Isomorphisms of vector-matrix algebras

Mitchell Ashburn
Iowa State University

June, 2023

Outline

1 Vector-matrix algebras

2 Isomorphisms

3 Examples

1 Vector-matrix algebras

2 Isomorphisms

3 Examples

Formed algebras

Definition

A formed algebra is a pair (A, β) where A is a (non-associative) algebra over a field K and β is a bilinear form $\beta: A \otimes A \rightarrow K$.

Formed algebras

Definition

A formed algebra is a pair (A, β) where A is a (non-associative) algebra over a field K and β is a bilinear form $\beta: A \otimes A \rightarrow K$.

We will consider formed algebras with the following properties:

- (A, β) is anticommutative if $x^{2}=0$ for all $x \in A$,
- (A, β) has symmetric bilinear form if $\beta(x, y)=\beta(y, x)$ for all $x, y \in A$,
- (A, β) has invariant bilinear form if $\beta(x, y z)=\beta(x y, z)$ for all $x, y, z \in A$.

Vector-matrix algebras

Out of any anticommutative formed algebra (A, β) with symmetric invariant bilinear form, we construct the vector-matrix algebra $Z(A, \beta)$ composed of vector-matrices

$$
\left[\begin{array}{ll}
t & x \\
y & s
\end{array}\right]
$$

where $t, s \in K$ and $x, y \in A$.

Vector-matrix algebras

Out of any anticommutative formed algebra (A, β) with symmetric invariant bilinear form, we construct the vector-matrix algebra $Z(A, \beta)$ composed of vector-matrices

$$
\left[\begin{array}{ll}
t & x \\
y & s
\end{array}\right]
$$

where $t, s \in K$ and $x, y \in A$.
Addition and scaling are defined componentwise, and multiplication in this algebra is defined by

$$
\begin{aligned}
& {\left[\begin{array}{ll}
t_{1} & x_{1} \\
y_{1} & s_{1}
\end{array}\right]\left[\begin{array}{ll}
t_{2} & x_{2} \\
y_{2} & s_{2}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
t_{1} t_{2}+\beta\left(x_{1}, y_{2}\right) & t_{1} x_{2}+s_{2} x_{1}-y_{1} y_{2} \\
s_{1} y_{2}+t_{2} y_{1}+x_{1} x_{2} & s_{1} s_{2}+\beta\left(y_{1}, x_{2}\right)
\end{array}\right] .
\end{aligned}
$$

Zorn's vector-matrices

The motivation for the construction of vector-matrices is the algebra of Zorn's vector-matrices. Take \mathbb{R}^{3} with the cross product for the anticommutative product, and bilinear form β to be the dot product. Then Zorn's vector-matrices are exactly $Z\left(\mathbb{R}^{3}, \beta\right)$ under our construction.

Zorn's vector-matrices

The motivation for the construction of vector-matrices is the algebra of Zorn's vector-matrices. Take \mathbb{R}^{3} with the cross product for the anticommutative product, and bilinear form β to be the dot product. Then Zorn's vector-matrices are exactly $Z\left(\mathbb{R}^{3}, \beta\right)$ under our construction.

These form a simple quadratic alternative algebra, providing an alternate construction of the split-octonions.

Properties

For an anticommutative formed algebra (A, β) with symmetric invariant bilinear form we have the following properties:

- $Z(A, \beta)$ is flexible: $x(y x)=(x y) x$ for all $x, y \in Z(A, \beta)$.

Properties

For an anticommutative formed algebra (A, β) with symmetric invariant bilinear form we have the following properties:

■ $Z(A, \beta)$ is flexible: $x(y x)=(x y) x$ for all $x, y \in Z(A, \beta)$.
■ $Z(A, \beta)$ is simple if and only if β is non-degenerate.

Properties

For an anticommutative formed algebra (A, β) with symmetric invariant bilinear form we have the following properties:

- $Z(A, \beta)$ is flexible: $x(y x)=(x y) x$ for all $x, y \in Z(A, \beta)$.
- $Z(A, \beta)$ is simple if and only if β is non-degenerate.
- $Z(A, \beta)$ is quadratic, i.e. each $z \in Z(A, \beta)$ is the root of some quadratic polynomial.

