Deformed solutions of the Yang-Baxter equation coming from skew braces

Marzia Mazzotta

Università del Salento
Joint work with Bernard Rybołowicz and Paola Stefanelli

UNIVERSITÀ DEL SALENTO

LOOP'S 2023 - 30th June 2023, Będlewo

Solutions of the Yang-Baxter equation

If S is a set, a map $r: S \times S \longrightarrow S \times S$ satisfying the braid relation

$$
\left(r \times \mathrm{id}_{S}\right)\left(\mathrm{id}_{S} \times r\right)\left(r \times \mathrm{id}_{S}\right)=\left(\mathrm{id}_{S} \times r\right)\left(r \times \mathrm{id}_{S}\right)\left(\mathrm{id}_{S} \times r\right)
$$

is called set-theoretic solution, or briefly solution, of the Yang-Baxter equation.

For a solution r, we introduce two maps
for all $a, b \in S$. In particular, the solution r is said to b e

- left non-degenerate if λ_{a} is hiiective for evor
- right non-degenerate if p_{b} is bijective, for overybe S
- non-degenerate if r is both left and right non-degenerate.

Solutions of the Yang-Baxter equation

If S is a set, a map $r: S \times S \longrightarrow S \times S$ satisfying the braid relation

$$
\left(r \times \mathrm{id}_{S}\right)\left(\mathrm{id}_{S} \times r\right)\left(r \times \mathrm{id}_{S}\right)=\left(\mathrm{id}_{S} \times r\right)\left(r \times \mathrm{id}_{S}\right)\left(\mathrm{id}_{S} \times r\right)
$$

is called set-theoretic solution, or briefly solution, of the Yang-Baxter equation.

For a solution r, we introduce two maps $\lambda_{a}, \rho_{b}: S \rightarrow S$ and write

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right),
$$

for all $a, b \in S$. In particular, the solution r is said to be

- left non-degenerate if λ_{a} is bijective, for every $a \in S$;
- right non-degenerate if ρ_{b} is bijective, for every $b \in S$;
- non-degenerate if r is both left and right non-degenerate.

Lu-Yan-Zhu conditions

Theorem (Lu, Yan, Zhu - 2000)

Let G be a group, $\lambda, \rho: G \rightarrow \operatorname{Sym}_{G}$ maps and set $\lambda_{a}(b):=\lambda(a)(b)$, $\rho_{b}(a):=\rho(b)(a)$, for all $a, b \in G$. If $\lambda, \rho: G \rightarrow \operatorname{Sym}_{G}$ are a left action and a right action of G on itself, respectively, and

$$
\forall a, b \in G \quad a b=\lambda_{a}(b) \rho_{b}(a),
$$

then the map $r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)$ is a non-degenerate bijective solution on G.

Venkov solutions

If G is a group and, for all $a, b \in G$, set $\lambda_{a}=i d_{G}$ and $\rho_{b}(a)=b^{-1} a b$, then
$r(a, b)=\left(b, b^{-1} a b\right)$
is a non-degenerate biiective solution on G

Lu-Yan-Zhu conditions

Theorem (Lu, Yan, Zhu - 2000)

Let G be a group, $\lambda, \rho: G \rightarrow \operatorname{Sym}_{G}$ maps and set $\lambda_{a}(b):=\lambda(a)(b)$, $\rho_{b}(a):=\rho(b)(a)$, for all $a, b \in G$. If $\lambda, \rho: G \rightarrow \operatorname{Sym}_{G}$ are a left action and a right action of G on itself, respectively, and

$$
\forall a, b \in G \quad a b=\lambda_{a}(b) \rho_{b}(a),
$$

then the map $r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)$ is a non-degenerate bijective solution on G.

Venkov solutions

If G is a group and, for all $a, b \in G$, set $\lambda_{a}=\operatorname{id}_{G}$ and $\rho_{b}(a)=b^{-1} a b$, then

$$
r(a, b)=\left(b, b^{-1} a b\right)
$$

is a non-degenerate bijective solution on G.

Skew left braces

[Rump - 2007] traced a novel research direction for finding solutions by introducing the algebraic structure of brace.

```
[Rump-2007, Guarnieri, Vendramin - 2017]
A triple (B,+,o) is called skew (left) brace if
    * ( 
If (B,+) is abelian, then (B,+,o) is a (left) brace
```

- The groups $(B,+)$ and (B, \circ) have the same identine that we denote by 0 .
* Similarly, we can define the structures of skew (right) braces. Skew braces simultaneously satisfying the left and the right axioms are called two-sided skew braces.

