On

parastrophes

 of ternary quasigroupsIryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic
orthogonal ternary
medial quasigroups
Self-orthogonal medial quasigroups
Ternary
top-quasigroups

ON ORTHOGONALITY OF PARASTROPHES OF TERNARY QUASIGROUPS

IRYNA FRyz
(joint work with Fedir Sokhatsky)
Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine
LOOPS'23
Bȩdlewo, Poland, June 26 - July 2, 2023

Table of Contents

On orthogonality of parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear
n-ary top-quasigroups

Binary case ($n=2$)
Ternary case ($n=3$)

Parastrophic orthogonal ternary medial quasigroups Self-orthogonal medial quasigroups

Ternary
top-quasigroups
References

1 Preliminaries

2 Problem

3 Results

■ Existence of linear n-ary top-quasigroups

- Binary case ($n=2$)
- Ternary case ($n=3$)
- Parastrophic orthogonal ternary medial quasigroups
- Self-orthogonal medial quasigroups
- Ternary top-quasigroups

4 References

Orthogonality concept

Definition 1.

A triplet of ternary quasigroup operations f_{1}, f_{2}, f_{3} on a set Q is called orthogonal, if for all $a_{1}, a_{2}, a_{3} \in Q$ the system of equations

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=a_{1} \tag{1}\\
f_{2}\left(x_{1}, x_{2}, x_{3}\right)=a_{2} \\
f_{3}\left(x_{1}, x_{2}, x_{3}\right)=a_{3}
\end{array}\right.
$$

has a unique solution.

$$
\text { Latin cube } \Longleftrightarrow \text { ternary quasigroup }
$$

Definition 2.

Δ trinlet of I atin cubes on Q of order m is called orthogonal if under their superimposition each of the m^{3} ordered triplets appears exactly once.

Orthogonality concept

Definition 1.

A triplet of ternary quasigroup operations f_{1}, f_{2}, f_{3} on a set Q is called orthogonal, if for all $a_{1}, a_{2}, a_{3} \in Q$ the system of equations

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=a_{1} \tag{1}\\
f_{2}\left(x_{1}, x_{2}, x_{3}\right)=a_{2} \\
f_{3}\left(x_{1}, x_{2}, x_{3}\right)=a_{3}
\end{array}\right.
$$

has a unique solution.

Latin cube \Longleftrightarrow ternary quasigroup

Definition 2.

A triplet of Latin cubes on Q of order m is called orthogonal if under their superimposition each of the m^{3} ordered triplets appears exactly once.

Orthogonality concept

Let $\delta \subseteq\{1,2,3\}$.
A set of ternary operations is called δ-retractly orthogonal, if all tuples of similar δ-retracts of these operations are orthogonal.

Theorem 1. *

An orthogonal set of ternary quasigroups $f_{1}, f_{2}, \ldots, f_{t}$ defined on a set Q, where $t \geqslant 1$, is strongly orthogonal if and only if it is $\{i, j\}$-retractly orthogonal for each $i, j \in\{1,2,3\}$, where $i \neq j$.

> * G. Belyavskaya, G.L. Mullen, Strongly orthogonal and uniformly orthogonal many-placed operations, Algebra Discrete Math., Vol. 5, №1, 2006, pp.1-17.

Orthogonal hypercubes and codes

Theorem 2. (E.T. Ethier, G.L. Mullen, 2012)*

A set of ℓ orthogonal d-cubes of order n is equivalent to an n-ary $\left(\ell, n^{d}, \ell-d+1\right)$-code.

Theorem 3. (E.T. Ethier, G.L. Mulen, 2012)

If $\ell>d$, a set of $(\ell-d)$ mutually strong orthogonal d-cubes of order n is equivalent to an n-ary $\left(\ell, n^{d}, \ell-d+1\right)$-code.

* Ethier E.T., Mullen G.L. Strong forms of orthogonality for sets of hypercubes, Discrete Math., Vol. 321 (2012), Iss. 12-13, 2050-2061. DOI: https://doi.org/10.1016/j.disc.2012.03.008

Orthogonal hypercubes and codes

On orthogonality of parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear
n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case ($n=3$)
Parastrophic
orthogonal ternary
medial quasigroups
Self-orthogonal medial quasigroups
Ternary
top-quasigroups

Theorem 2. (E.T. Ethier, G.L. Mullen, 2012)*
A set of ℓ orthogonal d-cubes of order n is equivalent to an n-ary ($\ell, n^{d}, \ell-d+1$)-code.

Theorem 3. (E.T. Ethier, G.L. Mullen, 2012)*
If $\ell>d$, a set of $(\ell-d)$ mutually strong orthogonal d-cubes of order n is equivalent to an n-ary $\left(\ell, n^{d}, \ell-d+1\right)$-code.

[^0]
Parastrophes

For every permutation $\sigma \in S_{4}$, a σ-parastrophe σf of an invertible ternary operation f is defined by

$$
\begin{equation*}
{ }^{\sigma} f\left(x_{1 \sigma}, x_{2 \sigma}, x_{3 \sigma}\right)=x_{4 \sigma}: \Longleftrightarrow f\left(x_{1}, x_{2}, x_{3}\right)=x_{4}, \tag{2}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
{ }^{\sigma_{f}}\left(x_{1}, x_{2}, x_{3}\right)=x_{4}: \Longleftrightarrow f\left(x_{1 \sigma^{-1}}, x_{2 \sigma^{-1}}, x_{3 \sigma^{-1}}\right)=x_{4 \sigma^{-1}} . \tag{3}
\end{equation*}
$$

A σ-parastrophe is called

- an i-th division if $\sigma=(i 4)$ for $i=1,2,3$;
- a principal parastrophe if $4 \sigma=4$.

Parastrophes

For every permutation $\sigma \in S_{4}$, a σ-parastrophe ${ }^{\sigma} f$ of an invertible ternary operation f is defined by

$$
\begin{equation*}
{ }^{\sigma_{f}}\left(x_{1 \sigma}, x_{2 \sigma}, x_{3 \sigma}\right)=x_{4 \sigma}: \Longleftrightarrow f\left(x_{1}, x_{2}, x_{3}\right)=x_{4}, \tag{2}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
{ }^{{ }^{\sigma}} f\left(x_{1}, x_{2}, x_{3}\right)=x_{4}: \Longleftrightarrow f\left(x_{1 \sigma^{-1}}, x_{2 \sigma^{-1}}, x_{3 \sigma^{-1}}\right)=x_{4 \sigma^{-1}} . \tag{3}
\end{equation*}
$$

A σ-parastrophe is called

- an i-th division if $\sigma=(i 4)$ for $i=1,2,3$;
- a principal parastrophe if $4 \sigma=4$.

