Isomorphisms of vector-matrix algebras

Mitchell Ashburn

Iowa State University

June, 2023

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

1/17

Outline

2 Isomorphisms

2 Isomorphisms

Formed algebras

Definition

A formed algebra is a pair (A, β) where A is a (non-associative) algebra over a field K and β is a bilinear form $\beta : A \otimes A \to K$.

Formed algebras

Definition

A formed algebra is a pair (A, β) where A is a (non-associative) algebra over a field K and β is a bilinear form $\beta : A \otimes A \to K$.

We will consider formed algebras with the following properties:

- (A, β) is anticommutative if $x^2 = 0$ for all $x \in A$,
- (A, β) has symmetric bilinear form if $\beta(x, y) = \beta(y, x)$ for all $x, y \in A$,
- (A, β) has *invariant* bilinear form if $\beta(x, yz) = \beta(xy, z)$ for all $x, y, z \in A$.

Vector-matrix algebras

Out of any anticommutative formed algebra (A, β) with symmetric invariant bilinear form, we construct the vector-matrix algebra $Z(A, \beta)$ composed of vector-matrices

$$\begin{bmatrix} t & x \\ y & s \end{bmatrix}$$

where $t, s \in K$ and $x, y \in A$.

Vector-matrix algebras

Out of any anticommutative formed algebra (A, β) with symmetric invariant bilinear form, we construct the vector-matrix algebra $Z(A, \beta)$ composed of vector-matrices

$$\begin{bmatrix} t & x \\ y & s \end{bmatrix}$$

where $t, s \in K$ and $x, y \in A$.

Addition and scaling are defined componentwise, and multiplication in this algebra is defined by

$$\begin{bmatrix} t_1 & x_1 \\ y_1 & s_1 \end{bmatrix} \begin{bmatrix} t_2 & x_2 \\ y_2 & s_2 \end{bmatrix}$$

$$= \begin{bmatrix} t_1 t_2 + \beta(x_1, y_2) & t_1 x_2 + s_2 x_1 - y_1 y_2 \\ s_1 y_2 + t_2 y_1 + x_1 x_2 & s_1 s_2 + \beta(y_1, x_2) \end{bmatrix}.$$

Zorn's vector-matrices

The motivation for the construction of vector-matrices is the algebra of Zorn's vector-matrices. Take \mathbb{R}^3 with the cross product for the anticommutative product, and bilinear form β to be the dot product. Then Zorn's vector-matrices are exactly $Z(\mathbb{R}^3,\beta)$ under our construction.

Zorn's vector-matrices

The motivation for the construction of vector-matrices is the algebra of Zorn's vector-matrices. Take \mathbb{R}^3 with the cross product for the anticommutative product, and bilinear form β to be the dot product. Then Zorn's vector-matrices are exactly $Z(\mathbb{R}^3,\beta)$ under our construction.

These form a simple quadratic alternative algebra, providing an alternate construction of the split-octonions.

For an anticommutative formed algebra (A, β) with symmetric invariant bilinear form we have the following properties:

• $Z(A,\beta)$ is flexible: x(yx) = (xy)x for all $x, y \in Z(A,\beta)$.

For an anticommutative formed algebra (A, β) with symmetric invariant bilinear form we have the following properties:

- $Z(A,\beta)$ is flexible: x(yx) = (xy)x for all $x, y \in Z(A,\beta)$.
- **Z(A,\beta) is simple if and only if \beta is non-degenerate.**

For an anticommutative formed algebra (A, β) with symmetric invariant bilinear form we have the following properties:

- $Z(A,\beta)$ is flexible: x(yx) = (xy)x for all $x, y \in Z(A,\beta)$.
- $Z(A,\beta)$ is simple if and only if β is non-degenerate.
- $Z(A,\beta)$ is quadratic, i.e. each $z \in Z(A,\beta)$ is the root of some quadratic polynomial.

For an anticommutative formed algebra (A, β) with symmetric invariant bilinear form we have the following properties:

- $Z(A,\beta)$ is flexible: x(yx) = (xy)x for all $x, y \in Z(A,\beta)$.
- **Z(A,\beta)** is simple if and only if β is non-degenerate.
- $Z(A,\beta)$ is quadratic, i.e. each $z \in Z(A,\beta)$ is the root of some quadratic polynomial.
- $Z(A, \beta)$ satisfies the Jordan identity: $(xy)x^2 = x(yx^2)$ for all $x, y \in Z(A, \beta)$.

For an anticommutative formed algebra (A, β) with symmetric invariant bilinear form we have the following properties:

- $Z(A,\beta)$ is flexible: x(yx) = (xy)x for all $x, y \in Z(A,\beta)$.
- $Z(A,\beta)$ is simple if and only if β is non-degenerate.
- $Z(A,\beta)$ is quadratic, i.e. each $z \in Z(A,\beta)$ is the root of some quadratic polynomial.
- $Z(A,\beta)$ satisfies the Jordan identity: $(xy)x^2 = x(yx^2)$ for all $x, y \in Z(A,\beta)$.
- $Z(A, \beta)$ is power-associative.

