QUASI-PROJECTIONS AND FACTORIZATIONS OF MONOIDS

Bachuki Mesablishvili¹

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia

LOOPS'23, Będlewo, Poland, 25.06.23 - 02.07.23

(A. Razmadze Mathematical Institute of I. JavQuasi-projections and factorizations of monoic 1/21

¹The author gratefully acknowledges the support by the Shota Rustaveli National Science Foundation Grant FR-22-4923.

It was realized a long time ago that the problem of deciding whether a given mathematical object has a particular property can be solved by means of reducing it to the problem of representing the object as a "union" of two (usually simpler) subobjects with minimal intersection and then to solve the problem for these subobjects for which one has techniques that were not available to begin with. Such a representation is called a *factorization* of the object.

It was realized a long time ago that the problem of deciding whether a given mathematical object has a particular property can be solved by means of reducing it to the problem of representing the object as a "union" of two (usually simpler) subobjects with minimal intersection and then to solve the problem for these subobjects for which one has techniques that were not available to begin with. Such a representation is called a *factorization* of the object.

The factorization problem can be divided into two parts. The first part is to classify all the factorizations of a given mathematical object. The second part is to study the properties of a mathematical object that has already been factorized with respect to its two sub-objects. In this talk, we deal with the first part of the factorization problem for monoids.

In this talk, we deal with the first part of the factorization problem for monoids.

DEFINITION

A monoid A is said to be *factorizable* if it contains two submonoids X and B such that the multiplication map

$$X \times B \rightarrow A, \ (x,b) \longmapsto xb$$

is bijective.

In this talk, we deal with the first part of the factorization problem for monoids.

DEFINITION

A monoid *A* is said to be *factorizable* if it contains two submonoids *X* and *B* such that the multiplication map

$$X \times B \rightarrow A, (x, b) \longmapsto xb$$

is bijective.

When this is the case, A is said to be *factorized* by its submonoids X and B. X and B are called, respectively, the *first and second factors* of this factorization. If A is a group, then A is factorizable if in addition X and B are subgroups of A.

Thus, a monoid *A* is factorizable by its submonoids *X* and *B* if each element $a \in A$ may be written uniquely in the form a = xb with $x \in X$ and $b \in B$. The relation a = xb is called the (X, B)-decomposition of the element $a \in A$.

Thus, a monoid *A* is factorizable by its submonoids *X* and *B* if each element $a \in A$ may be written uniquely in the form a = xb with $x \in X$ and $b \in B$. The relation a = xb is called the (X, B)-decomposition of the element $a \in A$.

Thus, a monoid *A* is factorizable by its submonoids *X* and *B* if each element $a \in A$ may be written uniquely in the form a = xb with $x \in X$ and $b \in B$. The relation a = xb is called the (X, B)-decomposition of the element $a \in A$.

For a given monoid A, we write FAC(A) for the set of all factorizations of A:

 $FAC(A) = \{(X, B) : X, B \le A \text{ and } A \text{ factorizes by } X \text{ and } B\}.$

Note that FAC(*A*) always contains at least two elements, namely $(\{1\}, A)$ and $(A, \{1\})$. They are called the *trivial factorizations of A*. For a fixed submonoid *X* of *A*, let FAC(*A*/*X*) be denote the set of those submonoids $B \leq A$ for which the pair (*X*, *B*) is a monoid factorization of *A*.

- (1) q(1) = 1;
- (2) $q(\imath(x) \cdot a) = x \cdot q(a)$ ($\forall a \in A, \forall x \in X$), and
- (3) $q(a \cdot a') = q(a \cdot (\imath q)(a'))$ $(\forall a, a' \in A).$

- (1) q(1) = 1;
- (2) $q(\iota(x) \cdot a) = x \cdot q(a)$ ($\forall a \in A, \forall x \in X$), and
- (3) $q(a \cdot a') = q(a \cdot (\imath q)(a'))$ $(\forall a, a' \in A).$
 - The set of the left 1-descent cocycles of A with coefficients in X is denoted by Z_l¹(A/X, i).