Skew left braces

[Rump - 2007] traced a novel research direction for finding solutions by introducing the algebraic structure of brace.

[Rump- 2007, Guarnieri, Vendramin - 2017]

A triple $(B,+, \circ)$ is called skew (left) brace if

- $(B,+)$ and (B, \circ) are groups
- $\forall a, b, c \in B \quad a \circ(b+c)=a \circ b-a+a \circ c$.

If $(B,+)$ is abelian, then $(B,+, \circ)$ is a (left) brace.

- The groups $(B,+)$ and (B, \circ) have the same identive (brat we denote by 0 .
- Similarly, we can define the structures of skewe (rientit) braces. Skew braces simultaneously satisfying the left and the right axioms are called two-sided skew braces.

Skew left braces

[Rump - 2007] traced a novel research direction for finding solutions by introducing the algebraic structure of brace.

[Rump- 2007, Guarnieri, Vendramin - 2017]

A triple $(B,+, \circ)$ is called skew (left) brace if

- $(B,+)$ and (B, \circ) are groups
- $\forall a, b, c \in B \quad a \circ(b+c)=a \circ b-a+a \circ c$.

If $(B,+)$ is abelian, then $(B,+, \circ)$ is a (left) brace.

- The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .
Similarly, we can define the structures of 8kene (right) braces. Skew braces simultaneously satisfying the left and the right axioms are called two-sided skew braces.

Skew left braces

[Rump - 2007] traced a novel research direction for finding solutions by introducing the algebraic structure of brace.

[Rump- 2007, Guarnieri, Vendramin - 2017]

A triple $(B,+, \circ)$ is called skew (left) brace if

- $(B,+)$ and (B, \circ) are groups
- $\forall a, b, c \in B \quad a \circ(b+c)=a \circ b-a+a \circ c$.

If $(B,+)$ is abelian, then $(B,+, \circ)$ is a (left) brace.

- The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .
- Similarly, we can define the structures of skew (right) braces. Skew braces simultaneously satisfying the left and the right axioms are called two-sided skew braces.

Solutions associated to skew (left) braces

Given a skew (left) brace $(B,+, \circ)$ and set, for all $a, b \in B$,

$$
\lambda_{a}(b):=-a+a \circ b \quad \text { and } \quad \rho_{b}(a):=(-a+a \circ b)^{-} \circ a \circ b,
$$

then the maps λ and ρ satisfy Lu-Yan-Zhu conditions on (B, \circ).

Consequently, the map
is a non-degenerate bijective solution.

Solutions associated to skew (left) braces

Given a skew (left) brace $(B,+, \circ)$ and set, for all $a, b \in B$,

$$
\lambda_{a}(b):=-a+a \circ b \quad \text { and } \quad \rho_{b}(a):=(-a+a \circ b)^{-} \circ a \circ b,
$$

then the maps λ and ρ satisfy Lu-Yan-Zhu conditions on (B, \circ).

Consequently, the map

$$
r_{B}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a non-degenerate bijective solution.

The solution r_{B} is involutive, i.e., $r^{2}=\mathrm{id}_{B \times B}$, if and only if $(B,+, \circ)$ is a brace.

Solutions associated to skew (left) braces

Given a skew (left) brace $(B,+, \circ)$ and set, for all $a, b \in B$,

$$
\lambda_{a}(b):=-a+a \circ b \quad \text { and } \quad \rho_{b}(a):=(-a+a \circ b)^{-} \circ a \circ b,
$$

then the maps λ and ρ satisfy Lu-Yan-Zhu conditions on (B, \circ).

Consequently, the map

$$
r_{B}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a non-degenerate bijective solution.

The solution r_{B} is involutive, i.e., $r^{2}=\mathrm{id}_{B \times B}$, if and only if $(B,+, \circ)$ is a brace.

Deformed solutions

[Doikou, Rybołowicz - 2022] introduced a new family of solutions coming from skew braces that can be obtained by "deforming" the classic map r_{B} by certain parameters.

```
Theorem (Doikou, Rybotowicz - 2022)
Let ( }B,+,0)\mathrm{ be a skew left brace and }z\inB\mathrm{ such that the identity
holds, for all a,b,c\inB. Then, the map r rz:B\timesB->B\timesB given by
    rg(a,b)=(-a0z+a0b0z,(-a0z+a,boz)-0a0b)
a non-degenerate bijective solution.
```


Deformed solutions

[Doikou, Rybołowicz - 2022] introduced a new family of solutions coming from skew braces that can be obtained by "deforming" the classic map r_{B} by certain parameters.

