Abstracts for contributed talks

LOOPS"23

25.06-02.07.2023, Bedlewo, Poland



Table of contents

M. Ashburn — Isomorphisms of vector-matriz algebras 4
C. Aten — On the construction of manifolds from alternating n-quasigroups 5
T. Bokelavadze — Fundamental theorem of projective geometry for W -power groups 6
J. Carr — Algebraically Describing Color Trades on Complete Bipartite Graphs 7
P. Csorgo — On Doro’s conjecture 8
C. Dietzel — Beams and scaffolds — the art of building modular Garside groups 9
A. Drapal — Relative multiplication groups and Moufang p-loops 10
R.M. Falcon — The Hadamard quasigroup product of orthogonal Latin squares 11
I. Fryz — On orthogonality of parastrophes of ternary quasigroups 12
M. Greer — Moufang loops and non-commuting graphs 13
R. Lutowski — Minimal non-solvable Bieberbach groups. Math databases matter. 14
A. Lutsenko — Varieties of quasigroups with inverse properties 15

M. Mazzotta — Deformed solutions of the Yang-Bazter equation coming from skew braces 16

B. Mesablishvili — Quasi-projections and factorizations of monouds 17
A.W. Nowak — Dihedral solutions of the set-theoretic Yang-Bazter equation 18
0.0. Oyebola — Characterization of FExtra Polyloop-I 19



J.D. Phillips — When is the commutant of a Moufang loop normal?

S. Properzi — A common divisor graph for skew braces

A.B. Romanowska — Barycentric algebras and barycentric coordinates

L. Sabinina — BL-algebras with the identities and diassociative loops

J.D.H. Smith — Superquasigroups and their multiplication groups

F. Sokhatsky — Public key cryptographic algorithms on vector-valued functions
D.A. Souza de Barros — Half-automorphism group of a class of Bol loops

F. Spaggiari — On Conjugation Quandle Coloring of Torus Knots — A characterization
of GL(2,q) colorability

D. Stanovsky — Supernilpotent loops
P. Vojtechovsky — Classical solvability and congruence solvability in Moufang loops

1. Wanless — Relations on nets and MOLS

20

21

22

23

24

25

26

27

28

29

30



ISOMORPHISMS OF VECTOR-MATRIX ALGEBRAS

Mitchell Ashburn
Iowa State University, Ames, lowa, U.S.A.

We begin by considering anticommutative formed algebras: anticommutative algebras
with a distinguished bilinear form. Typically, we will consider bilinear forms that are sym-
metric, invariant, and possibly non-degenerate. The best examples of such formed algebras
are Lie algebras along with their Killing form. From these formed algebras, we then con-
struct a family of non-associative algebras called vector-matriz algebras, inspired by Zorn’s
vector-matrix construction of the split octonions [2], [3, p.49], [4].

Isomorphisms of these vector-matrix algebras can be reduced to constructing specific
types of isotopies between their underlying formed algebras [I]. Furthermore, given such
an isotopy of formed algebras, we construct the corresponding isomorphism between their
vector-matrix algebras.

We explore the properties of these isotopies, looking for conditions under which two
formed algebras will produce isomorphic vector-matrix algebras. Specifically, we examine
anticommutative algebras along with their Killing forms, before focusing on examples of
specific Lie algebras with bilinear forms that exhibit such isotopies.
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ON THE CONSTRUCTION OF MANIFOLDS FROM
ALTERNATING Nn-QUASIGROUPS

Charlotte Aten
University of Denver (United States)

(Joint work with Semin Yoo)

In my recent work with Semin Yoo, we produced a generalization of a construction of
Herman and Pakianathan which assigns to each finite noncommutative group a closed surface
in a functorial manner. While Herman and Pakianathan built 2-manifolds from groups,
we build n-manifolds from n-quasigroups, the n-ary analogue of quasigroups. We give a
pair of functors whose domain is a subcategory of a variety of n-quasigroups. The first of
these functors assigns to each such n-quasigroup a smooth, flat Riemannian manifold while
the second assigns to each n-quasigroup a topological manifold which is a subspace of the
metric completion of the aforementioned Riemannian manifold. I will give examples of these
constructions, show some pictures, and prove that all homeomorphism classes of smooth
orientable manifolds arise from this construction. I will then discuss a connection with the
Evans Conjecture on partial Latin squares, give its implication for orientable surfaces, and
state a related problem applicable to our construction for compact n-manifolds.