- (1) q(1) = 1;
- (2) $q(\iota(x) \cdot a) = x \cdot q(a)$ ($\forall a \in A, \forall x \in X$), and
- (3) $q(a \cdot a') = q(a \cdot (\imath q)(a'))$ $(\forall a, a' \in A).$
 - The set of the left 1-descent cocycles of A with coefficients in X is denoted by Z¹_l(A/X, i).
 - Two 1-cocyles q₁, q₂ ∈ Z¹_l(A/X, i) are called *cohomologous* if there exists an element x₀ ∈ U(X) such that for any a ∈ A, q₁(a) · x₀ = q₂(a · i(x₀)).

- (1) q(1) = 1;
- (2) $q(\iota(x) \cdot a) = x \cdot q(a)$ ($\forall a \in A, \forall x \in X$), and
- $(3) \quad q(a \cdot a') = q(a \cdot (\imath q)(a')) \qquad (\forall a, a' \in A).$
 - The set of the left 1-descent cocycles of A with coefficients in X is denoted by Z¹_l(A/X, i).
 - Two 1-cocyles q₁, q₂ ∈ Z¹_l(A/X, i) are called *cohomologous* if there exists an element x₀ ∈ U(X) such that for any a ∈ A, q₁(a) · x₀ = q₂(a · i(x₀)).
 - The cohomology relation is an equivalence relation on Z¹_l(A/X, i). The set of equivalence class of cohomologous left 1–descent cocycles is denoted by D¹_l(A/X, i).

Symmetrically, one has the set $\mathcal{Z}_{r}^{1}(A/X, i)$ of the right 1-descent cocycles of A with coefficients in X is denoted by $\mathcal{Z}_{l}^{1}(A/X, i)$ and the set $\mathcal{D}_{r}^{1}(A/X, i)$ equivalence class of cohomologous right 1–descent cocycles.

Symmetrically, one has the set $Z_r^1(A/X, i)$ of the right 1-descent cocycles of A with coefficients in X is denoted by $Z_l^1(A/X, i)$ and the set $\mathscr{D}_r^1(A/X, i)$ equivalence class of cohomologous right 1–descent cocycles.

Typical examples of 1-descent cocycles arise from monoid factorizations as follows. Let a monoid *A* factorizes by its submonoids *X* and *B*. Write $q_{X,B}$ and $p_{X,B}$ for the compositions $A \xrightarrow{[i_X,i_B]^{-1}} X \times B \xrightarrow{\pi_X} X$, $A \xrightarrow{[i_X,i_B]^{-1}} X \times B \xrightarrow{\pi_B} B$, respectively. Then $q_{XB} \in \mathcal{Z}_I^1(A/X, i_X)$ and $p_{XB} \in \mathcal{Z}_I^1(A/B, i_B)$. Symmetrically, one has the set $Z_r^1(A/X, i)$ of the right 1-descent cocycles of A with coefficients in X is denoted by $Z_l^1(A/X, i)$ and the set $\mathscr{D}_r^1(A/X, i)$ equivalence class of cohomologous right 1–descent cocycles.

Typical examples of 1-descent cocycles arise from monoid factorizations as follows. Let a monoid *A* factorizes by its submonoids *X* and *B*. Write $q_{X,B}$ and $p_{X,B}$ for the compositions $A \xrightarrow{[i_X,i_B]^{-1}} X \times B \xrightarrow{\pi_X} X$, $A \xrightarrow{[i_X,i_B]^{-1}} X \times B \xrightarrow{\pi_B} B$, respectively. Then $q_{XB} \in \mathcal{Z}_l^1(A/X, i_X)$ and $p_{XB} \in \mathcal{Z}_r^1(A/B, i_B)$.

Note that if a monoid *A* factorizes through its submonoids *X* and *B*, $\mathcal{Z}_{l}^{1}(A/X, \imath_{X})$ and $\mathcal{Z}_{r}^{1}(A/B, \imath_{B})$ can be regarded as pointed sets, whose base-points are q_{XB} and p_{XB} , respectively.