Theorem (Doikou, Rybołowicz - 2022)

Let $(B,+, \circ)$ be a skew left brace and $z \in B$ such that the identity

$$
\begin{equation*}
(a-b+c) \circ z=a \circ z-b \circ z+c \circ z \tag{*}
\end{equation*}
$$

holds, for all $a, b, c \in B$. Then, the map $r_{z}: B \times B \rightarrow B \times B$ given by
a non-degenerate bijective solution.

Deformed solutions

[Doikou, Rybołowicz - 2022] introduced a new family of solutions coming from skew braces that can be obtained by "deforming" the classic map r_{B} by certain parameters.

Theorem (Doikou, Rybołowicz - 2022)

Let $(B,+, \circ)$ be a skew left brace and $z \in B$ such that the identity

$$
\begin{equation*}
(a-b+c) \circ z=a \circ z-b \circ z+c \circ z \tag{*}
\end{equation*}
$$

holds, for all $a, b, c \in B$. Then, the map $r_{z}: B \times B \rightarrow B \times B$ given by

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right)
$$

a non-degenerate bijective solution.

Some considerations

Clearly, if B is a skew brace: $(a-b+c) \circ 0=a \circ 0-b \circ 0+c \circ 0$, hence $r_{0}=r_{B}$ is a solution.

For all $a, b \in B$, we write the components of r_{z} as:

If $z \in B$ satisfies (*), then the following hold for the ma - $\forall a, b \in B \quad a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a) ;$ - $\tau^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, b \mapsto \tau_{b}^{z}$ is a group anti-homol - σ^{z} is a homomorphism if and only if $\forall a \in B$

Consequence: In general, the maps σ^{z} and τ^{z} do not satisfy Lu-Yan-Zhu conditions on (B,o)

Some considerations

Clearly, if B is a skew brace: $(a-b+c) \circ 0=a \circ 0-b \circ 0+c \circ 0$, hence $r_{0}=r_{B}$ is a solution.

For all $a, b \in B$, we write the components of r_{z} as:

$$
\sigma_{a}^{z}(b):=-a \circ z+a \circ b \circ z \quad \text { and } \quad \tau_{b}^{z}(a):=(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b .
$$

If $z \in B$ satisfies $(*)$, then the following hold for the mar - $\forall a, b \in B \quad a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$; - $\tau^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, b \mapsto \tau_{b}^{z}$ is a group anti-homon - σ^{z} is a homomorphism if and only if $\forall a \in B$

Consequence: In general, the maps σ^{z} and τ^{z} do not satisfy Lu-Yan-Zhu conditions on (B,o)

Some considerations

Clearly, if B is a skew brace: $(a-b+c) \circ 0=a \circ 0-b \circ 0+c \circ 0$, hence $r_{0}=r_{B}$ is a solution.

For all $a, b \in B$, we write the components of r_{z} as:
$\sigma_{a}^{z}(b):=-a \circ z+a \circ b \circ z \quad$ and $\quad \tau_{b}^{z}(a):=(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b$.

If $z \in B$ satisfies (*), then the following hold for the map r_{z} :

- $\forall a, b \in B \quad a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$;
- $\tau^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, b \mapsto \tau_{b}^{z}$ is a group anti-homor
- σ^{z} is a homomorphism if and only if $\forall a \in B$

Consequence: In general, the maps σ^{z} and τ^{z} do not satisfy Lu-Yan-Zhu conditions on (B, \circ)

Some considerations

Clearly, if B is a skew brace: $(a-b+c) \circ 0=a \circ 0-b \circ 0+c \circ 0$, hence $r_{0}=r_{B}$ is a solution.

For all $a, b \in B$, we write the components of r_{z} as:
$\sigma_{a}^{z}(b):=-a \circ z+a \circ b \circ z \quad$ and $\quad \tau_{b}^{z}(a):=(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b$.

If $z \in B$ satisfies (*), then the following hold for the map r_{z} :

- $\forall a, b \in B \quad a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$;
- $\tau^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, b \mapsto \tau_{b}^{z}$ is a group anti-homomorphism;
- σ^{z} is a homomorphism if and only if $\forall a \in B$

Consequence: In general, the maps σ^{z} and τ^{z} do not satisfy Lu-Yan-Zhu conditions on (B, \circ)

Some considerations

Clearly, if B is a skew brace: $(a-b+c) \circ 0=a \circ 0-b \circ 0+c \circ 0$, hence $r_{0}=r_{B}$ is a solution.