FUNDAMENTAL THEOREM OF PROJECTIVE
GEOMETRY FOR W-POWER GROUPS

Tengiz Bokelavadze

Akaki Tsereteli State University, Kutaisi, (Georgia)

Our aim of this talk is to formulate the fundamental theorem of projective geometry for
special types of groups.

P.Hall has introduced one class of groups and called them W-power groups, or simply W-
groups which are the generalization of the notion of W-modules for the case of an arbitrary
nilpotent groups. The meaning of W-groups in the general theory of abstract groups is
defined by the fact that any finitely generated nilpotent torsion-free group is embedded in
some W-group [1], [2].

We study connections between lattice isomorphisms and semilinear isomorphisms of nilpo-
tent W-power torsion free groups.

The problem on the induction of lattice isomorphisms of locally nilpotent torsion free
groups by isomorphisms has been solved by A.Sadovskii [3]. An analogous problem for
nilpotent Lie algebras over the field is solved negatively by A.Lashkhi [4].

However, if the basic ring possesses an infinite distributive lattice of ideals, i.e. if Lie
algebra defined over the principal ideal domain different from the fields, then the problem is
solved positively, viz, for the nilpotent Lie algebras over such rings the fundamental theorem
of the projective geometry is valid [4].

Acknowledgement: This talk is supported by the Shota Rustaveli National Science
Foundation of Georgia Grant FR-21-471-3.
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ALGEBRAICALLY DESCRIBING COLOR TRADES ON
COMPLETE BIPARTITE (ARAPHS

John Carr
University of North Alabama (USA)

Two proper edge-colorings of a graph G are mate-colorings if and only if every vertex of
G is incident to the same set of colors under each edge-coloring while each edge receives a
different color under each edge-coloring. The color-trade-spectrum of a graph G is the set
of all ¢ for which there exist two mate-colorings of G using t colors. We fully determine the
color-trade-spectrum of several families of graphs, and introduce some preliminary findings
on algebraically describing color trades on complete bipartite graphs. In particular, we show
the following: If ()7 and ()5 are isotopic quasigroups with a = = id and where v is any
derangement, then there exist edge-colorings associated with these quasigroups which form
a color trade.



ON DORO’S CONJECTURE

Piroska Csorgo
Alfréd Rényi Mathematical Institute Budapest (Hungary)

In 1978 S. Doro in his paper published the following conjecture:
If the nucleus of a Moufang loop is trivial, then the commutant is a normal subloop.

The following problem had been open for a while, and officially raised by A. Rajah in
2003:

Is the commutant of a Moufang loop normal in the loop?

First Gagola stated that the answer to this question is affirmative. Grishkov and Zavar-
nitsine showed that the answer is in fact generally negative by constructing two infinite series
of Moufang loops of exponent 3, whose commutant is not a normal subloop. Their results
reopened Doro’s conjecture.

By using transversals belonging to the commutant, we characterize Moufang loops whose
commutant is a normal subloop, i.e. we give necessary and sufficient conditions in the mul-
tiplication group for this purpose [I].

Applying these characterizations, by working in the multiplication group of the loop we
prove that in case of finite Moufang loops with trivial nucleus the commutant is normal if
and only if it is trivial [2].
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BEAMS AND SCAFFOLDS — THE ART OF BUILDING
MODULAR (GARSIDE GROUPS

Carsten Dietzel

Vrije Universiteit Brussel (Brussels, Belgium)

By results of Chouraqui and Rump, the structure groups of involutive non-degenerate
set-theoretic solutions to the Yang-Baxter equation are exactly the Garside groups with a
distributive lattice structure. It can be shown that all these groups G decompose canonically
as a lattice-theoretic product G = Hle 7.