Killing form

For any anticommutative algebra A we may define a bilinear form κ called the Killing form by

$$\kappa(x,y) = \operatorname{tr}(\operatorname{ad}(y)\operatorname{ad}(x))$$

where ad(x) is the left multiplication map.

Killing form

For any anticommutative algebra A we may define a bilinear form κ called the Killing form by

$$\kappa(x,y) = \operatorname{tr}(\operatorname{ad}(y)\operatorname{ad}(x))$$

where ad(x) is the left multiplication map. This bilinear form is always symmetric. For Lie algebras it is always invariant. Over \mathbb{R} , a Lie algebra has non-degenerate Killing form if and only if it is semisimple. -Isomorphisms

2 Isomorphisms

Autotopies

Fix a formed algebra (A, β) , take $S \in GL(A)$ such that $\beta(xS, y) = \beta(x, yS)$, and $(xS)(yS) = (xy)S^{-1}$. (1)

Autotopies

Fix a formed algebra (A, β) , take $S \in GL(A)$ such that

$$\beta(xS, y) = \beta(x, yS), \text{ and } (xS)(yS) = (xy)S^{-1}.$$
 (1)

Then we can define a new product \circ_S and a new bilinear form β_S on the algebra A by

$$x \circ_S y = (xy)S$$
, and $\beta_S(x,y) = \beta(xS^{-1},y)$.

We denote the resulting formed algebra (A_S, β_S) .

Isomorphisms

Isomorphism theorem

Theorem (Brown, Hopkins 1992)

Suppose that (A, β) and (A', β') are anticommutative formed algebras with non-degenerate invariant symmetric bilinear forms. $Z(A, \beta) \cong Z(A', \beta')$ if and only if there is an $S \in GL(A)$ satisfying conditions (1) and an isomorphism of algebras with bilinear form $R: (A_S, \beta_S) \to (A', \beta')$.

Isomorphisms

Isomorphism theorem

Theorem (Brown, Hopkins 1992)

Suppose that (A, β) and (A', β') are anticommutative formed algebras with non-degenerate invariant symmetric bilinear forms. $Z(A, \beta) \cong Z(A', \beta')$ if and only if there is an $S \in GL(A)$ satisfying conditions (1) and an isomorphism of algebras with bilinear form $R: (A_S, \beta_S) \to (A', \beta')$.

In such a case, we construct the isomorphism $Z(A,\beta) \to Z(A',\beta')$ by

$$\begin{bmatrix} t & x \\ y & s \end{bmatrix} \mapsto \begin{bmatrix} t & xSR \\ yR & s \end{bmatrix}$$

2 Isomorphisms

The $\mathfrak{sl}(2)$ example

Let $\mathfrak{sl}(2)$ denote the Lie algebra of traceless 2×2 real matrices with the commutator as a product.

The $\mathfrak{sl}(2)$ example

Let $\mathfrak{sl}(2)$ denote the Lie algebra of traceless 2×2 real matrices with the commutator as a product.

We consider \mathbb{R}^3 as a Lie algebra with the cross product as Lie bracket. Note that $\frac{-1}{2}\kappa(\mathbf{x},\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$, so $Z(\mathbb{R}^3, \frac{-1}{2}\kappa)$ is the usual Zorn vector-matrix construction of the split-octonions.

The $\mathfrak{sl}(2)$ example

Theorem

 $Z(\mathfrak{sl}(2), c\kappa) \cong Z(\mathbb{R}^3, c\kappa)$ for any $c \in \mathbb{R}$. Moreover, $(\mathfrak{sl}(2), c\kappa)$ and $(\mathbb{R}^3, c\kappa)$ are the only two formed algebras (up to isomorphism) that result in this vector-matrix algebra.

The $\mathfrak{sl}(2)$ example

Theorem

 $Z(\mathfrak{sl}(2), c\kappa) \cong Z(\mathbb{R}^3, c\kappa)$ for any $c \in \mathbb{R}$. Moreover, $(\mathfrak{sl}(2), c\kappa)$ and $(\mathbb{R}^3, c\kappa)$ are the only two formed algebras (up to isomorphism) that result in this vector-matrix algebra.

The proof involves showing that for any S satisfying conditions (1), $(\mathfrak{sl}(2)_S, c\kappa_S)$ will again be a Lie algebra. Furthermore, $c\kappa_S$ will be c times the Killing form of $\mathfrak{sl}(2)_S$. The bilinear form will remain non-degenerate, so the Lie algebra $\mathfrak{sl}(2)_S$ is semisimple. Meaning it can only be either $(\mathfrak{sl}(2), c\kappa)$ or $(\mathbb{R}^3, c\kappa)$, then S needs to be chosen to get $(\mathbb{R}^3, c\kappa)$.