For all $a, b \in B$, we write the components of r_{z} as:
$\sigma_{a}^{z}(b):=-a \circ z+a \circ b \circ z \quad$ and $\quad \tau_{b}^{z}(a):=(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b$.

If $z \in B$ satisfies (*), then the following hold for the map r_{z} :

- $\forall a, b \in B \quad a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$;
- $\tau^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, b \mapsto \tau_{b}^{z}$ is a group anti-homomorphism;
- σ^{z} is a homomorphism if and only if $\forall a \in B \quad a \circ z=z+a$.

Consequence: In general, the maps σ^{z} and τ^{z} do not satisfy Lu-Yan-Zhu conditions on (B,o).

Some considerations

Clearly, if B is a skew brace: $(a-b+c) \circ 0=a \circ 0-b \circ 0+c \circ 0$, hence $r_{0}=r_{B}$ is a solution.

For all $a, b \in B$, we write the components of r_{z} as:
$\sigma_{a}^{z}(b):=-a \circ z+a \circ b \circ z \quad$ and $\quad \tau_{b}^{z}(a):=(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b$.

If $z \in B$ satisfies ($*$), then the following hold for the map r_{z} :

- $\forall a, b \in B \quad a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$;
- $\tau^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, b \mapsto \tau_{b}^{z}$ is a group anti-homomorphism;
- σ^{z} is a homomorphism if and only if $\forall a \in B \quad a \circ z=z+a$.

Consequence: In general, the maps σ^{z} and τ^{z} do not satisfy Lu-Yan-Zhu conditions on (B, \circ).

Non-involutive solutions

Left braces determine also non-involutive solutions.

Consider Odd $:=\left\{\left.\frac{2 n+1}{2 k+1} \right\rvert\, n, k \in \mathbb{Z}\right\}$ and the structure of brace $\left(\right.$ Odd $\left.,{ }_{1}, \circ\right)$ where the binary operation $+_{1}$ and \circ are given by with,$+ \cdot$ are the usual addition and the multiplication of rational numbers, respectively. Then, for every $z \neq 1$, the solution r_{z} is not involutive

Non-involutive solutions

Left braces determine also non-involutive solutions.

Example (Doikou, Rybołowicz - 2022)

Consider Odd : $\left\{\left.\frac{2 n+1}{2 k+1} \right\rvert\, n, k \in \mathbb{Z}\right\}$ and the structure of brace
(Odd, ${ }_{1}, \circ$) where the binary operation ${ }_{1}$ and \circ are given by

$$
\forall a, b \in \operatorname{Odd} \quad a+1 b:=a-1+b \quad \text { and } \quad a \circ b:=a \cdot b
$$

with + , • are the usual addition and the multiplication of rational numbers, respectively. \qquad

Non-involutive solutions

Left braces determine also non-involutive solutions.

Example (Doikou, Rybołowicz - 2022)

Consider Odd : $\left\{\left.\frac{2 n+1}{2 k+1} \right\rvert\, n, k \in \mathbb{Z}\right\}$ and the structure of brace
(Odd, ${ }_{1}, \circ$) where the binary operation ${ }_{+1}$ and \circ are given by

$$
\forall a, b \in \operatorname{Odd} \quad a+1 b:=a-1+b \quad \text { and } \quad a \circ b:=a \cdot b
$$

with + , • are the usual addition and the multiplication of rational numbers, respectively. Then, for every $z \neq 1$, the solution r_{z} is not involutive.

The study of parameters

Question: If B is a skew (left) brace, which are all the parameters $z \in B$ giving rise to a solution r_{z} ?

The study of parameters

Question: If B is a skew (left) brace, which are all the parameters $z \in B$ giving rise to a solution r_{z} ?

Definition (M., Rybołowicz, Stefanelli - 2023)

Let $(B,+, \circ)$ be a skew left brace. Then, we call the set

$$
\mathcal{D}_{r}(B)=\{z \in B \mid \forall a, b \in B \quad(a+b) \circ z=a \circ z-z+b \circ z\},
$$

the right distributor of B.

Theorem

Let $(B .+.0)$ be a skew (left) brace and $z \in B$. Then, the map r_{z} is a solution if and only if $z \in \mathcal{D}_{r}(B)$

The study of parameters

Question: If B is a skew (left) brace, which are all the parameters $z \in B$ giving rise to a solution r_{z} ?