The situation in case of a Garside group G with a modular lattice structure turns out to
be quite similar — each such group contains a canonical distributive subgroup D(G) < G —
the distributive scaffold — whose lattice-decomposition D(G) =~ 1—[;@:1 Z is induced by a lattice
decomposition G =~ Hle 3, into primary lattices J; which are called the beams of G. In
this sense, each modular Garside group contains the structure group of an involutive solution
whose lattice-structure also controls the decomposition into beams.

In this talk, I give an outline of the architecture of modular Garside groups, starting with
the decomposition of a modular Garside group into beams and ending with a characterization
of the beams of dimension > 4.



RELATIVE MULTIPLICATION GROUPS AND
MOUFANG p-LOOPS

Ales Drapal

Charles University, Prague (Czech Republic)
(Joint work with Petr Vojtéchovsky)

For a subloop S of a loop @ denote by Mltg(S) the subgroup of Mlt((Q)) generated by all
L, and Ry, s € S. It turns out that if () is finite Moufang and S is a p-loop, then Mltg(.S) is
a p-group. This result seems to have many consequences and offers itself for generalizations.
Because of that the core of the talk will consist of the proof of this theorem.

The result has been already used in (1) a characterization of congruence soluble finite
Moufang loops [2] and (2) a new and relatively short proof that finite Moufang p-loops are
centrally nilpotent [1].

If time allows, I will also discuss the structure of finite Moufang loops () that are of order
coprime to three and possess a normal subloop S such that S is an abelian group and Q/S
is cyclic [3].
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THE HADAMARD QUASIGROUP PRODUCT OF
ORTHOGONAL LATIN SQUARES

Raudl M. Falcén
Universidad de Sevilla (Spain)

(This talk is based on joint work with V. Alvarez, J.A. Armario, M.D. Frau, F. Gudiel,
M.B. Giiemes and L. Mella.)

Let A(n) and L(n) denote, respectively, the set of n x n arrays, and the set of Latin
squares of order n, all of them with entries in the set [n] := {1,...,n}. Let A,B € A(n)
and L € L(n). As a natural generalization of the classical Hadamard product, the Hadamard
quasigroup product A ®p, B € A(n) has recently been introduced [I] so that

(A®yp B)[i,§] := L[Ali, 5], Bli,j]], for all,j € [n]. (1)

Let OL(n) denote the set of pairs of orthogonal Latin squares in £(n). In this talk, we are
interested in studying under which conditions L; ®r, Ly € L(n), for (L1, Ls) € OL(n) and
Ls € L(n). It requires the existence of localized Latin transversals within Ls, which give rise

to the involution
v :OLMn) — OL(n)

(Lq, Ly) — (9022( 1)790%1([12))

vt [P L) =

01, (L2) [Lai, 5], Lo[i, 1] := j.
Theorem 1. The following statements hold.

a) Ly Or, Ly € L(n) if and only if ¢ (L1), ¢}, (L2) and Ly are MOLS.

, for all i, j € [n].

b) Ly, Ly and Ly are MOLS if and only if ¢ (L1), ¢, (L2) and ¢ (L1) O, ¥, (Ls) are
MOLS.

Based on this theorem, we describe illustrative examples showing how the involution ¢
establishes a new way to connect distinct species of sets of three MOLS.
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putational approach to analyze the Hadamard quasigroup product. Electronic Research
Archive 31 (2023), 3245-3263.

11



ON ORTHOGONALITY OF PARASTROPHES OF
TERNARY QUASIGROUPS

Iryna Fryz
Vinnytsia (Ukraine)
(Joint work with Fedir Sokhatsky)

A triplet of ternary quasigroups defined on the same set is called orthogonal if each
possible triplet of the elements of the carrier set occurs exactly once when the corresponding
hypercubes are superimposed; strongly orthogonal if all their corresponding subhypercubes
are orthogonal. A set of ternary quasigroups are orthogonal if each triplet in this set is
orthogonal.