Properties

For an anticommutative formed algebra (A, β) with symmetric invariant bilinear form we have the following properties:

- $Z(A, \beta)$ is flexible: $x(y x)=(x y) x$ for all $x, y \in Z(A, \beta)$.

■ $Z(A, \beta)$ is simple if and only if β is non-degenerate.

- $Z(A, \beta)$ is quadratic, i.e. each $z \in Z(A, \beta)$ is the root of some quadratic polynomial.
- $Z(A, \beta)$ satisfies the Jordan identity: $(x y) x^{2}=x\left(y x^{2}\right)$ for all $x, y \in Z(A, \beta)$.

Properties

For an anticommutative formed algebra (A, β) with symmetric invariant bilinear form we have the following properties:

- $Z(A, \beta)$ is flexible: $x(y x)=(x y) x$ for all $x, y \in Z(A, \beta)$.
- $Z(A, \beta)$ is simple if and only if β is non-degenerate.
- $Z(A, \beta)$ is quadratic, i.e. each $z \in Z(A, \beta)$ is the root of some quadratic polynomial.
- $Z(A, \beta)$ satisfies the Jordan identity: $(x y) x^{2}=x\left(y x^{2}\right)$ for all $x, y \in Z(A, \beta)$.
- $Z(A, \beta)$ is power-associative.

Killing form

For any anticommutative algebra A we may define a bilinear form κ called the Killing form by

$$
\kappa(x, y)=\operatorname{tr}(\operatorname{ad}(y) \operatorname{ad}(x))
$$

where $\operatorname{ad}(x)$ is the left multiplication map.

Killing form

For any anticommutative algebra A we may define a bilinear form κ called the Killing form by

$$
\kappa(x, y)=\operatorname{tr}(\operatorname{ad}(y) \operatorname{ad}(x))
$$

where $\operatorname{ad}(x)$ is the left multiplication map. This bilinear form is always symmetric. For Lie algebras it is always invariant. Over \mathbb{R}, a Lie algebra has non-degenerate Killing form if and only if it is semisimple.

1 Vector-matrix algebras

2 Isomorphisms

3 Examples

Autotopies

Fix a formed algebra (A, β), take $S \in G L(A)$ such that

$$
\begin{equation*}
\beta(x S, y)=\beta(x, y S), \quad \text { and }(x S)(y S)=(x y) S^{-1} . \tag{1}
\end{equation*}
$$

Autotopies

Fix a formed algebra (A, β), take $S \in G L(A)$ such that

$$
\begin{equation*}
\beta(x S, y)=\beta(x, y S), \quad \text { and }(x S)(y S)=(x y) S^{-1} \tag{1}
\end{equation*}
$$

Then we can define a new product o_{S} and a new bilinear form β_{S} on the algebra A by

$$
x \circ_{S} y=(x y) S, \quad \text { and } \quad \beta_{S}(x, y)=\beta\left(x S^{-1}, y\right)
$$

We denote the resulting formed algebra $\left(A_{S}, \beta_{S}\right)$.

Isomorphism theorem

Theorem (Brown, Hopkins 1992)

Suppose that (A, β) and $\left(A^{\prime}, \beta^{\prime}\right)$ are anticommutative formed algebras with non-degenerate invariant symmetric bilinear forms. $Z(A, \beta) \cong Z\left(A^{\prime}, \beta^{\prime}\right)$ if and only if there is an $S \in G L(A)$ satisfying conditions (1) and an isomorphism of algebras with bilinear form $R:\left(A_{S}, \beta_{S}\right) \rightarrow\left(A^{\prime}, \beta^{\prime}\right)$.

Isomorphism theorem

Theorem (Brown, Hopkins 1992)

Suppose that (A, β) and $\left(A^{\prime}, \beta^{\prime}\right)$ are anticommutative formed algebras with non-degenerate invariant symmetric bilinear forms. $Z(A, \beta) \cong Z\left(A^{\prime}, \beta^{\prime}\right)$ if and only if there is an $S \in G L(A)$ satisfying conditions (1) and an isomorphism of algebras with bilinear form $R:\left(A_{S}, \beta_{S}\right) \rightarrow\left(A^{\prime}, \beta^{\prime}\right)$.