Definition (M., Rybołowicz, Stefanelli - 2023)

Let $(B,+, \circ)$ be a skew left brace. Then, we call the set

$$
\mathcal{D}_{r}(B)=\{z \in B \mid \forall a, b \in B \quad(a+b) \circ z=a \circ z-z+b \circ z\},
$$

the right distributor of B.

Theorem

Let $(B,+, \circ)$ be a skew (left) brace and $z \in B$. Then, the map r_{z} is a solution if and only if $z \in \mathcal{D}_{r}(B)$.

Two-sided skew braces

Proposition

Let $(B,+, \circ)$ be a two-sided skew brace. Then, $\mathcal{D}_{r}(B)=B$. In other words, r_{z} is a deformed solution for every $z \in B$.

Question: Let B a two-sided skew brace and $z, w \in B$. Under which conditions are r_{z} and r_{w} equivalent?
[Trappeniers - 2023]: Given a two-sided skew brace inner automorphisms of (B, \circ) are skew brace autom

Proposition

Let $(B,+, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, o). Then, r_{z} and r_{w} are equivalent.

Two-sided skew braces

Proposition

Let $(B,+, \circ)$ be a two-sided skew brace. Then, $\mathcal{D}_{r}(B)=B$. In other words, r_{z} is a deformed solution for every $z \in B$.

Question: Let B a two-sided skew brace and $z, w \in B$. Under which conditions are r_{z} and r_{w} equivalent?
[Trappeniers - 2023]: Given a two-sided skew brace inner automorphisms of (B, \circ) are skew brace autor

Proposition

Let $(B,+, 0)$ be a two-sided skew brace and $z, w \in B$ belonging to the same coniugacy class in $(B, 0)$. Then, r_{z} and r_{w} are equivalent.

Two-sided skew braces

Proposition

Let $(B,+, \circ)$ be a two-sided skew brace. Then, $\mathcal{D}_{r}(B)=B$. In other words, r_{z} is a deformed solution for every $z \in B$.

Question: Let B a two-sided skew brace and $z, w \in B$. Under which conditions are r_{z} and r_{w} equivalent?
[Trappeniers - 2023]: Given a two-sided skew brace ($B,+, \circ$), all the inner automorphisms of (B, \circ) are skew brace automorphisms of B.

Proposition

Let $(B,+, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ). Then, r_{z} and r_{w} are equivalent.

Two-sided skew braces

Proposition

Let $(B,+, \circ)$ be a two-sided skew brace. Then, $\mathcal{D}_{r}(B)=B$. In other words, r_{z} is a deformed solution for every $z \in B$.

Question: Let B a two-sided skew brace and $z, w \in B$. Under which conditions are r_{z} and r_{w} equivalent?
[Trappeniers - 2023]: Given a two-sided skew brace ($B,+, \circ$), all the inner automorphisms of (B, \circ) are skew brace automorphisms of B.

Proposition

Let $(B,+, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ). Then, r_{z} and r_{w} are equivalent.

The converse is not true.

Some properties of the right distributor

Proposition

Let $(B,+, \circ)$ be a skew (left) brace. Then,

$$
Z(B, \circ) \leq\left(\mathcal{D}_{r}(B), \circ\right) \leq(B, \circ) .
$$

In general, $\left(\mathcal{D}_{r}(B),+\right) \notin(B,+)$, unless we get into pe ticular cases.
If $(B,+, 0)$ is a (left) brace, then $\mathcal{D}_{r}(B)$ is a two-sided subbrace of B

Proposition
Let ($B,+, \circ$) be a skew (left) brace. Then, $\operatorname{Fix}(B) \subseteq \mathcal{D}_{r}(B)$ and $\operatorname{Ann}(B) \subseteq \mathcal{D}_{r}(B)$.

We recall that
$\operatorname{Fix}(B)=\left\{a \in B \mid \forall x \in B \lambda_{x}(a)=a\right\} \quad \& \quad \operatorname{Ann}(B)=\operatorname{Soc}(B) \cap Z(B, \circ)$,

Some properties of the right distributor

Proposition

Let $(B,+, \circ)$ be a skew (left) brace. Then,

$$
Z(B, \circ) \leq\left(\mathcal{D}_{r}(B), \circ\right) \leq(B, \circ) .
$$

In general, $\left(\mathcal{D}_{r}(B),+\right) \notin(B,+)$, unless we get into particular cases.
If $(B,+, \circ)$ is a (left) brace, then $\mathcal{D}_{r}(B)$ is a two-sided subbrace of B.

