noncommutative geometry

Given a spectral triple (\mathcal{B}, H, D) there is a canonical module of 1-forms

9

$$\Omega_D^{\mathbf{1}} := \overline{\left\{\sum_i b_i^{\mathbf{0}}[D, b_i^{\mathbf{1}}]: b_i^k \in \mathcal{B}
ight\}}.$$

If \mathcal{X} is a right inner product \mathcal{B} -module with completion X, a *connection* is a map $\nabla : \mathcal{X} \to X \otimes^h_B \Omega^1_D$ satifying $\nabla(xb) = \nabla(x)b + x \otimes [D, b]$.

Definition

Let $(\mathcal{A}, \mathcal{H}_0, D_0)$ and $(\mathcal{B}, \mathcal{H}_1, D_1)$ be spectral triples. A differential correspondence between $(\mathcal{A}, \mathcal{H}_0, D_0)$ and $(\mathcal{B}, \mathcal{H}_1, D_1)$ is a triple (\mathcal{X}, S, ∇) such that

$$\begin{aligned} (\mathcal{X}, \mathcal{S}, \nabla) \otimes_{\mathcal{B}} (\mathcal{B}, \mathcal{H}_1, \mathcal{D}_1) &:= (\mathcal{A}, \mathcal{X} \otimes_{\mathcal{B}} \mathcal{H}_1, \mathcal{S} \otimes 1 + 1 \otimes_{\nabla} \mathcal{D}_1) \\ &\simeq (\mathcal{A}, \mathcal{H}_0, \mathcal{D}_0), \end{aligned}$$

where \simeq is a combination of unitary equivalence and "admissible" (possibly unbounded) perturbations.

Goal: For a principal *G*-spectral triple (\mathcal{A}, H, D) , construct a differential correspondence between (\mathcal{A}, H, D) and $(\mathcal{A}^G, H^G, D^G)$.

Vertical module for principal G-C*-algebras

The conditional expectation

$$A o A^G$$
, $a \mapsto \int_G \alpha_g(a) \mathrm{d}g$,

can be used to construct a (A, A^G) bimodule $L^2_v(A)$.

Using Clifford algebra techniques, this module carries a natural vertical operator

$$S_{\mathfrak{g},\rho} = \varepsilon^i \cdot \varepsilon_i - \frac{1}{6} \langle \varepsilon_i, (\rho^{-1})^t [\varepsilon_i, \varepsilon_k] \rangle \varepsilon^i \varepsilon^j \varepsilon^k.$$

Here

- $\langle \cdot, \cdot \rangle$ is a fixed Ad-invariant inner product on \mathfrak{g} ;
- $\varepsilon_i, \varepsilon^i$ are a dual pair of bases for $\mathfrak{g}, \mathfrak{g}^*$;
- ρ is a vertical Riemannian metric.

Proposition

If (A, H, D) is a G-spectral triple with A a principal G-C*-algebra, then $(L^2_{v}(A), S_{g,\rho})$ is a KK-cycle for (A, A^G) .

Next step: find a connection on $L^2_{\nu}(A)$. Note that $H = L^2_{\nu}(A) \otimes_{A^G} H^G$ and write $D_{\nu} := S_{g,\rho} \otimes 1$.

Definition

Let (A, H, D) be a G-spectral triple. A strong remainder is an odd G-invariant operator Z on H such that

$$[D-D_{v}-Z,A] \subset A \cdot [D-D_{v}-Z,A^{G}].$$

Theorem (Ćaćić-Mesland)

Given a strong remainder Z, there is an induced module connection

$$\nabla^{Z}: \mathcal{A} \to L^{2}_{v}(\mathcal{A}) \otimes^{h}_{\mathcal{A}^{G}} \Omega^{1}_{D^{G}},$$

such that $(L^2_{\nu}(A), S_{g,\rho}, \nabla^Z)$ is a noncommutative correspondence between (A, H, D) and (A^G, H^G, D^G) .

So far our result applies to

- all classical principal bundles;
- θ -deformations of classical principal bundles such as $S^7_{\theta} \to S^4_{\theta}$ with fiber $G = S^3$;
- crossed products by \mathbb{Z}^N .

One important research effort will be to construct more examples, such a Cuntz-Krieger and graph C^* -algebras.

Further work will be done in the following directions:

- replace the *G* by a *compact quantum group*;
- noncompact structure groups;
- fully develop noncommutative gauge theory;
- construct more examples.