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Isomorphisms of vector-matrix algebras

Vector-matrix algebras

Formed algebras

Definition

A formed algebra is a pair (A, β) where A is a (non-associative)
algebra over a field K and β is a bilinear form β : A⊗A→ K.

We will consider formed algebras with the following properties:

(A, β) is anticommutative if x2 = 0 for all x ∈ A,

(A, β) has symmetric bilinear form if β(x, y) = β(y, x) for
all x, y ∈ A,

(A, β) has invariant bilinear form if β(x, yz) = β(xy, z) for
all x, y, z ∈ A.
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Vector-matrix algebras

Out of any anticommutative formed algebra (A, β) with
symmetric invariant bilinear form, we construct the
vector-matrix algebra Z(A, β) composed of vector-matrices[

t x
y s

]
where t, s ∈ K and x, y ∈ A.

Addition and scaling are defined componentwise, and
multiplication in this algebra is defined by[

t1 x1
y1 s1

] [
t2 x2
y2 s2

]
=

[
t1t2 + β(x1, y2) t1x2 + s2x1 − y1y2

s1y2 + t2y1 + x1x2 s1s2 + β(y1, x2)

]
.
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Vector-matrix algebras

Zorn’s vector-matrices

The motivation for the construction of vector-matrices is the
algebra of Zorn’s vector-matrices. Take R3 with the cross
product for the anticommutative product, and bilinear form β
to be the dot product. Then Zorn’s vector-matrices are exactly
Z(R3, β) under our construction.

These form a simple quadratic alternative algebra, providing an
alternate construction of the split-octonions.
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Vector-matrix algebras

Properties

For an anticommutative formed algebra (A, β) with symmetric
invariant bilinear form we have the following properties:

Z(A, β) is flexible: x(yx) = (xy)x for all x, y ∈ Z(A, β).

Z(A, β) is simple if and only if β is non-degenerate.

Z(A, β) is quadratic, i.e. each z ∈ Z(A, β) is the root of
some quadratic polynomial.

Z(A, β) satisfies the Jordan identity: (xy)x2 = x(yx2) for
all x, y ∈ Z(A, β).

Z(A, β) is power-associative.
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Isomorphisms of vector-matrix algebras

Vector-matrix algebras

Killing form

For any anticommutative algebra A we may define a bilinear
form κ called the Killing form by

κ(x, y) = tr(ad(y)ad(x))

where ad(x) is the left multiplication map.

This bilinear form is always symmetric. For Lie algebras it is
always invariant. Over R, a Lie algebra has non-degenerate
Killing form if and only if it is semisimple.
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Isomorphisms of vector-matrix algebras

Isomorphisms

Autotopies

Fix a formed algebra (A, β), take S ∈ GL(A) such that

β(xS, y) = β(x, yS), and (xS)(yS) = (xy)S−1. (1)

Then we can define a new product ◦S and a new bilinear form
βS on the algebra A by

x ◦S y = (xy)S, and βS(x, y) = β(xS−1, y).

We denote the resulting formed algebra (AS , βS).
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Isomorphisms

Isomorphism theorem

Theorem (Brown, Hopkins 1992)

Suppose that (A, β) and (A′, β′) are anticommutative formed
algebras with non-degenerate invariant symmetric bilinear
forms. Z(A, β) ∼= Z(A′, β′) if and only if there is an S ∈ GL(A)
satisfying conditions (1) and an isomorphism of algebras with
bilinear form R : (AS , βS)→ (A′, β′).

In such a case, we construct the isomorphism
Z(A, β)→ Z(A′, β′) by[

t x
y s

]
7→

[
t xSR
yR s

]
.
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Isomorphisms of vector-matrix algebras

Examples

The sl(2) example

Let sl(2) denote the Lie algebra of traceless 2× 2 real matrices
with the commutator as a product.

We consider R3 as a Lie algebra with the cross product as Lie
bracket. Note that −12 κ(x,y) = x · y, so Z(R3, −12 κ) is the usual
Zorn vector-matrix construction of the split-octonions.
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Examples

The sl(2) example

Theorem

Z(sl(2), cκ) ∼= Z(R3, cκ) for any c ∈ R. Moreover, (sl(2), cκ)
and (R3, cκ) are the only two formed algebras (up to
isomorphism) that result in this vector-matrix algebra.

The proof involves showing that for any S satisfying conditions
(1), (sl(2)S , cκS) will again be a Lie algebra. Furthermore, cκS
will be c times the Killing form of sl(2)S . The bilinear form will
remain non-degenerate, so the Lie algebra sl(2)S is semisimple.
Meaning it can only be either (sl(2), cκ) or (R3, cκ), then S
needs to be chosen to get (R3, cκ).
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Isomorphisms of vector-matrix algebras

Examples

The so(4) example

sl(2) ∼= so(2, 1) and R3 ∼= so(3), so does anything similar
happen in general for so(n) and so(p, q)?

For n = 4 we note that so(4) ∼= so(3)⊕ so(3).
Then for any S1, S2 ∈ GL(so(3)) satisfying conditions (1) for
(so(3), cκ), S1 ⊕ S2 ∈ GL(so(4)) satisfies conditions (1) for
(so(4), cκ) too.
Furthermore we find that

(so(3)⊕ so(3))S1⊕S2 = so(3)S1 ⊕ so(3)S2 .
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Examples

The so(4) example

Then by the sl(2) example before, we know that there are
appropriate choices of S1, S2 ∈ GL(so(3)) such that
so(3)S1 ⊕ so(3)S2 becomes each of the following Lie algebras

so(3)⊕ so(2, 1), and so(2, 1)⊕ so(2, 1) ∼= so(2, 2).

These are all the 6-dimensional semisimple, non-simple, real Lie
algebras.
With a bit more work, we can show that these are all Lie
algebras obtainable as (so(4)S , cκS). In particular, (so(3, 1), cκ)
cannot be written in this form.
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