Parastrophic orthogonal ternary medial quasigroups are under consideration. It is known
that each medial quasigroup is linear over a commutative group with commuting decompo-
sition coeflicients (see [1I, 2]).

Criteria for a medial ternary quasigroup to be 1) self-orthogonal (all principal parastrophes
are different and orthogonal) [3]; 2) totally-parastrophic orthogonal or, more briefly, a top-
quasigroup (all parastrophes are different and orthogonal); 3) strongly self-orthogonal [3] have
been found. Hence, the algorithms for constructing these ternary quasigroups are obtained.

Earlier, the criterion for a central binary quasigroup to be totally-parastrophic orthogonal
was stated by G. Belyavskaya and T. Popovich in [4].

We prove that there are no central top-quasigroups with the condition to be strongly
orthogonal for arity n > 2, and strongly self-orthogonal linear quasigroups (and so linear
top-quasigroups with the condition to be strongly orthogonal) for n > 3 [3].
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MOUFANG LOOPS AND NON-COMMUTING GRAPHS

Mark Greer
University of North Alabama (U.S.A.)
(Joint work with J. Carr & A. Johnson)

Geometric group theory has been well studied and there has been progress to expand
these ideas into loop theory. We will discuss some results and difficulties. The main focus
will be on the connection between Moufang loops and their non-commuting graphs.
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MINIMAL NON-SOLVABLE BIEBERBACH GROUPS.
MATH DATABASES MATTER.

Rafat Lutowski
University of Gdansk (Poland)

In 2022 Jonathan Hillman asked a question: What is a minimal Hirsch length of a torsion-
free virtually solvable group, which is not solvable itself? Together with Andrzej Szczepanski
we were able to give the exact answer in the "virtually abelian” case. We obtained the
result with heavy usage of computer algebra system GAP. In my talk I will focus on this
aspect of our research. To be even more precise, I will put particular attention on the
usage of databases of various algebraic objects available in GAP, which resulted in significant
reduction of computational time and resources.
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VARIETIES OF QUASIGROUPS WITH INVERSE
PROPERTIES

Alla Lutsenko
Vasyl’ Stus Donetsk National University (Ukraine)
(Joint work with F.M. Sokhatsky)

We study quasigroups in which the sets of translations of the same type coincide. Each
of these quasigroups has an inverse properties. The classification is carried out using the
concepts and results of parastrophic symmetry [I].

The main results of our research is the following: quasigroup classes with inverse proper-
ties in which the sets of translations of different directions coincide have been found [2, B];
the distribution of the corresponding classes of quasigroups into parastrophic orbits (trusses)
according to parastrophic symmetry has been described [3]; it is proved that these classes
of quasigroups with inverse properties are varieties and it is found the corresponding iden-
tities [3]; invertibility functions for each variety of quasigroups with inverse properties has
been found [3]; the classification of group isotopes with inverse properties has been found
and constructed the bunch of varieties with inverse properties [4]; matrix I P quasigroups
and CIP quasigroups are described [5.
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DEFORMED SOLUTIONS OF THE YANG-BAXTER
EQUATION COMING FROM SKEW BRACES

Marzia Mazzotta
University of Salento (Italy)

In 2007, W. Rump traced a research line for determining set-theoretic solutions of the
Yang-Baxter equation by introducing braces. These algebraic structures with interesting
generalizations have been intensively studied over the years by many authors, among these
skew braces. It is well-known that any skew brace (B, +,0) determines a bijective non-
degenerate solution given by r(a,b) = (—a+aob,(—a+aob)” caob), for all a,b € B.
Recently, Doikou and Rybotowicz [2] have shown that a bigger family of solutions can be
obtained from any skew brace B by “deforming” the map r by certain parameters z € B.
What we mean is that the following map

r.(a,b) = (—aoz+aoboz (—acz+aoboz) caob)

gives rise to a new solution on B under some assumptions on z. In particular, if z is the
identity of B, we obtain the usual solution r.