In such a case, we construct the isomorphism
$Z(A, \beta) \rightarrow Z\left(A^{\prime}, \beta^{\prime}\right)$ by

$$
\left[\begin{array}{cc}
t & x \\
y & s
\end{array}\right] \mapsto\left[\begin{array}{cc}
t & x S R \\
y R & s
\end{array}\right] .
$$

1 Vector-matrix algebras

2 Isomorphisms

3 Examples

The $\mathfrak{s l}(2)$ example

Let $\mathfrak{s l}(2)$ denote the Lie algebra of traceless 2×2 real matrices with the commutator as a product.

The $\mathfrak{s l}(2)$ example

Let $\mathfrak{s l}(2)$ denote the Lie algebra of traceless 2×2 real matrices with the commutator as a product.

We consider \mathbb{R}^{3} as a Lie algebra with the cross product as Lie bracket. Note that $\frac{-1}{2} \kappa(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$, so $Z\left(\mathbb{R}^{3}, \frac{-1}{2} \kappa\right)$ is the usual Zorn vector-matrix construction of the split-octonions.

The $\mathfrak{s l}(2)$ example

Theorem
$Z(\mathfrak{s l}(2), c \kappa) \cong Z\left(\mathbb{R}^{3}, c \kappa\right)$ for any $c \in \mathbb{R}$. Moreover, $(\mathfrak{s l}(2), c \kappa)$ and $\left(\mathbb{R}^{3}, c \kappa\right)$ are the only two formed algebras (up to isomorphism) that result in this vector-matrix algebra.

The $\mathfrak{s l}(2)$ example

> Theorem
> $Z(\mathfrak{s l}(2), c \kappa) \cong Z\left(\mathbb{R}^{3}, c \kappa\right)$ for any $c \in \mathbb{R}$. Moreover, $(\mathfrak{s l}(2), c \kappa)$ and $\left(\mathbb{R}^{3}, c \kappa\right)$ are the only two formed algebras (up to isomorphism) that result in this vector-matrix algebra.

The proof involves showing that for any S satisfying conditions (1), $\left(\mathfrak{s l}(2)_{S}, c \kappa_{S}\right)$ will again be a Lie algebra. Furthermore, $c \kappa_{S}$ will be c times the Killing form of $\mathfrak{s l}(2)_{S}$. The bilinear form will remain non-degenerate, so the Lie algebra $\mathfrak{s l}(2)_{S}$ is semisimple. Meaning it can only be either $(\mathfrak{s l}(2), c \kappa)$ or $\left(\mathbb{R}^{3}, c \kappa\right)$, then S needs to be chosen to get $\left(\mathbb{R}^{3}, c \kappa\right)$.

The $\mathfrak{s o}(4)$ example

$\mathfrak{s l}(2) \cong \mathfrak{s o}(2,1)$ and $\mathbb{R}^{3} \cong \mathfrak{s o}(3)$, so does anything similar happen in general for $\mathfrak{s o}(n)$ and $\mathfrak{s o}(p, q)$?

The $\mathfrak{s o}(4)$ example

$\mathfrak{s l}(2) \cong \mathfrak{s o}(2,1)$ and $\mathbb{R}^{3} \cong \mathfrak{s o}(3)$, so does anything similar happen in general for $\mathfrak{s o}(n)$ and $\mathfrak{s o}(p, q)$?

For $n=4$ we note that $\mathfrak{s o}(4) \cong \mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$.

The $\mathfrak{s o}(4)$ example

$\mathfrak{s l}(2) \cong \mathfrak{s o}(2,1)$ and $\mathbb{R}^{3} \cong \mathfrak{s o}(3)$, so does anything similar happen in general for $\mathfrak{s o}(n)$ and $\mathfrak{s o}(p, q)$?

For $n=4$ we note that $\mathfrak{s o}(4) \cong \mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$.
Then for any $S_{1}, S_{2} \in G L(\mathfrak{s o}(3))$ satisfying conditions (1) for $(\mathfrak{s o}(3), c \kappa), S_{1} \oplus S_{2} \in G L(\mathfrak{s o}(4))$ satisfies conditions (1) for ($\mathfrak{s o}(4), c k)$ too.