Parastrophes

parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear
n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic

For every permutation $\sigma \in S_{4}$, a σ-parastrophe ${ }^{\sigma} f$ of an invertible ternary operation f is defined by

$$
\begin{equation*}
\sigma_{f}\left(x_{1 \sigma}, x_{2 \sigma}, x_{3 \sigma}\right)=x_{4 \sigma}: \Longleftrightarrow f\left(x_{1}, x_{2}, x_{3}\right)=x_{4}, \tag{2}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
{ }^{{ }^{\sigma}} f\left(x_{1}, x_{2}, x_{3}\right)=x_{4}: \Longleftrightarrow f\left(x_{1 \sigma^{-1}}, x_{2 \sigma^{-1}}, x_{3 \sigma^{-1}}\right)=x_{4 \sigma^{-1}} . \tag{3}
\end{equation*}
$$

A σ-parastrophe is called

- an i-th division if $\sigma=(i 4)$ for $i=1,2,3$;
- a principal parastrophe if $4 \sigma=4$.

A ternary quasigroup operation is called

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear
n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case ($n=3$)
Parastrophic orthogonal ternary medial quasigroups Self-orthogonal medial quasigroups Ternary
top-quasigroups

- asymmetric if all its parastrophes are different;
- parastrophic orthogonal if it has a triplet of orthogonal parastrophes;
- self-orthogonal if it has a triplet of orthogonal principal parastrophes;
- totally parastrophic orthogonal (briefly, a top-quasigroup) if the set of its different parastrophes is triple-wise orthogonal.

On orthogonality of parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary top-quasigroups Binary case ($n=2$) Ternary case ($n=3$)

Parastrophic orthogonal ternary medial quasigroups Self-orthogonal medial quasigroups Ternary top-quasigroups

A ternary quasigroup operation is called

■ asymmetric if all its parastrophes are different;

- parastrophic orthogonal if it has a triplet of orthogonal parastrophes;
- self-orthogonal if it has a triplet of orthogonal principal parastrophes;
- totally parastrophic orthogonal (briefly, a top-quasigroup) if the set of its different parastrophes is triple-wise orthogonal.

parastrophes

 of ternary quasigroupsIryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary top-quasigroups

A ternary quasigroup operation is called

- asymmetric if all its parastrophes are different;
- parastrophic orthogonal if it has a triplet of orthogonal parastrophes;
- self-orthogonal if it has a triplet of orthogonal principal parastrophes;
- totally narastronhic orthogonal (briefly, a top-quasigroup) if the set of its different parastrophes is triple-wise orthogonal.

A ternary quasigroup operation is called

- asymmetric if all its parastrophes are different;
- parastrophic orthogonal if it has a triplet of orthogonal parastrophes;
■ self-orthogonal if it has a triplet of orthogonal principal parastrophes;

A ternary quasigroup operation is called

- asymmetric if all its parastrophes are different;
- parastrophic orthogonal if it has a triplet of orthogonal parastrophes;
■ self-orthogonal if it has a triplet of orthogonal principal parastrophes;
- totally parastrophic orthogonal (briefly, a top-quasigroup) if the set of its different parastrophes is triple-wise orthogonal.

Constructing orthogonal quasigroups

On orthogonality of parastrophes of ternary quasigroups
 Iryna Fryz
 Preliminaries
 Problem
 Results
 Existence of linear n-ary top-quasigroups
 Binary case ($n=2$)
 Ternary case ($n=3$)
 Parastrophic orthogonal ternary medial quasigroups Self-orthogonal medial quasigroups Ternary top-quasigroups
 11 Evans T. The construction of orthogonal k-skeins and latin k-cubes, Aequationes Math, Vol. 13, Iss. 3 (1976), 485-491.
 2 Trenkler M. On orthogonal latin p-dimensional cubes, Czechoslovak Mathematical Journal, 55 (130) (2005), 725-728.
 3 Ethier E.T., Mullen G.L. Strong forms of orthogonality for sets of hypercubes, Discrete Math., Vol. 321 (2012), Iss. 12-13, 2050-2061.

References

Constructing orthogonal quasigroups

On

 orthogonality of
parastrophes

 of ternary quasigroupsIryna Fryz

Preliminaries
Problem
Results
Existence of linear
n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case ($n=3$)
Parastrophic orthogonal ternary medial quasigroups
Self-orthogonal medial quasigroups Ternary top-quasigroups

1 Evans T. The construction of orthogonal k-skeins and latin k-cubes, Aequationes Math, Vol. 13, Iss. 3 (1976), 485-491.

2 Trenkler M. On orthogonal latin p-dimensional cubes, Czechoslovak Mathematical Journal, 55 (130) (2005), 725-728.

3 Ethier E.T., Mullen G.L. Strong forms of orthogonality for sets of hypercubes, Discrete Math., Vol. 321 (2012), Iss. 12-13, 2050-2061.

Constructing orthogonal quasigroups

1 Evans T. The construction of orthogonal k-skeins and latin k-cubes, Aequationes Math, Vol. 13, Iss. 3 (1976), 485-491.
2 Trenkler M. On orthogonal latin p-dimensional cubes, Czechoslovak Mathematical Journal, 55 (130) (2005), 725-728.

3 Ethier E.T., Mullen G.L. Strong forms of orthogonality for sets of hypercubes, Discrete Math., Vol. 321 (2012), Iss. 12-13, 2050-2061.

Constructing orthogonal quasigroups

1 Evans T. The construction of orthogonal k-skeins and latin k-cubes, Aequationes Math, Vol. 13, Iss. 3 (1976), 485-491.
2 Trenkler M. On orthogonal latin p-dimensional cubes, Czechoslovak Mathematical Journal, 55 (130) (2005), 725-728.

3 Ethier E.T., Mullen G.L. Strong forms of orthogonality for sets of hypercubes, Discrete Math., Vol. 321 (2012), Iss. 12-13, 2050-2061.