In this talk, we present this new family of solutions coming from a skew brace B and
show the parameters that fit well are only those belonging to the set

D,.(B)={2€B |Va,be B (a+b)joz=a0cz—z+boz}

which we call the right distributor of B and is a subgroup of (B, o). We will discuss some
natural issues concerning such a set and kind of solutions. Moreover, we will show that all
the results can be extended to the more general structure of dual weak brace [1].

This talk is based on joint work with B. Rybotowicz and P. Stefanelli [3].
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QUASI—PROJECTIONS AND FACTORIZATIONS OF
MONOIDS

Bachuki Mesablishvili*

A. Razmadze Mathematical Institute and Department of Mathematics, Faculty of Exact
and Natural Sciences of I. Javakhishvili Thilisi State University,
Thilisi, Georgia

It was realized a long time ago that the problem of deciding whether a given mathematical
object has a particular property can be solved by means of reducing it to the problem
of representing the object as a "union” of two (usually simpler) subobjects with minimal
intersection and then to solve the problem for these subobjects for which one has techniques
that were not available to begin with. Such a representation is called a factorization of the
object.

In this talk, I will explain some of my recent results on factorization of monoids. For this,
the notions of left and right quasi- projections on a monoid are introduced. Then they are
combined with the results of [I] and [2] to give a full classification of factorizations of monoids
in terms of complementary pairs of quasi-projections. Connections with descent 1-cocycles
and Rota-Baxter operators on groups are established.
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DIHEDRAL SOLUTIONS OF THE SET-THEORETIC
YANG-BAXTER EQUATION

Alex W. Nowak
Howard University (Washington, D.C., USA)

The isomorphic correspondence between quandles of the form x >y = 20 —y € Z,
and the conjugation quandle generated by reflections in D,, is well-known. In this talk, we
draw attention to the fact that the associated set-theoretic Yang-Baxter solution o : Z2 —
Z2; (x,y) — (2x —y, z) furnishes Z2 with D,-set structure, as 6™ = id, and (70)? = id, where
7 : (x,y) — (y,x) is the trivial SYBE solution. When we restrict our attention to Latin
SYBE solutions (ones for which the derived, or structure rack is a quasigroup), we obtain a
partial converse: the structure rack of a Latin dihedral SYBE solution — one where (70)? = id
— is an involutory quandle. We will demonstrate how to obtain nontrivial dihedral solutions
from symmetric spaces. Furthermore, we will explore how the added condition of triality,
o® = id, imposes a remarkable level of rigidity on the underlying set.
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CHARACTERIZATION OF EXTRA PorLyLOOP-1

Oyeyemi Oluwaseyi Oyebola
Brandon University (Brandon Manitoba, Canada)

(Joint work with T.G. Jaiyeola and K.G. Ilori)
(Obafemi Awolowo University, Osun State, Nigeria)

Keywords: polyquasigroup, polyloops, extra polyloop-I

This work is devoted to studying some algebraic properties of newly introduced algebraic
hyperstructure christened, ‘polyloops’. The purpose of this work is to introduce a class of
polyloops (i.e. extra Polyloop-I) and characterize them. Thus, a study of a non-associative
algebraic hyperstructure of this type, namely, extra polyloop-I is carried out. We also investi-
gate the the notion of autotopism and pseudo-automorphism in this algebraic hyperstructure.

References

[1] B. Davvaz, Polygroup Theory, and Related System, World Scientific Publishing Com-
pany Pte. Ltd 5 Toh Tuck Link, Singapore 596224, 2013.

[2] F. Fenyves, Extra loops I, Publ. Math. Debrecen, 15 (1968), 235-238.
[3] F. Fenyves, Extra loops II, Publ. Math. Debrecen,16 (1969).

[4] O. O. Oyebola and T. G. Jaiyeola, Non-associative algebraic hyperstructures and their
applications to biological inheritance, Nonograffas Matematicas Garcia de Galdeano 42,
(2019) 229-241.