Proposition

Let $(B,+, \circ)$ be a skew (left) brace. Then, $F i x(B) \subseteq \mathcal{D}_{r}(B)$ and Ann $(B) \subseteq \mathcal{D}_{r}(B)$

We recall that
$\operatorname{Fix}(B)=\left\{a \in B \mid \forall x \in B \lambda_{x}(a)=a\right\} \quad \& \quad \operatorname{Ann}(B)=\operatorname{Soc}(B) \cap Z(B, 0)$

Some properties of the right distributor

Proposition

Let ($B,+, \circ$) be a skew (left) brace. Then,

$$
Z(B, \circ) \leq\left(\mathcal{D}_{r}(B), \circ\right) \leq(B, \circ) .
$$

In general, $\left(\mathcal{D}_{r}(B),+\right) \notin(B,+)$, unless we get into particular cases.
If $(B,+, \circ)$ is a (left) brace, then $\mathcal{D}_{r}(B)$ is a two-sided subbrace of B.

Proposition

Let $(B,+, \circ)$ be a skew (left) brace. Then, $\operatorname{Fix}(B) \subseteq \mathcal{D}_{r}(B)$ and Ann $(B) \subseteq \mathcal{D}_{r}(B)$.

We recall that
$\operatorname{Fix}(B)=\left\{a \in B \mid \forall x \in B \lambda_{x}(a)=a\right\} \quad \& \quad \operatorname{Ann}(B)=\operatorname{Soc}(B) \cap Z(B, \circ)$,
with $\operatorname{Soc}(B)=\{a \in B \mid \forall b \in B \quad a+b=a \circ b \wedge a+b=b+a\}$.

Some properties of the right distributor

Proposition

Let ($B,+, \circ$) be a skew (left) brace. Then,

$$
Z(B, \circ) \leq\left(\mathcal{D}_{r}(B), \circ\right) \leq(B, \circ) .
$$

In general, $\left(\mathcal{D}_{r}(B),+\right) \notin(B,+)$, unless we get into particular cases.
If $(B,+, \circ)$ is a (left) brace, then $\mathcal{D}_{r}(B)$ is a two-sided subbrace of B.

Proposition

Let $(B,+, \circ)$ be a skew (left) brace. Then, $\operatorname{Fix}(B) \subseteq \mathcal{D}_{r}(B)$ and Ann $(B) \subseteq \mathcal{D}_{r}(B)$.

We recall that
$\operatorname{Fix}(B)=\left\{a \in B \mid \forall x \in B \lambda_{x}(a)=a\right\} \quad \& \quad \operatorname{Ann}(B)=\operatorname{Soc}(B) \cap Z(B, \circ)$,
with $\operatorname{Soc}(B)=\{a \in B \mid \forall b \in B \quad a+b=a \circ b \wedge a+b=b+a\}$.

Some properties of the right distributor

Proposition

Let ($B,+, \circ$) be a skew (left) brace. Then,

$$
Z(B, \circ) \leq\left(\mathcal{D}_{r}(B), \circ\right) \leq(B, \circ) .
$$

In general, $\left(\mathcal{D}_{r}(B),+\right) \notin(B,+)$, unless we get into particular cases.
If $(B,+, \circ)$ is a (left) brace, then $\mathcal{D}_{r}(B)$ is a two-sided subbrace of B.

Proposition

Let $(B,+, \circ)$ be a skew (left) brace. Then, $\operatorname{Fix}(B) \subseteq \mathcal{D}_{r}(B)$ and Ann $(B) \subseteq \mathcal{D}_{r}(B)$.

We recall that
$\operatorname{Fix}(B)=\left\{a \in B \mid \forall x \in B \lambda_{x}(a)=a\right\} \quad \& \quad \operatorname{Ann}(B)=\operatorname{Soc}(B) \cap Z(B, \circ)$,
with $\operatorname{Soc}(B)=\{a \in B \mid \forall b \in B \quad a+b=a \circ b \wedge a+b=b+a\}$.

Weak braces

Definition (Catino, M., Miccoli, Stefanelli, 2022)

A weak brace is a triple $(S,+, \circ)$ such that $(S,+)$ and (S, \circ) are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ(b+c)=a \circ b-a+a \circ c$,
- $\forall a \in S \quad a \circ a^{-}=-a+a$,
where $-a$ and a^{-}denote the inverses of $(S,+)$ and (S, \circ).