Table of Contents

On orthogonality of parastrophes of ternary quasigroups

Iryna Fryz
2 Problem

3 Results

■ Existence of linear n-ary top-quasigroups

- Binary case ($n=2$)
- Ternary case ($n=3$)
- Parastrophic orthogonal ternary medial quasigroups
- Self-orthogonal medial quasigroups
- Ternary top-quasigroups

4 References

parastrophes

of ternary
quasigroups

```
    Iryna Fryz
```

Preliminaries

Problem

TO RESEARCH METHODS FOR CONSTRUCTION OF LINEAR TOP-QUASIGROUPS.

Problem

Results
Existence of linear
n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic
orthogonal ternary
medial quasigroups
Self-orthogonal
medial quasigroups
Ternary
top-quasigroups
References

Syrbu P. Orthogonal and Self-orthogonal n-Operations (Ph.D. thesis), Academy of Science of Moldova SSR, 1990 (in Russian).
Belyavskaya G.B., Popovich T.V. Totally conjugate orthogonal quasigroups and complete graphs, J. Math. Sci., 185 (2012), No. 2, 184-191. DOI: https://doi.org/10.1007/s10958-012-0907-z

Table of Contents

On
orthogonality of
parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary top-quasigroups
Binary case ($n=2$) Ternary case ($n=3$)
Parastrophic orthogonal ternary medial quasigroups
Self-orthogonal medial quasigroups

Ternary
top-quasigroups

1 Preliminaries

2 Problem

3 Results
■ Existence of linear n-ary top-quasigroups

- Binary case ($n=2$)
- Ternary case $(n=3)$
- Parastrophic orthogonal ternary medial quasigroups
- Self-orthogonal medial quasigroups
- Ternary top-quasigroups

4 References

Existence of linear n-ary top-quasigroups

If n-ary quasigroup $(Q ; f)$ is linear over a group $(Q ;+)$, then it has decomposition

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}+a, \tag{4}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are automorphisms of $(Q ;+)$ and $a \in Q$. If $(Q ;+)$ is abelian, then $(Q ; f)$ is called a central or T-quasigroup.

Theorem 4 (I. Fryz, F. Sokhatsky).

Linear n-ary self-orthogonal quasigroups do not exist if $n>3$.

Corollary 1 (F. Sokhatsky, le. Pirus, 2014).* Linear n-ary top-quasigroups do not exist if $n>3$

[^1]
Existence of linear n-ary top-quasigroups

If n-ary quasigroup $(Q ; f)$ is linear over a group $(Q ;+)$, then it has decomposition

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}+a \tag{4}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are automorphisms of ($Q ;+$) and $a \in Q$. If $(Q ;+)$ is abelian, then $(Q ; f)$ is called a central or T-quasigroup.

Theorem 4 (I. Fryz, F. Sokhatsky).

Linear n-ary self-orthogonal quasigroups do not exist if $n>3$.
Corollary 1 (F. Sokhatsky, le. Pirus, 2014).*
Linear n-ary top-quasigroups do not exist if $n>3$.

* Sokhatsky F., Pirus le. About top-quasigroups, Proceedings of the Third Conference of Mathematical Society of Moldova IMCS-50, August 19-23, 2014, Chisinau, Republic of Moldova, 162-165.

Existence of linear n-ary top-quasigroups

Theorem 5 (I. Fryz, F. Sokhatsky, 2022).*

```
    Iryna Fryz
```

Preliminaries
Problem
Results
Existence of linear
n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic
orthogonal ternary
medial quasigroups
Self-orthogonal medial quasigroups

Ternary

top-quasigroups

Linear n-ary strongly self-orthogonal quasigroups do not exist if $n>3$.

Theorem 6 (I. Fryz).

Central n-ary strongly top-quasigroups do not exist if $n>2$.

* Iryna Fryz, Fedir Sokhatsky. Construction of medial ternary self-orthogonal quasigroups. Bul. Acad. Stiinte Repub. Mold. Mat. 2022. №3(100). P. 41-55. DOI: https://doi.org/10.56415/basm.y2022.i3.p41

Existence of linear n-ary top-quasigroups

On
orthogonality of parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear
n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case ($n=3$)

Parastrophic orthogonal ternary medial quasigroups
Self-orthogonal medial quasigroups Ternary
top-quasigroups

Theorem 5 (I. Fryz, F. Sokhatsky, 2022).*

Linear n-ary strongly self-orthogonal quasigroups do not exist if $n>3$.

Theorem 6 (I. Fryz).

Central n-ary strongly top-quasigroups do not exist if $n>2$.

* Iryna Fryz, Fedir Sokhatsky. Construction of medial ternary self-orthogonal quasigroups. Bul. Acad. Stiinte Repub. Mold. Mat. 2022. №3(100). P. 41-55. DOI: https://doi.org/10.56415/basm.y2022.i3.p41

Binary case $(n=2)$
Linear asymmetric top-quasigroups

On
orthogonality of
parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case ($n=3$)
Parastrophic orthogonal ternary medial quasigroups
Self-orthogonal medial quasigroups Ternary top-quasigroups
References

Theorem 7 (I. Fryz).

A linear quasigroup ($Q ; f$) over a group ($Q ;+$) with canonical decomposition

$$
\begin{equation*}
f(x, y)=\alpha x+\beta y+a \tag{5}
\end{equation*}
$$

is a top-quasigroup if and only if the mappings

$$
\begin{gather*}
-I_{t} \alpha^{-1} \beta+\beta^{-1} \alpha, \quad I_{I a} \alpha+\iota, \quad \iota+\beta, \quad I_{\beta a} \beta^{2}+\alpha, \quad \beta+\alpha^{2}, \\
\beta \alpha-I_{a}, \quad I_{t} I+\alpha^{2}, \quad I_{t} I_{a}^{-1} I \beta+\beta^{-1} I_{a}, \quad I_{t} I_{a}^{-1} I \beta+\alpha \tag{6}
\end{gather*}
$$

are permutations for any $t \in Q$, where $l_{a}(x):=a+x-a$, $I(x):=-x$.

Sokhatsky F.M., Fryz I.V. Invertibility criterion of composition of two multiary quasigroups, Comment. Math. Univ. Carolin., Vol. 53 (2012), No. 3, 429-445.
Shcherbacov V.A. Orthogonality of linear (alinear) quasigroups and their parastrophes, arXiv:1212.1804v1 [math.GR] 8 Dec 2012, 1-23.