[5] T. Vougiouklis Hyperstructures and their Representations, Hadronic Press Monographs
in Mathematics, Palm Harbor Florida (1994).

19



WHEN IS THE COMMUTANT OF A MOUFANG LOOP
NORMAL?

J.D. Phillips
Northern Michigan University, Marquette (U.S.A.)

The commutant of a loop, L, is the set of those elements that commute with every element
in the loop: C(L) = {z €L: Yy € L,zy = yx}. The communtant need not be a subloop [3],
but in Moufang loops it is [4]. Unlike in groups, in Moufang loops the commutant need not
be normal [2]. But often it is. We analyze conditions under which the commutant is normal.
Our proofs, many of which have been found by automated deduction, are complicated (some
of them are tens of thousands of lines long and require fairly advanced techniques to find).
This research program has a long and colorful history (the early parts of which may found
in [1I]). We outline our results in the context of this lively story.
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A COMMON DIVISOR GRAPH FOR SKEW BRACES

Silvia Properzi
Vrije Universiteit Brussel (Belgium)

(Joint work with A. Van Antwerpen)

In the combinatorial study of solutions to the Yang—Baxter equation (YBE), recently
introduced rings-theoretical objects play a fundamental role: skew braces. A skew brace is
a set with two group operations + and o satisfying a compatibility condition. In a skew
brace (A, +,0), the group (A, o) acts on (A, +) by automorphism via the so-called \-map,
A: (A,0) — Aut(A,+). This action is involved in the (universal) construction of the set-
theoretic solutions to the YBE provided by skew braces. Furthermore, the A-action deeply
influences the structure of a finite skew brace, as e.g. ideals are A-invariant normal subgroups
(for both group structures). Motivated by similar ideas in representation theory of finite
groups (see [3]) and by the work of of Bertram, Herzog, and Mann [], we study a common
divisor graph: the simple undirected graph whose vertices are the non-trivial A-orbits and
two vertices are adjacent if their sizes are not coprime. We provide some examples and prove
that it has at most two connected components and that, in the connected case, its diameter
is at most four. The main result is a complete classification of finite skew braces with a
one-vertex graph. In particular, we have the following enumeration.

Theorem 1. There are only three non-isomorphic finite skew braces with an abelian additive
group and one-vertex graph.

Theorem 2. The number of non-isomorphic skew braces of size 2™d (with d odd) whose
graph has only one vertex is ma(d) if m < 3 and 2a(d) if m = 4, where a(d) is the number
of isomorphism classes of abelian groups of order d.
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BARYCENTRIC ALGEBRAS AND
BARYCENTRIC COORDINATES

Anna B. Romanowska

Warsaw University of Technology, Warsaw, Poland
(Joint work with J.D.H. Smith, Iowa State University, Ames, lowa, U.S.A.,
A. Zamojska-Dzienio, Warsaw University of Technology, Warsaw, Poland)

Real affine spaces are (abstract) algebras with non-associative binary operations indexed
by real numbers. Convex subsets are subalgebras under the operations indexed by real
numbers taken from the open unit interval. The algebras defining convex sets generate the
variety of barycentric algebras. Convex polytopes considered as barycentric algebras are
generated by their vertices. In particular, simplices are free barycentric algebras over their
vertex sets. Each element of a simplex is presented as a convex combination of its vertices
with barycentric coordinates defined in a unique way. Each general convex polytope is a
homomorphic image of a simplex. Hence each of its elements can also be presented by
convex combinations, but not necessarily in any unique way. Thus, the following problem is
important in many applications of polytopes:

Given the set of vertices of a convex polytope, determine algorithms for the
barycentric coordinates of each point of the polytope.

There exist several methods of solving the problem for specific convex polytopes. We offer new
methods based on decompositions of such polytopes into unions of simplices, with interesting
combinatorial properties in the case of polygons (2-dimensional polytopes) that relate to the
parsing trees of non-associative products and coproducts.
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BL-ALGEBRAS WITH THE IDENTITIES AND
DIASSOCIATIVE LOOPS.

