Quantum Symmetries

Andrzej Sitarz

Jagiellonian University

Graph Algebras Kick Off Meeting
16.01.2023-17.01.2023 | Warsaw, Online

Quantum Symmetries

Objectives:

Our aim is to study, in full generality, the notion of quantum symmetry and isometry groups of graph C^{*}-algebras, including these associated with higher-rank graphs.

Why:

Graph C^{*}-algebras comprise a vast range of noncommutative algebras, which are well known to have symmetries.

Examples: $M_{n}(\mathbb{C})$, Toeplitz algebra, quantum sphere(s), $S U_{q}(2)$

Quantum symmetries

Quantum Symmetry Groups of Finite Spaces

Shurboa Wang

Deparment ct Matemines, Unverid

Deticated to Marc A. Rieffel on the occasion of his sutieth brithiday
Abstract: We detecruine the quantum autonorphism groups of finite spaces. These are compact marix quanruin groups in the sense of Woronoxicz.

1. Introduction

At Les Hoxches Summer School on Quantrun Symmetries in 1995, Alain Conses posed
 eilher commulative of noncoummutative.
To pur thes problem in a proper contert, let us recall that the notion of a group alses most naturally 3 symuctrics of varicus linds of spaces. As a manter of fact, this is how the notion of a group was discovered histonically. However, te notion of a quannum
group was discovered from soveral different points of view ($10,11,8,28,29,30,31,9$. the most inpoctant of which is to view quartumn eroups as deforimations of odinary Lie groups or Lie algebras, instead of viexing them as quantum symmatry object of noncomunutitive spaces. II [13], an inportant firs step was made by Maxin in tris latier direction. where quantum gronps ale described as quancum symmery objects of quadratic algebras.
C^{-}-algebecras). Thatis, wee expucctivern above for finite spaces (viz. finite dimensional spaces. These spaces do not canty the additional geometric (Riemauniza) stuctures in he sease of [4, 5]. The quanum anomomphism groups for the laner gecmenic initie spaces can be termed quantuma isomxtry groups. At the end of his book [4], Conses
poses the problem of findirg a finite quallum symuerry eroup fox the firite scometric

Definition

A left action of a compact quantum group A on a C^{*}-algebra B is a unital ${ }^{*}$-homomorphism α from B to $B \otimes A$ such that:

$$
\begin{gathered}
\left(\mathrm{id}_{B} \otimes \Delta\right) \alpha=\left(\alpha \otimes \mathrm{id}_{A}\right) \alpha \\
\left(\mathrm{id}_{B} \otimes \epsilon\right) \alpha=\mathrm{id}_{B}
\end{gathered}
$$

and there exists a dense subalgebra \mathscr{B} such that α restricts to the right coaction of the canonical dense Hopf-* subalgebra \mathscr{A} of A on \mathscr{B}.

Quantum symmetries (2)

Definition

The quantum automorphism group of B in the category of quantum transformation groups of B is a universal final object in this category (if it exists).

Example

For a finite space B other than $C\left(X_{n}\right)$ the quantum automorphism group does not exist for the category of all quantum transformation groups

Quantum symmetries (3)

States

Let ϕ be a continuous functional on the algebra B. We define quantum automorphism group of the pair ($B ; \phi$) to be the universal object in the category of quantum transformation groups of the pair ($B ; \phi$). [Wang]

Isometry

Quantum isometry groups - spectral triples (\mathscr{B}, H, D) and CQG having a unitary representation on H that commutes with $D \otimes \mathrm{id}_{A}$. [Goswami, Bhomwick]

Filtration

Quantum symmetry group of a unital C^{*}-algebra B equipped with an orthogonal filtration. [Banica, Skalski]

Quantum symmetries of graph C^{*}-algebras.


```
    4)繲
Quantum Symmetries of Graph C*-algebras
Simon Schmidt and Moritz Weber
```



```
Introduction
Symmery constituts cne of the most important properties of a greph. it & captura
                                    Aut(T)=~ (\sigma\inS* | | - v\sigma \ S*.
where T-(V.E) % & finte graph wth n vertikes and no multyle edgese e
```



```
    C(G)
        ~C(St)(nc-cu)
```



```
utere St so Wangss quantum symmetric group [is] and R R Rua are the relotions
```

Theorem:

The quantum symmetry of a finite graph without multiple edges coincides with the quantum symmetry of the associated graph C^{\star}-algebra, $G_{\text {aut }}^{+}(\Gamma)$.

Quantum symmetry of a graph (Banica)

Definition

Let Γ be a directed graph with adjacency matrix $\epsilon \in M_{n}(\{0,1\})$, then:

$$
C\left(G_{\mathrm{aut}}^{+}(\Gamma)\right)=C^{*}\left(\left\{\begin{array}{l}
u_{i j}=u_{i j}^{*}=u_{i j}^{2}, \\
\sum_{k} u_{i k}=1=\sum_{k} u_{k j}, \\
\sum_{k} u_{i k} \epsilon_{k j}=\sum_{k} \epsilon_{i k} u_{k j},
\end{array}\right)\right.
$$

Remark

A result by Joardar \& Mandal [Quantum symmetry of graph C^{*}-algebras associated with connected graphs] shows that for finite, connected graphs with no multiple edges or loops the quantum automorphism group of the graph is a quantum subgroup of the quantum automorphism group they consider (linear faithful action).

Quantum Symmetries - objectives

Objective 1

Quantum symmetries of higher-rank graphs and quantum graphs: extend the main result of Schmidt \& Weber to higher-rank graphs so as to arrive at a definition of the quantum symmetry group of a higher-rank graph C^{*}-algebra.

Possible extension, links to noncommutative graphs that appear in the context of quantum channels?

Quantum Symmetries - objectives

Objective 2

KMS quantum symmetry groups: determine quantum symmetry groups that preserve a family of KMS-states over graph C^{*}-algebras and provide conditions under which they are isomorphic to each other as quantum groups.

Joardar \& Mandal: Quantum symmetry of graph C*-algebras at critical inverse temperature. Studia Math. 256 (2021), no. 1, 1-20 Invariance of KMS states on graph C^{*}-algebras under classical and quantum symmetry, Proceedings of the Edinburgh Mathematical Society, Volume 64, Issue 4, November 2021, pp. 762-778

Braided symmetries?

Braided quantum symmetries of graph C^{*}-algebras, arXiv:2201.09885 [Bhattacharjee, Joardar, Roy]

Thm: Let E be a finite, directed graph without sinks such that the KMS state exists. Then there is a universal braided compact quantum group acting linearly, faithfully on $C^{*}(E)$ and preserving the KMS state.

Quantum Symmetries - objectives

Objective 3

Quantum isometry groups: construct quantum isometry groups of the graph C^{*}-algebras and higher-rank graph C^{*}-algebras. Moreover, develop a theory of quantum automorphisms groups preserving a given metric structure over graph C^{*}-algebras.

Pask, Rennie, Sims: Noncommutative Manifolds from Graph and k-Graph C*-Algebras, Commun. Math. Phys. 292, 607-636 (2009)

Some practical things:

A list with all relevant papers (and preprints) ?

THANK YOU!