Binary case ($n=2$)
Linear asymmetric top-quasigroups

On
orthogonality of parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case ($n=3$)
Parastrophic orthogonal ternary medial quasigroups
Self-orthogonal medial quasigroups
Ternary
top-quasigroups
References

Corollary 2 (Belyavskaya G., Popovich T., 2010*).

A central quasigroup ($Q ; f$) over an abelian group $(Q ;+)$ with canonical decomposition (5) is a top-quasigroup if and only if all mappings

$$
\begin{gather*}
\alpha+\iota, \quad \alpha-\iota, \quad \beta+\iota, \quad \beta-\iota, \quad \alpha^{2}+\beta, \\
\beta^{2}+\alpha, \quad \alpha-\beta, \quad \alpha+\beta, \quad \beta \alpha-\iota \tag{7}
\end{gather*}
$$

are permutations of Q.

*Belyavskaya G.B., Popovich T.V. Totally conjugate orthogonal quasigroups and complete graphs, J. Math. Sci., 185 (2012), No. 2, 184-191. DOI: https://doi.org/10.1007/s10958-012-0907-z

Binary case ($n=2$)

Top-quasigroups according to symmetry groups

On orthogonality of parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic
orthogonal ternary medial quasigroups
Self-orthogonal medial quasigroups Ternary top-quasigroups
References
$S_{3}:=\{\iota, s, \ell, r, s \ell, s r\}$ and $s:=(12), \ell:=(13), r:=(23)$.
A quasigroup is called strictly commutative, if $\operatorname{Sym}(f)=\{\iota, s\}$, i.e.

$$
f={ }^{s_{f}}, \quad \ell_{f}={ }^{s r^{\prime}} f, \quad{ }^{r} f={ }^{{ }^{\ell_{l}} f} .
$$

Corollary 3.

A linear quasigroup ($Q ; f$) over a group $(Q ;+)$ is strictly commutative if and only if ($Q ;+$) is abelian and $\alpha=\beta \neq \iota$, i.e., its canonical decomposition is

$$
\begin{equation*}
f(x, y)=\alpha x+\alpha y+a \tag{8}
\end{equation*}
$$

A strictly commutative quasigroup ($Q ; f$) is a top-quasigroup if and only if the mappings

$$
\alpha+\iota, \quad \alpha-\iota
$$

are permutations of Q.

Kirnasovsky O.U. Linear isotopes of small orders groups, Quasigroups Related Systems, 2 (1995), No. 1(2), 51-82.
Krainichuk H. Classification of group isotopes according to their symmetry groups, Folia Mathematica, Vol. 19 (2017), No. 1, 84-98.

Binary case ($n=2$)

Top-quasigroups according to symmetry groups

On
orthogonality of parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic
orthogonal ternary
medial quasigroups
Self-orthogonal medial quasigroups
Ternary
top-quasigroups
References

A quasigroup is called strictly left symmetric, if $\operatorname{Sym}(f)=\{\iota, r\}$, i.e.

$$
f={ }^{r_{f}} f, \quad{ }^{\ell} f={ }^{s \ell_{f}} f, \quad{ }^{s} f={ }^{s^{r}} f .
$$

Corollary 4.

A linear quasigroup $(Q ; f)$ over a group $(Q ;+)$ is strictly left symmetric if and only if ($Q ;+$) is abelian and $\beta=-\iota \neq \alpha$, i.e., its canonical decomposition is

$$
\begin{equation*}
f(x, y)=\alpha x+l y+a \tag{9}
\end{equation*}
$$

A strictly left symmetric quasigroup ($Q ; f$) is a top-quasigroup if and only if the mappings

$$
\alpha+\iota, \quad \alpha-\iota
$$

are permutations of Q.

Kirnasovsky O.U. Linear isotopes of small orders groups, Quasigroups Related Systems, 2 (1995), No. 1(2), 51-82.
Krainichuk H. Classification of group isotopes according to their symmetry groups, Folia Mathematica, Vol. 19 (2017), No. 1, 84-98.

Binary case ($n=2$)

Top-quasigroups according to symmetry groups

On orthogonality of parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic
orthogonal ternary
medial quasigroups
Self-orthogonal medial quasigroups
Ternary
top-quasigroups
References

A quasigroup is called strictly right symmetric, if $\operatorname{Sym}(f)=\{\iota, \ell\}$, i.e.

$$
f={ }^{\ell} f, \quad r_{f}={ }^{s r} f, \quad{ }^{s} f={ }^{s^{\ell}} f .
$$

Corollary 5.

A linear quasigroup ($Q ; f$) over a group ($Q ;+$) is strictly right symmetric if and only if $(Q ;+)$ is abelian and $\alpha=-\iota \neq \beta$, i.e., its canonical decomposition is

$$
\begin{equation*}
f(x, y)=l x+\beta y+a \tag{10}
\end{equation*}
$$

A strictly right symmetric quasigroup $(Q ; f)$ is a top-quasigroup if and only if the mappings

$$
\beta+\iota, \quad \beta-\iota
$$

are permutations of Q.
Kirnasovsky O.U. Linear isotopes of small orders groups, Quasigroups Related Systems, 2 (1995), No. 1(2), 51-82.
Krainichuk H. Classification of group isotopes according to their symmetry groups, Folia Mathematica, Vol. 19 (2017), No. 1, 84-98.

Binary case ($n=2$)
Top-quasigroups according to symmetry groups

On
orthogonality of parastrophes of ternary quasigroups

Preliminaries
Problem
Results
Existence of linear n-ary
top-quasigroups Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic
orthogonal ternary
medial quasigroups
Self-orthogonal medial quasigroups Ternary top-quasigroups

References

A quasigroup is called strictly semi-symmetric, if $\operatorname{Sym}(f)=A_{3}$, i.e.

$$
f={ }^{s \ell_{f}}={ }^{s r_{f}} f, \quad{ }^{s_{f}}={ }^{\ell} f={ }^{r^{\prime}} .
$$

Corollary 6.