The $\mathfrak{so}(4)$ example

 $\mathfrak{sl}(2) \cong \mathfrak{so}(2,1)$ and $\mathbb{R}^3 \cong \mathfrak{so}(3)$, so does anything similar happen in general for $\mathfrak{so}(n)$ and $\mathfrak{so}(p,q)$?

The $\mathfrak{so}(4)$ example

 $\mathfrak{sl}(2) \cong \mathfrak{so}(2,1)$ and $\mathbb{R}^3 \cong \mathfrak{so}(3)$, so does anything similar happen in general for $\mathfrak{so}(n)$ and $\mathfrak{so}(p,q)$?

For n = 4 we note that $\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3)$.

The $\mathfrak{so}(4)$ example

 $\mathfrak{sl}(2) \cong \mathfrak{so}(2,1)$ and $\mathbb{R}^3 \cong \mathfrak{so}(3)$, so does anything similar happen in general for $\mathfrak{so}(n)$ and $\mathfrak{so}(p,q)$?

For n = 4 we note that $\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3)$. Then for any $S_1, S_2 \in GL(\mathfrak{so}(3))$ satisfying conditions (1) for $(\mathfrak{so}(3), c\kappa), S_1 \oplus S_2 \in GL(\mathfrak{so}(4))$ satisfies conditions (1) for $(\mathfrak{so}(4), c\kappa)$ too.

The $\mathfrak{so}(4)$ example

 $\mathfrak{sl}(2) \cong \mathfrak{so}(2,1)$ and $\mathbb{R}^3 \cong \mathfrak{so}(3)$, so does anything similar happen in general for $\mathfrak{so}(n)$ and $\mathfrak{so}(p,q)$?

For n = 4 we note that $\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3)$. Then for any $S_1, S_2 \in GL(\mathfrak{so}(3))$ satisfying conditions (1) for $(\mathfrak{so}(3), c\kappa), S_1 \oplus S_2 \in GL(\mathfrak{so}(4))$ satisfies conditions (1) for $(\mathfrak{so}(4), c\kappa)$ too. Furthermore we find that

$$(\mathfrak{so}(3) \oplus \mathfrak{so}(3))_{S_1 \oplus S_2} = \mathfrak{so}(3)_{S_1} \oplus \mathfrak{so}(3)_{S_2}.$$

The $\mathfrak{so}(4)$ example

Then by the $\mathfrak{sl}(2)$ example before, we know that there are appropriate choices of $S_1, S_2 \in GL(\mathfrak{so}(3))$ such that $\mathfrak{so}(3)_{S_1} \oplus \mathfrak{so}(3)_{S_2}$ becomes each of the following Lie algebras

 $\mathfrak{so}(3) \oplus \mathfrak{so}(2,1)$, and $\mathfrak{so}(2,1) \oplus \mathfrak{so}(2,1) \cong \mathfrak{so}(2,2)$.

The $\mathfrak{so}(4)$ example

Then by the $\mathfrak{sl}(2)$ example before, we know that there are appropriate choices of $S_1, S_2 \in GL(\mathfrak{so}(3))$ such that $\mathfrak{so}(3)_{S_1} \oplus \mathfrak{so}(3)_{S_2}$ becomes each of the following Lie algebras

$$\mathfrak{so}(3) \oplus \mathfrak{so}(2,1)$$
, and $\mathfrak{so}(2,1) \oplus \mathfrak{so}(2,1) \cong \mathfrak{so}(2,2)$.

These are all the 6-dimensional semisimple, non-simple, real Lie algebras.

The $\mathfrak{so}(4)$ example

Then by the $\mathfrak{sl}(2)$ example before, we know that there are appropriate choices of $S_1, S_2 \in GL(\mathfrak{so}(3))$ such that $\mathfrak{so}(3)_{S_1} \oplus \mathfrak{so}(3)_{S_2}$ becomes each of the following Lie algebras

$$\mathfrak{so}(3) \oplus \mathfrak{so}(2,1)$$
, and $\mathfrak{so}(2,1) \oplus \mathfrak{so}(2,1) \cong \mathfrak{so}(2,2)$.

These are all the 6-dimensional semisimple, non-simple, real Lie algebras.

With a bit more work, we can show that these are all Lie algebras obtainable as $(\mathfrak{so}(4)_S, c\kappa_S)$. In particular, $(\mathfrak{so}(3, 1), c\kappa)$ cannot be written in this form.

Sources

- R.B. Brown, N.C. Hopkins, "Noncommutative matrix Jordan algebras", Trans. Amer. Math. Soc. 333 (1992), 137–55.
- Tae-il Suh, "Algebras formed by the Zorn vector matrix", *Pacific J. Math.* **30** (1969), 255–258.
- K.A. Zhevlakov, A.M. Slinko, I.P. Shestakov, A.I. Shirshov, *Rings that are Nearly Associative* (tr. H.F. Smith), Academic Press, New York, NY, 1982.
- M. Zorn, "Alternativkörper und quadratische Systeme", *Abh. Math. Sem. Hamburg* **9** (1933), 395–402.