If $(S,+, \circ)$ is a weak brace, then the map
for all $a, b \in S$, is a solution that has a behaviour close to bijectivity
The solution $r_{\text {Sop }}$ associated to the weak brace $S^{o p}$ is such that

$$
r_{S} r_{\text {Sop }} r_{S}=r_{S}, \quad r_{\text {Sop }} r_{S} r_{\text {Sop }}=r_{\text {Sop }}, \quad \text { and } \quad r_{S} r_{\text {Sop }}=r_{\text {Sop }} r_{S}
$$

Weak braces

Definition (Catino, M., Miccoli, Stefanelli, 2022)

A weak brace is a triple $(S,+, \circ)$ such that $(S,+)$ and (S, \circ) are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ(b+c)=a \circ b-a+a \circ c$,
- $\forall a \in S \quad a \circ a^{-}=-a+a$,
where $-a$ and a^{-}denote the inverses of $(S,+)$ and (S, \circ).

If $(S,+, \circ)$ is a weak brace, then the map
for all $a, b \in S$, is a solution that has a behaviour close to bijectivity
The solution $r_{\text {Sop }}$ associated to the weak brace $S^{o p}$ is such that

$$
r_{S} r_{\text {Sop }} r_{S}=r_{S}, \quad r_{\text {Sop }} r_{S} r_{\text {Sop }}=r_{\text {Sop }}, \quad \text { and } \quad r_{S} r_{\text {Sop }}=r_{\text {Sop }} r_{S}
$$

Weak braces

Definition (Catino, M., Miccoli, Stefanelli, 2022)

A weak brace is a triple $(S,+, \circ)$ such that $(S,+)$ and (S, \circ) are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ(b+c)=a \circ b-a+a \circ c$,
- $\forall a \in S \quad a \circ a^{-}=-a+a$,
where $-a$ and a^{-}denote the inverses of $(S,+)$ and (S, \circ).

If $(S,+, \circ)$ is a weak brace, then the map

$$
r_{S}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

for all $a, b \in S$, is a solution that has a behaviour close to bijectivity. The solution $r_{\text {sop }}$ associated to the weak brace $S^{o p}$ is such that

Weak braces

Definition (Catino, M., Miccoli, Stefanelli, 2022)

A weak brace is a triple $(S,+, \circ)$ such that $(S,+)$ and (S, \circ) are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ(b+c)=a \circ b-a+a \circ c$,
- $\forall a \in S \quad a \circ a^{-}=-a+a$,
where $-a$ and a^{-}denote the inverses of $(S,+)$ and (S, \circ).

If $(S,+, \circ)$ is a weak brace, then the map

$$
r_{S}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

for all $a, b \in S$, is a solution that has a behaviour close to bijectivity. The solution $r_{\text {sop }}$ associated to the weak brace $S^{o p}$ is such that

$$
r_{S} r_{\text {Sop }} r_{S}=r_{S}, \quad r_{\text {Sop }} r_{S} r_{\text {Sop }}=r_{\text {Sop }}, \quad \text { and } \quad r_{S} r_{\text {Sop }}=r_{\text {Sop }} r_{S}
$$

Structural properties of weak braces

Theorem

Let $(S,+, \circ)$ be a weak brace. Then, $(S,+)$ is a Clifford semigroup.

An inverse semigroup S is a Clifford semigroup if it has central idempotents.

In general, (S, \circ) is not Clifford. If it is, we call $(S$, brace.
In this case, the solution r_{s} has also a behaviour closefto the non-degeneracy in the sense that

Structural properties of weak braces

Theorem

Let $(S,+, \circ)$ be a weak brace. Then, $(S,+)$ is a Clifford semigroup.

An inverse semigroup S is a Clifford semigroup if it has central idempotents.

In general, (S, \circ) is not Clifford. If it is, we call $(S$, brace.
In this case, the solution rs has also a behaviour closefto the non-degeneracy in the sense that
for every $a \in S$

Structural properties of weak braces

Theorem

Let $(S,+, \circ)$ be a weak brace. Then, $(S,+)$ is a Clifford semigroup.

An inverse semigroup S is a Clifford semigroup if it has central idempotents.

In general, (S, \circ) is not Clifford. If it is, we call $(S,+, \circ)$ dual weak brace.
In this case, the solution rs has also a behaviour closelto the non-degeneracy in the sense that
for every $a \in S$

Structural properties of weak braces

Theorem

Let $(S,+, \circ)$ be a weak brace. Then, $(S,+)$ is a Clifford semigroup.

An inverse semigroup S is a Clifford semigroup if it has central idempotents.