A linear quasigroup ($Q ; f$) over a group ($Q ;+$) is strictly semi-symmetric if and only if α is an anti-automorphism of $(Q ;+)$,

$$
\beta=\alpha^{-1}, \quad \alpha a=-a, \quad \alpha^{3}=-l_{a}
$$

$(Q ;+$) is non-abelian or $\alpha \neq-\iota$, so its canonical decomposition is

$$
\begin{equation*}
f(x, y)=\alpha x+\alpha^{-1} y+a \tag{11}
\end{equation*}
$$

A strictly semi-symmetric quasigroup $(Q ; f)$ is a top-quasigroup if and only if the mapping

$$
-I_{t}+\alpha^{2}
$$

is a permutation of Q for any $t \in Q$.

Krainichuk H. Classification of group isotopes according to their symmetry groups, Folia Mathematica, Vol. 19 (2017), No. 1, 84-98.

Ternary case $(n=3)$

Parastrophic orthogonal ternary medial quasigroups

On
orthogonality of
parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear
n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic

Theorem 8 (V.D. Belousov, 1972).*

A ternary quasigroup $(Q ; f)$ is medial if and only if there exists an abelian group ($Q ;+$) such that

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=\varphi_{1} x_{1}+\varphi_{2} x_{2}+\varphi_{3} x_{3}+a \tag{12}
\end{equation*}
$$

where $\varphi_{1}, \varphi_{2}, \varphi_{3}$ are pairwise commuting automorphisms of $(Q ;+)$ and $a \in Q$.

Lemma
 Let $(Q ; f)$ be a medial ternary quasigroup with (12) and τ_{1}, τ_{2}, $\tau_{3} \in S_{4}$. The parastrophes ${ }^{\tau_{1}} f,{ }^{\tau_{2}} f,{ }^{\tau_{3}} f$ are orthogonal if and only i

is an automorphism of the group $(Q ;+)$, where $\varphi_{4}:=1$

[^2]Ternary case $(n=3)$
Parastrophic orthogonal ternary medial quasigroups

On

orthogonality of parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic
orthogonal ternary
medial quasigroups
Self-orthogonal medial quasigroups Ternary top-quasigroups

Theorem 8 (V.D. Belousov, 1972).*

A ternary quasigroup $(Q ; f)$ is medial if and only if there exists an abelian group ($Q ;+$) such that

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=\varphi_{1} x_{1}+\varphi_{2} x_{2}+\varphi_{3} x_{3}+a \tag{12}
\end{equation*}
$$

where $\varphi_{1}, \varphi_{2}, \varphi_{3}$ are pairwise commuting automorphisms of $(Q ;+)$ and $a \in Q$.

Lemma 1.

Let ($Q ; f$) be a medial ternary quasigroup with (12) and τ_{1}, τ_{2}, $\tau_{3} \in S_{4}$. The parastrophes ${ }^{\tau_{1} f}$, ${ }^{\tau_{2}} f,{ }^{\tau_{3}} f$ are orthogonal if and only if

$$
\begin{array}{lll}
\varphi_{1 \tau_{1}} & \varphi_{2 \tau_{1}} & \varphi_{3 \tau_{1}} \tag{13}\\
\varphi_{1 \tau_{2}} & \varphi_{2 \tau_{2}} & \varphi_{3 \tau_{2}} \\
\varphi_{1 \tau_{3}} & \varphi_{2 \tau_{3}} & \varphi_{3 \tau_{3}}
\end{array}
$$

is an automorphism of the group ($Q ;+$), where $\varphi_{4}:=I$.

* Belousov V.D. n-ary quasigroups, Chishinau: Stiintsa, 1972. (in Russian)

Ternary case $(n=3)$
Parastrophic orthogonal ternary medial quasigroups

Problem

Results

Let $\vec{\nu}:=\left(\nu_{1}, \nu_{2}, \nu_{3}\right)$ be a triplet of injections of the set $\{1,2,3\}$ into the set $\{1,2,3,4\}$. For each triplet $\vec{\nu}$ a polynomial $d_{\vec{\nu}}$ over a commutative ring K is defined as follows:

$$
d_{\vec{\nu}}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right):=\left|\begin{array}{lll}
\gamma_{1 \nu_{1}} & \gamma_{2 \nu_{1}} & \gamma_{3 \nu_{1}} \tag{14}\\
\gamma_{1 \nu_{2}} & \gamma_{2 \nu_{2}} & \gamma_{3 \nu_{2}} \\
\gamma_{1 \nu_{3}} & \gamma_{2 \nu_{3}} & \gamma_{3 \nu_{3}}
\end{array}\right| .
$$

Definition 3.

A polynomial p over a commutative ring K will be called invertible-valued over a subset $H \subseteq K$, if $p(a, b, c)$ is invertible in K whenever a, b, c are in H.

Ternary case ($n=3$)
Self-orthogonal medial quasigroups

On orthogonality of
parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear
n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case ($n=3$)
Parastrophic orthogonal ternary
medial quasigroups
Self-orthogonal medial quasigroups
Ternary
top-quasigroups
References

Lemma 2 (I. Fryz, F. Sokhatsky, 2022*).
A ternary medial quasigroup (Q, f) with (12) is self-orthogonal if and only if the polynomials

$$
\begin{gather*}
\gamma_{1}-\gamma_{2}, \quad \gamma_{1}+\gamma_{2}+\gamma_{3}, \\
\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}-\gamma_{1} \gamma_{2}-\gamma_{1} \gamma_{3}-\gamma_{2} \gamma_{3} \tag{15}
\end{gather*}
$$

are invertible-valued over the automorphisms $\varphi_{1}, \varphi_{2}, \varphi_{3}$ of the group $(Q,+)$.

Theorem 9 (I. Fryz, F. Sokhatsky, 2022*).
A ternary medial quasigroup (Q, f) with (12), is self-orthogonal if and only if the mappings

are automorphisms of the group $(Q,+)$

[^3] Repub. Mold. Mat. 2022. №3(100). P. 41-55. DOI: https://doi.org/10.56415/basm.y2022.i3.p41튼

Ternary case $(n=3)$
Self-orthogonal medial quasigroups

On

orthogonality of parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear
n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic
orthogonal ternary
medial quasigroups
Self-orthogonal
medial quasigroups
Ternary
top-quasigroups
References

Lemma 2 (I. Fryz, F. Sokhatsky, 2022*).
A ternary medial quasigroup (Q, f) with (12) is self-orthogonal if and only if the polynomials

$$
\begin{gather*}
\gamma_{1}-\gamma_{2}, \quad \gamma_{1}+\gamma_{2}+\gamma_{3}, \\
\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}-\gamma_{1} \gamma_{2}-\gamma_{1} \gamma_{3}-\gamma_{2} \gamma_{3} \tag{15}
\end{gather*}
$$

are invertible-valued over the automorphisms $\varphi_{1}, \varphi_{2}, \varphi_{3}$ of the group $(Q,+)$.