Liudmila Sabinina
UAEM, Cuernavaca, Mexico

We will give a survey on our recent results on the theory of binary Lie algebras. We will
discuss the properties of the Binary Lie algebras with the identities J(z,y, zt) = 0 and their
corresponding diassociative loops.
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SUPERQUASIGROUPS
AND THEIR MULTIPLICATION GROUPS

Jonathan D.H. Smith

Iowa State University, Ames, Iowa, U.S.A.
(Joint work with B. Im,
Chonnam National University, Gwangju, R.O.K.)

Supersymmetry is an important concept in mathematical physics and the treatment of
structures such as Clifford algebras [4]. When applied to linear spaces, it entails a direct
sum decomposition with two homogeneous summands, respectively described as even and
odd. In a combinatorial or set-theoretical context, it becomes simpler: just a disjoint union
decomposition into two uniands, again described as even and odd. Sets, groups, quasigroups
decomposed appropriately in this way are called supersets, supergroups, superquasigroups.
We present a purely set-theoretical version of the superalgebra tensor product which will be
applicable equally to groups, quasigroups and loops. Our work [I] is part of a project to
make supersymmetry an effective tool for the study of combinatorial structures.

Starting from supergroup and superquasigroup structures on four-element supersets, our
superproduct unifies the construction of the eight-element quaternion and dihedral groups
with that of a loop structure, the quatedral loop, which hybridizes the two groups. All three
of these loops share the same character table. Thus, the quatedral loop solves a long-standing
problem from the combinatorial character theory of quasigroups [2, 3], showing that a group
and a loop which is not associative may have the same character table. Supersymmetry plays
a key role in helping humans identify the multiplication group of the quatedral loop.
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PUBLIC KEY CRYPTOGRAPHIC ALGORITHMS ON
VECTOR-VALUED FUNCTIONS

Fedir Sokhatsky
Vasyl” Stus Donetsk National University (Ukraine)

Let @ be a set, Oy the set of binary operations on @, e;(x,y) = x, ea(z,y) = y, and

(fog)(z,y) = flg(x, ), v), (feg)(z,y) = f(x,9(x,y)) (1)

be the left and right multiplications of binary operations. (Q; f) is a quasigroup iff f is
invertible element in both of the monoids (Oy; 0, e1) and (Oy; e, e3) (The functional definition
of a quasigroup).

A mapping g : Q" — QF is called an n-ary vector-valued operation of the rank k. Let
Onow (Onk) be the set of all n-ary vector-valued operations of all ranks (resp. of the rank
k). Each of the operations, say g, defines and is defined by a sequence of n-ary operations
9g15- - -5 Gk*

glxy, oo x) = ({1, )y gr(Xn, o 1)

Consider a generalization of (1). Define sc-multiplication ® for each s := {ji,...,Jx} S

{1,...,n} on the set O, «:
_ j—1 _ jp—1 _ i—1 N n
(f%?g) (:U) = f (x?ll 7gl($)7x;?+17g2(x)7 s 7x§':71+1>gk($)7xjk+1) )

6%($1a cen »xn) = (lev s ’xjk)‘

where g = (g1, ..., gx), k := rank(g) < n, T := (x1,...,7,), 2] is the sequence x;, T4, ..., ;.
An n-ary vector-valued operation of the rank £ is called s-invertible if it is invertible element
in the monoid (O, x;®, €,,).

Using these notions and obtained results, public key cryptographic algorithms are con-
structed.
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HALF-AUTOMORPHISM GROUP OF A CLASS OF BoOL
LOOPS

Dylene Agda Souza de Barros
Federal University of Uberlandia (Brazil)

A Bol loop is a loop that satisfies the Bol identity (zy - 2)y = x(yz -y). If L is a loop and
f: L — L is a bijection such that f(xy) € {f(z)f(y), f(y)f(x)}, for every x,y € L, then f is
called a half-automorphism of L.

In this work, we describe the half-automorphism group of the Bol loop, Lj; defined over
Zo X Lo x M, where M is an abelian group, with the following operation

B (l,s,zy), if u=v=0,
(l, S,ZE) (u,v,y) - { (l +u,s + U7x_1y)’ otherwise.