In general, (S, \circ) is not Clifford. If it is, we call $(S,+, \circ)$ dual weak brace.
In this case, the solution r_{S} has also a behaviour close to the non-degeneracy in the sense that

$$
\begin{array}{lllll}
\lambda_{a} \lambda_{a^{-}} \lambda_{a}=\lambda_{a}, & \lambda_{a^{-}} \lambda_{a} \lambda_{a^{-}}=\lambda_{a^{-}}, & \text {and } & \lambda_{\mathrm{a}} \lambda_{\mathrm{a}}=\lambda_{a^{-}} \lambda_{a} \\
\rho_{\mathrm{a}} \rho_{a^{-}} \rho_{\mathrm{a}}=\rho_{\mathrm{a}}, & \rho_{a^{-}} \rho_{\mathrm{a}} \rho_{a^{-}}=\rho_{a^{-}}, & \text {and } & \rho_{\mathrm{a}} \rho_{a^{-}}=\rho_{a^{-}} \rho_{\mathrm{a}}
\end{array}
$$

for every $a \in S$.

Deformed solutions on dual weak braces

Theorem (M., R., S. - 2023)

Let $(S,+, \circ)$ be a dual weak brace and $z \in S$. Then, the map $r_{z}: S \times S \rightarrow S \times S$ given by

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right),
$$

for all $a, b \in S$, is a solution if and only if $z \in \mathcal{D}_{r}(S)$.

Note that $\mathrm{E}(S) \subseteq \mathcal{D}_{r}(S)$.
Example
Let $X=\{e, x, y\}$ and (S, o) the commutative inverse monoid on X
with identity e satisfying the relations $x \circ x=y \circ y=x$ and $x \circ y=y$
Considered the trivial weak brace on S, then the solutions $r_{e}=r$ and r_{x} are not equivalent

Deformed solutions on dual weak braces

Theorem (M., R., S. - 2023)

Let $(S,+, \circ)$ be a dual weak brace and $z \in S$. Then, the map
$r_{z}: S \times S \rightarrow S \times S$ given by

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right),
$$

for all $a, b \in S$, is a solution if and only if $z \in \mathcal{D}_{r}(S)$.

Note that $\mathrm{E}(S) \subseteq \mathcal{D}_{r}(S)$.
Example
Let $X=\{e, x, y\}$ and (S, \circ) the commutative inverse monoid on X
with identity e satisfying the relations $x \circ x=y \circ y=x$ and $x \circ y=y$
Considered the trivial weak brace on S, then the solutions $r_{e}=r$ and r_{x} are not equivalent.

Deformed solutions on dual weak braces

Theorem (M., R., S. - 2023)

Let $(S,+, \circ)$ be a dual weak brace and $z \in S$. Then, the map $r_{z}: S \times S \rightarrow S \times S$ given by

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right),
$$

for all $a, b \in S$, is a solution if and only if $z \in \mathcal{D}_{r}(S)$.

Note that $\mathrm{E}(S) \subseteq \mathcal{D}_{r}(S)$.

Example

Let $X=\{e, x, y\}$ and (S, \circ) the commutative inverse monoid on X with identity e satisfying the relations $x \circ x=y \circ y=x$ and $x \circ y=y$. Considered the trivial weak brace on S, then the solutions $r_{e}=r$ and r_{x} are not equivalent.

Some references

A. Doikou, B. Rybołowicz: Novel non-involutive solutions of the Yang-Baxter equation from (skew) braces, preprint
L. L. Guarnieri, L. Vendramin: Skew braces and the Yang-Baxter equation, Math.

Comp. 86(307), (2017) 2519-2534
ELu, M. Yan, Y.-C. Zhu: On the set-theoretical Yang-Baxter equation, Duke Math. J. 104(1) (2000), 1-18.

- M. Mazzotta, B. Rybołowicz, P. Stefanelli: Deformed solutions of the Yang-Baxter equation coming from dual weak braces and unital near-trusses, preprint
W. Rump: Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307(1) (2007) 153-170

Some references

A. Doikou, B. Rybołowicz: Novel non-involutive solutions of the Yang-Baxter equation from (skew) braces, preprint
L. L. Guarnieri, L. Vendramin: Skew braces and the Yang-Baxter equation, Math.

Comp. 86(307), (2017) 2519-2534
E. Lu, M. Yan, Y.-C. Zhu: On the set-theoretical Yang-Baxter equation, Duke Math. J. 104(1) (2000), 1-18.

- M. Mazzotta, B. Rybołowicz, P. Stefanelli: Deformed solutions of the Yang-Baxter equation coming from dual weak braces and unital near-trusses, preprint
W. Rump: Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307(1) (2007) 153-170

Thank you!