Theorem 9 (I. Fryz, F. Sokhatsky, 2022*).
A ternary medial quasigroup (Q, f) with (12), is self-orthogonal if and only if the mappings

$$
\begin{gather*}
\varphi_{1}-\varphi_{2}, \quad \varphi_{1}-\varphi_{3}, \quad \varphi_{2}-\varphi_{3}, \quad \varphi_{1}+\varphi_{2}+\varphi_{3} \tag{16}\\
\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)^{2}-3\left(\varphi_{1} \varphi_{2}+\varphi_{1} \varphi_{3}+\varphi_{2} \varphi_{3}\right)
\end{gather*}
$$

are automorphisms of the group $(Q,+)$.

[^4]Ternary case $(n=3)$
Self-orthogonal medial quasigroups

On
orthogonality of
parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear
n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case ($n=3$)
Parastrophic orthogonal ternary medial quasigroups
Self-orthogonal medial quasigroups
Ternary
top-quasigroups
References

Lemma 3 (I. Fryz, F. Sokhatsky, 2022*).

A ternary medial quasigroup (Q, f) with (12) is strongly self-orthogonal if and only if the polynomials (15) and

$$
\begin{equation*}
\gamma_{1} \gamma_{2}-\gamma_{3}^{2}, \quad \gamma_{1}+\gamma_{2} \tag{17}
\end{equation*}
$$

are invertible-valued over the automorphisms $\varphi_{1}, \varphi_{2}, \varphi_{3}$ of the group $(Q,+)$.

Theorem 10 (I. Fryz, F. Sokhatsky, 2022*).
A ternary medial quasigroup (Q, f) with (12) is strongly self-orthogonal if and only if the mappings (16) and
are automorphisms of the group $(Q,+)$

* Iryna Fryz, Fedir Sokhatsky. Construction of medial ternary self-orthogonal quasigroups. Bul. Acad. Stiinte

Repub. Mold. Mat. 2022. №3(100). P. 41-55. DOI: https://doi.org/10.56415/basm.y2022.i3.p41

Ternary case $(n=3)$
Self-orthogonal medial quasigroups

On
orthogonality of parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic
orthogonal ternary
medial quasigroups
Self-orthogonal medial quasigroups
Ternary
top-quasigroups
References

Lemma 3 (I. Fryz, F. Sokhatsky, 2022*).
A ternary medial quasigroup (Q, f) with (12) is strongly self-orthogonal if and only if the polynomials (15) and

$$
\begin{equation*}
\gamma_{1} \gamma_{2}-\gamma_{3}^{2}, \quad \gamma_{1}+\gamma_{2} \tag{17}
\end{equation*}
$$

are invertible-valued over the automorphisms $\varphi_{1}, \varphi_{2}, \varphi_{3}$ of the group $(Q,+)$.

Theorem 10 (I. Fryz, F. Sokhatsky, 2022*).

A ternary medial quasigroup (Q, f) with (12) is strongly self-orthogonal if and only if the mappings (16) and

$$
\begin{array}{lll}
\varphi_{2} \varphi_{3}-\varphi_{1}^{2}, & \varphi_{1} \varphi_{3}-\varphi_{2}^{2}, & \varphi_{1} \varphi_{2}-\varphi_{3}^{2} \tag{18}\\
\varphi_{1}+\varphi_{2}, & \varphi_{1}+\varphi_{3}, & \varphi_{2}+\varphi_{3}
\end{array}
$$

are automorphisms of the group $(Q,+)$.

[^5]Ternary case ($n=3$)
Self-orthogonal medial quasigroups

On orthogonality of
parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary top-quasigroups
Binary case ($n=2$)
Ternary case ($n=3$)
Parastrophic orthogonal ternary medial quasigroups
Self-orthogonal medial quasigroups
Ternary
top-quasigroups
References

Examples

Let \mathbb{Z}_{m} be a ring of integers modulo m and f have the decomposition

$$
f(x, y, z):=x+2 y+3 z
$$

If m is relatively prime to 6 , then $\left(\mathbb{Z}_{m} ; f\right)$ is a quasigroup.
$1\left(\mathbb{Z}_{m} ; f\right)$ is a self-orthogonal ternary quasigroup if m is not divisible by 6 ;
2. $\left(\mathbb{T}_{i, n}, f\right)$ is a self-orthogonal ternary quasigroup, but it is not strongly self-orthogonal if m is not divisible by 6 and m is divisible by 5 or 7 ;

๑ $\left(\mathbb{Z}_{m}, f\right)$ is a strongly self-orthogonal ternary quasigroup if m is not divisible by $2,3,5$ and 7 .

Ternary case ($n=3$)
Self-orthogonal medial quasigroups
parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary top-quasigroups
Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic orthogonal ternary medial quasigroups

Examples

Let \mathbb{Z}_{m} be a ring of integers modulo m and f have the decomposition

$$
f(x, y, z):=x+2 y+3 z
$$

If m is relatively prime to 6 , then $\left(\mathbb{Z}_{m} ; f\right)$ is a quasigroup.
$1\left(\mathbb{Z}_{m} ; f\right)$ is a self-orthogonal ternary quasigroup if m is not divisible by 6 ;
$2\left(\mathbb{Z}_{m} ; f\right)$ is a self-orthogonal ternary quasigroup, but it is not strongly self-orthogonal if m is not divisible by 6 and m is divisible by 5 or 7 ;
$3\left(\mathbb{Z}_{m} ; f\right)$ is a strongly self-orthogonal ternary quasigroup if m is not divisible by $2,3,5$ and 7 .

Ternary case $(n=3)$
Self-orthogonal medial quasigroups

Examples

Let \mathbb{Z}_{m} be a ring of integers modulo m and f have the decomposition

$$
f(x, y, z):=x+2 y+3 z
$$

If m is relatively prime to 6 , then $\left(\mathbb{Z}_{m} ; f\right)$ is a quasigroup.
$1\left(\mathbb{Z}_{m} ; f\right)$ is a self-orthogonal ternary quasigroup if m is not divisible by 6 ;
$2\left(\mathbb{Z}_{m} ; f\right)$ is a self-orthogonal ternary quasigroup, but it is not strongly self-orthogonal if m is not divisible by 6 and m is divisible by 5 or 7 ;
$3\left(\mathbb{Z}_{m} ; f\right)$ is a strongly self-orthogonal ternary quasigroup if m is not divisible by $2,3,5$ and 7 .