The main result is the following:

Theorem 1. Let M be an abelian group of odd order and let Ly = Zo X Zo x M be the Bol
loop defined above. Denote by Aut(Lys) the automorphim group of Ly and HAut(Lyy) the
half-automorphim group of Ly;. Then

This is a joint work with Giliard Souza dos Anjos.

References

[1] de Barros, D. A. S, dos Anjos, G. S. Half-autmorphism group of a class of Bol loops,
Communications in Algebra, (2023) vol. 51, no. 3, 1229-1241.

26



ON CONJUGATION QUANDLE COLORING OF
Torus KNOTS - A CHARACTERIZATION OF
GL(2,q) COLORABILITY

Filippo Spaggiari
Charles University (Prague, Czech Republic)

The classification of knots is a wide problem that has been addressed through various
methods. Notably, the study of knot invariants supported by tools of quandle theory has
proven to be highly advantageous in the research of a quandle coloring, that is, a way to
distinguish one knot from another by assigning a mathematical object to each strand of its
diagram. In this talk, we present a characterization for determining the colorability of torus
knots using matrices in GL(2, q).
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SUPERNILPOTENT LOOPS

David Stanovsky
Charles University, Prague (Czechia)

Finite nilpotent loops, in general, do not admit a direct decomposition into p-primary
components. This issue was addressed recently in a novel way in universal algebra (in far
greater generality) [I], resulting in a stronger concept of nilpotence, called supernilpotence.
The approach is based on another fundamental property: the limited essential arity of ab-
sorbing polynomial operations. I will discuss what the theory of supernilpotence may bring
to the theory of loops. In particular, we compare the degree of nilpotence of ), the degree of
nilpotence of Mlt(Q) and the degree of supernilpotence of @ 2], and we address the problem
of equational axiomatization of supernilpotent loops of degree < k [3].

References

[1] E. Aichinger and N. Mudrinski, Some applications of higher commutators in Mal’cev
algebras, Algebra Universalis 63 (2010), no. 4, 367-403.

2] 7. Semanisinovd, D. Stanovsky, Three concepts of nilpotence in loops, Results in Math.
78, No. 4, Paper No. 119, 15 p. (2023).

[3] D. Stanovsky, P. Vojtéchovsky, Supernilpotent groups and 3-supernilpotent loops, to
appear in J. Algebra and its Applications.

28



CLASSICAL SOLVABILITY AND CONGRUENCE
SOLVABILITY IN MOUFANG LOOPS

Petr Vojtéchovsky
University of Denver (USA)

There are two concepts of solvability in loops: classical solvability generalized from groups
and congruence solvability specialized from universal algebra. These two concept coincide in
groups. Congruence solvability is strictly stronger than classical solvability in loops. It is an
open questions whether the two concepts coincide in Moufang loops.

To prove that the two concepts coincide in a variety V', it suffices to show that every
abelian normal subalgebra of an algebra A in V' induces an abelian congruence of A. This
is the case in groups, but we will construct counterexamples to this sufficient condition in
nilpotent Moufang loops. On the other hand, we will show that the two concepts of solvability
coincide in 6-divisible Moufang loops and in Moufang loops of odd order. Thus every Moufang
loop of odd order is congruence solvable.
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RELATIONS ON NETS AND MOLS

Ian Wanless

Monash University (Australia)

A k-net is a geometry equivalent to (k —2) Mutually Orthogonal Latin Squares (MOLS).
A relation is a linear dependence in the point-line incidence matrix of the net. In 2014 Dukes
and Howard showed that any 6-net of order 10 satisfies at least two non-trivial relations.
This opens up a possibile avenue towards showing the non-existence of 4 MOLS of order 10.
We generated all 4-nets of order 10 that satisfy a non-trivial relation and also ruled out one
type of relation on 5-nets. I will discuss these computations, as well as some of the theory of
relations on nets/MOLS more generally.
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