The $\mathfrak{s o}(4)$ example

$\mathfrak{s l}(2) \cong \mathfrak{s o}(2,1)$ and $\mathbb{R}^{3} \cong \mathfrak{s o}(3)$, so does anything similar happen in general for $\mathfrak{s o}(n)$ and $\mathfrak{s o}(p, q)$?

For $n=4$ we note that $\mathfrak{s o}(4) \cong \mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$.
Then for any $S_{1}, S_{2} \in G L(\mathfrak{s o}(3))$ satisfying conditions (1) for $(\mathfrak{s o}(3), c \kappa), S_{1} \oplus S_{2} \in G L(\mathfrak{s o}(4))$ satisfies conditions (1) for ($\mathfrak{s o}(4), c \kappa)$ too.
Furthermore we find that

$$
(\mathfrak{s o}(3) \oplus \mathfrak{s o}(3))_{S_{1} \oplus S_{2}}=\mathfrak{s o}(3)_{S_{1}} \oplus \mathfrak{s o}(3)_{S_{2}}
$$

The $\mathfrak{s o}(4)$ example

Then by the $\mathfrak{s l}(2)$ example before, we know that there are appropriate choices of $S_{1}, S_{2} \in G L(\mathfrak{s o}(3))$ such that $\mathfrak{s o}(3)_{S_{1}} \oplus \mathfrak{s o}(3)_{S_{2}}$ becomes each of the following Lie algebras

$$
\mathfrak{s o}(3) \oplus \mathfrak{s o}(2,1), \quad \text { and } \mathfrak{s o}(2,1) \oplus \mathfrak{s o}(2,1) \cong \mathfrak{s o}(2,2) .
$$

The $\mathfrak{s o}(4)$ example

Then by the $\mathfrak{s l}(2)$ example before, we know that there are appropriate choices of $S_{1}, S_{2} \in G L(\mathfrak{s o}(3))$ such that $\mathfrak{s o}(3)_{S_{1}} \oplus \mathfrak{s o}(3)_{S_{2}}$ becomes each of the following Lie algebras

$$
\mathfrak{s o}(3) \oplus \mathfrak{s o}(2,1), \quad \text { and } \mathfrak{s o}(2,1) \oplus \mathfrak{s o}(2,1) \cong \mathfrak{s o}(2,2)
$$

These are all the 6-dimensional semisimple, non-simple, real Lie algebras.

The $\mathfrak{s o}(4)$ example

Then by the $\mathfrak{s l}(2)$ example before, we know that there are appropriate choices of $S_{1}, S_{2} \in G L(\mathfrak{s o}(3))$ such that $\mathfrak{s o}(3)_{S_{1}} \oplus \mathfrak{s o}(3)_{S_{2}}$ becomes each of the following Lie algebras

$$
\mathfrak{s o}(3) \oplus \mathfrak{s o}(2,1), \quad \text { and } \mathfrak{s o}(2,1) \oplus \mathfrak{s o}(2,1) \cong \mathfrak{s o}(2,2)
$$

These are all the 6-dimensional semisimple, non-simple, real Lie algebras.
With a bit more work, we can show that these are all Lie algebras obtainable as $\left(\mathfrak{s o}(4)_{S}, c \kappa_{S}\right)$. In particular, $(\mathfrak{s o}(3,1), c \kappa)$ cannot be written in this form.

Sources

围 R．B．Brown，N．C．Hopkins，＂Noncommutative matrix Jordan algebras＂，Trans．Amer．Math．Soc． 333 （1992）， 137－55．
國 Tae－il Suh，＂Algebras formed by the Zorn vector matrix＂， Pacific J．Math． 30 （1969），255－258．

围 K．A．Zhevlakov，A．M．Slinko，I．P．Shestakov，A．I．Shirshov， Rings that are Nearly Associative（tr．H．F．Smith）， Academic Press，New York，NY， 1982.

圊 M．Zorn，＂Alternativkörper und quadratische Systeme＂， Abh．Math．Sem．Hamburg 9 （1933），395－402．