Ternary case $(n=3)$
Self-orthogonal medial quasigroups

Examples

Let \mathbb{Z}_{m} be a ring of integers modulo m and f have the decomposition

$$
f(x, y, z):=x+2 y+3 z
$$

If m is relatively prime to 6 , then $\left(\mathbb{Z}_{m} ; f\right)$ is a quasigroup.
$1\left(\mathbb{Z}_{m} ; f\right)$ is a self-orthogonal ternary quasigroup if m is not divisible by 6 ;
$2\left(\mathbb{Z}_{m} ; f\right)$ is a self-orthogonal ternary quasigroup, but it is not strongly self-orthogonal if m is not divisible by 6 and m is divisible by 5 or 7 ;
$3\left(\mathbb{Z}_{m} ; f\right)$ is a strongly self-orthogonal ternary quasigroup if m is not divisible by $2,3,5$ and 7 .

Ternary case ($n=3$)
Ternary top-quasigroups

On
orthogonality of parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear
n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case
($n=3$)
Parastrophic
orthogonal ternary
medial quasigroups
Self-orthogonal
medial quasigroups

$$
\boldsymbol{d}_{\vec{\nu}}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right)=\left|\begin{array}{lll}
\gamma_{1 \nu_{1}} & \gamma_{2 \nu_{1}} & \gamma_{3 \nu_{1}} \\
\gamma_{1 \nu_{2}} & \gamma_{2 \nu_{2}} & \gamma_{3 \nu_{2}} \\
\gamma_{1 \nu_{3}} & \gamma_{2 \nu_{3}} & \gamma_{3 \nu_{3}}
\end{array}\right|
$$

Lemma 4 (F. Sokhatsky, I. Fryz).
A medial ternary quasigroup $(Q ; f)$ with

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\varphi_{1} x_{1}+\varphi_{2} x_{2}+\varphi_{3} x_{3}+a,
$$

is a top-quasigroup if and only if each polynomial $d_{\vec{\nu}}$ is invertible-valued over the set $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\}$, where $\varphi_{4}:=I$.

Ternary case ($n=3$)

Ternary top-quasigroups

On

 orthogonality of parastrophes of ternary quasigroupsIryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case ($n=3$)
Parastrophic orthogonal ternary medial quasigroups
Self-orthogonal
medial quasigroups

Ternary

top-quasigroups

Polynomials over the set $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\}$:

$$
\begin{align*}
& p_{1}\left(\gamma_{1}, \gamma_{2}\right):=\gamma_{1}-\gamma_{2}, \\
& p_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right):=\gamma_{1}+\gamma_{2}+\gamma_{3}, \\
& p_{3}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right):=\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}-\gamma_{1} \gamma_{2}-\gamma_{1} \gamma_{3}-\gamma_{2} \gamma_{3}, \\
& p_{4}\left(\gamma_{1}, \gamma_{2}\right):=\gamma_{1}+\gamma_{2}, \\
& p_{5}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right):=\gamma_{1}^{2}-\gamma_{2} \gamma_{3}, \\
& p_{6}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right):=\gamma_{1} \gamma_{2}-\gamma_{3} \gamma_{4}, \tag{19}\\
& p_{7}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right):=\gamma_{1}^{3}+\gamma_{2}^{2} \gamma_{4}+\gamma_{2} \gamma_{3}^{2}-\gamma_{1} \gamma_{2} \gamma_{3}-\gamma_{1} \gamma_{2}^{2}-\gamma_{1} \gamma_{3} \gamma_{4}, \\
& p_{8}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right):=\gamma_{1}^{3}+2 \gamma_{2} \gamma_{3} \gamma_{4}-\gamma_{1} \gamma_{3}^{2}-\gamma_{1} \gamma_{2}^{2}-\gamma_{1} \gamma_{4}^{2}, \\
& p_{9}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right):=\gamma_{1}^{2}-\gamma_{2}^{2}+\gamma_{1} \gamma_{3}-\gamma_{2} \gamma_{4}, \\
& p_{10}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right):=\gamma_{1}^{3}+\gamma_{2} \gamma_{4}^{2}+\gamma_{2} \gamma_{3}^{2}-2 \gamma_{1} \gamma_{3} \gamma_{4}-\gamma_{1} \gamma_{2}^{2}, \\
& p_{11}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right):=\gamma_{1}^{2} \gamma_{3}+\gamma_{2} \gamma_{4}^{2}+\gamma_{1} \gamma_{2} \gamma_{3}-\gamma_{1} \gamma_{3} \gamma_{4}-\gamma_{1}^{2} \gamma_{4}-\gamma_{2}^{2} \gamma_{3} .
\end{align*}
$$

Ternary case ($n=3$)
Ternary top-quasigroups

On
orthogonality of
parastrophes of ternary
quasigroups
Iryna Fryz

Preliminaries
Problem
Results
Existence of linear
n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case ($n=3$)

Parastrophic orthogonal ternary medial quasigroups
Self-orthogonal medial quasigroups

Theorem 11 (F. Sokhatsky, I. Fryz).

A medial ternary quasigroup $(Q ; f)$ with

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\varphi_{1} x_{1}+\varphi_{2} x_{2}+\varphi_{3} x_{3}+a
$$

is a top-quasigroup if and only if each of the polynomials from (19) are invertible-valued over the set $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right\}$, where $\varphi_{4}:=I$.

Ternary case ($n=3$)

Ternary top-quasigroups

On
orthogonality of
parastrophes of ternary quasigroups

Iryna Fryz

Preliminaries
Problem
Results
Existence of linear n-ary
top-quasigroups
Binary case ($n=2$)
Ternary case ($n=3$)
Parastrophic orthogonal ternary medial quasigroups
Self-orthogonal
medial quasigroups
top-quasigroups
References

Theorem 12 (F. Sokhatsky, le. Pirus, 2015).*
Let \mathbb{Z}_{m} be a ring of residues and let

$$
\begin{equation*}
f(x, y, z):=2 x+8 y+11 z \tag{20}
\end{equation*}
$$

If the least prime factor of m is greater than 107, then $\left(\mathbb{Z}_{m} ; f\right)$ is an asymmetric top-quasigroup of order m.

Theorem 13 (F. Sokhatsky, le. Pirus, 2015).

A ternary medial asymmetric top-quasigroup over an m-ordered cyclic group exists if and only if the least prime factor of m is greater than 19

* Sokhatsky F., Pirus le. About parastrophically orthogonal quasigroups, Book of extended abstracts of the International Mathematical Conference on Quasigroups and Loops "Loops'15", 28 June - 04 July 2015, Ohrid, Macedonia, 46-47.

Ternary case $(n=3)$
Ternary top-quasigroups

Theorem 12 (F. Sokhatsky, le. Pirus, 2015).*
Let \mathbb{Z}_{m} be a ring of residues and let

$$
\begin{equation*}
f(x, y, z):=2 x+8 y+11 z \tag{20}
\end{equation*}
$$

If the least prime factor of m is greater than 107, then $\left(\mathbb{Z}_{m} ; f\right)$ is an asymmetric top-quasigroup of order m.

Theorem 13 (F. Sokhatsky, le. Pirus, 2015).*
A ternary medial asymmetric top-quasigroup over an m-ordered cyclic group exists if and only if the least prime factor of m is greater than 19.

[^6]
Table of Contents

```
            On
orthogonality
    of
parastrophes
    of ternary
quasigroups
    Iryna Fryz
Preliminaries
Problem
Results
n-ary
top-quasigroups
Binary case ( }n=2\mathrm{ )
Ternary case
( }n=3\mathrm{ )
Parastrophic orthogonal ternary medial quasigroups
Ternary

\section*{References}
1. Belousov V.D. \(n\)-ary quasigroups, Chishinau: Stiintsa, 1972. (in Russian)
2. Syrbu P. Orthogonal and Self-orthogonal n-Operations (Ph.D. thesis), Academy of Science of Moldova SSR, 1990 (in Russian).
3. Kirnasovsky O.U. Linear isotopes of small orders groups, Quasigroups Related Systems, 2 (1995), No. 1(2), 51-82.
4. Belyavskaya G., Mullen G.L. Strongly orthogonal and uniformly orthogonal many-placed operations, Algebra Discrete Math., Vol. 5, № 1, 2006, pp.1-17.
5. Belyavskaya G. B., Popovich T. V. Totally conjugate orthogonal quasigroups and complete graphs, J. Math. Sci., Vol. 185 (2012), No. 2, 184-191. DOI: https://doi.org/10.1007/s10958-012-0907-z
6. Sokhatsky F.M., Fryz I.V. Invertibility criterion of composition of two multiary quasigroups, Comment. Math. Univ. Carolin., Vol. 53 (2012), No. 3, 429-445.
7. Ethier E.T., Mullen G.L. Strong forms of orthogonality for sets of hypercubes, Discrete Math., Vol. 321 (2012), Iss. 12-13, 2050-2061. DOI: https://doi.org/10.1016/j.disc.2012.03.008

\section*{References}
8. Shcherbacov V.A. Orthogonality of linear (alinear) quasigroups and their parastrophes, arXiv:1212.1804v1 [math.GR] 8 Dec 2012, 1-23. 9. Sokhatsky F., Pirus le. About top-quasigroups, Proceedings of the Third Conference of Mathematical Society of Moldova IMCS-50, August 19-23, 2014, Chisinau, Republic of Moldova, 162-165.
10. Sokhatsky F., Pirus le. About parastrophically orthogonal quasigroups, Book of extended abstracts of the International Mathematical Conference on Quasigroups and Loops "Loops'15", 28 June - 04 July 2015, Ohrid, Macedonia, 46-47.
11. Krainichuk H. Classification of group isotopes according to their symmetry groups, Folia Mathematica, Vol. 19 (2017), No. 1, 84-98.
12. Iryna Fryz, Fedir Sokhatsky. Construction of medial ternary self-orthogonal quasigroups. Bul. Acad. Stiinte Repub. Mold. Mat. 2022. №3(100). P. 41-55. DOI: https://doi.org/10.56415/basm.y2022.i3.p41
```

 On
 orthogonality
of
parastrophes
of ternary
quasigroups
Iryna Fryz

```

Preliminaries
Problem

\section*{THANK YOU FOR YOUR ATTENTION!}

Results
Existence of linear \(n\)-ary
top-quasigroups
Binary case ( \(n=2\) )
Ternary case ( \(n=3\) )
Parastrophic orthogonal ternary medial quasigroups Self-orthogonal medial quasigroups
Ternary
top-quasigroups```


[^0]:    * Ethier E.T., Mullen G.L. Strong forms of orthogonality for sets of hypercubes, Discrete Math., Vol. 321 (2012), Iss. 12-13, 2050-2061. DOI: https://doi.org/10.1016/j.disc.2012.03.008

[^1]:    * Sokhatsky F., Pirus le. About top-quasigroups, Proceedings of the Third Conference of Mathematical Society of Moldova IMCS-50, August 19-23, 2014, Chisinau, Republic of Moldova, 162-165.

[^2]:    * Belousov V.D. n-ary quasigroups, Chishinau: Stiintsa, 1972. (in Russian)

[^3]:    * Iryna Fryz, Fedir Sokhatsky. Construction of medial ternary self-orthogonal quasigroups. Bul. Acad. Stiinte

[^4]:    * Iryna Fryz, Fedir Sokhatsky. Construction of medial ternary self-orthogonal quasigroups. Bul. Acad. Stiinte Repub. Mold. Mat. 2022. №3(100). P. 41-55. DOI: https://doi.org/10.56415/basm.y2022.i3.p41

[^5]:    * Iryna Fryz, Fedir Sokhatsky. Construction of medial ternary self-orthogonal quasigroups. Bul. Acad. Stiinte

    Repub. Mold. Mat. 2022. №3(100). P. 41-55. DOI: https://doi.org/10.56415/basm.y2022.i3.p41

[^6]:    * Sokhatsky F., Pirus le. About parastrophically orthogonal quasigroups, Book of extended abstracts of the International Mathematical Conference on Quasigroups and Loops "Loops'15", 28 June - 04 July 2015, Ohrid, Macedonia, 46-47.