NON-ABELIAN COHOMOLOGY POINTED SETS OF MONOIDS

Let *X*, *B* be monoids. A *left action* of *B* on *X* is a homomorphism $\Phi : B \to End(X)$ of monoids. In this situation, one also say that *B acts on X from the left*, and for all $b \in B$ and $x \in X$, one writes

 $b \bullet x = \Phi(b)(x).$

NON-ABELIAN COHOMOLOGY POINTED SETS OF MONOIDS

Let *X*, *B* be monoids. A *left action* of *B* on *X* is a homomorphism $\Phi : B \to End(X)$ of monoids. In this situation, one also say that *B acts* on *X* from the *left*, and for all $b \in B$ and $x \in X$, one writes

 $b \bullet x = \Phi(b)(x).$

A map $\chi : B \to X$ is called a (*non-abelian*) *1-cocycle*, if $\chi(1) = 1$ and for arbitrary $b_1, b_2 \in B$:

$$\chi(b_1 \cdot b_2) = \chi(b_1) \cdot (b_1 \bullet \chi(b_2)).$$

NON-ABELIAN COHOMOLOGY POINTED SETS OF MONOIDS

Let *X*, *B* be monoids. A *left action* of *B* on *X* is a homomorphism $\Phi : B \to End(X)$ of monoids. In this situation, one also say that *B acts on X from the left*, and for all $b \in B$ and $x \in X$, one writes

 $b \bullet x = \Phi(b)(x).$

A map $\chi : B \to X$ is called a (*non-abelian*) *1-cocycle*, if $\chi(1) = 1$ and for arbitrary $b_1, b_2 \in B$:

$$\chi(b_1 \cdot b_2) = \chi(b_1) \cdot (b_1 \bullet \chi(b_2)).$$

We denote the set of all 1-cocycles $B \to X$ with $\mathcal{Z}^1(B, X)$. One turns $\mathcal{Z}^1(B, X)$ into a pointed set by defining the distinguished element to be the map $0_{B,X}$.

NON-ABELIAN COHOMOLOGY POINTED SETS

Two 1-cocyles $\chi, \chi' : B \to X$ are called *equivalent* if there exists an invertible element $x_0 \in U(X)$ such that $\chi(b)(b \bullet x_0) = x_0\chi'(b)$ for all $b \in B$.

Two 1-cocyles $\chi, \chi' : B \to X$ are called *equivalent* if there exists an invertible element $x_0 \in U(X)$ such that $\chi(b)(b \bullet x_0) = x_0\chi'(b)$ for all $b \in B$.

This provides an equivalence relation on $\mathcal{Z}^1(B, X)$. The set of equivalence classes of 1-cocycles is called the *first non-abelian 1-cohomology set* of *B* with coefficients in *X* and is denoted by $\mathbf{H}^1(B, X)$. It is a pointed set with base-point the equivalence class of the map $0_{B,X}$.

Two 1-cocyles $\chi, \chi' : B \to X$ are called *equivalent* if there exists an invertible element $x_0 \in U(X)$ such that $\chi(b)(b \bullet x_0) = x_0\chi'(b)$ for all $b \in B$.

This provides an equivalence relation on $\mathcal{Z}^1(B, X)$. The set of equivalence classes of 1-cocycles is called the *first non-abelian 1-cohomology set* of *B* with coefficients in *X* and is denoted by $\mathbf{H}^1(B, X)$. It is a pointed set with base-point the equivalence class of the map $0_{B,X}$.

Note that in the case when both *X* and *B* are groups, the pointed set $H^1(B, X)$ coincide with the ones introduced by S. Serre.

The following theorem shows that non-abelian cohomology of monoids can be seen as a particular instance of descent cohomology of monoids. The following theorem shows that non-abelian cohomology of monoids can be seen as a particular instance of descent cohomology of monoids.

THEOREM

Let a monoid B acts on a monoid X from the left and let $X \rtimes B$ be the corresponding semi-direct product. Then the assignment $q \rightarrow \imath_B q$ yields bijections

$$\mathcal{Z}^1_I(X \rtimes B/X, \imath_X) \simeq \mathcal{Z}^1(B, X)$$

and

$$\mathscr{D}^1_I(X \rtimes B/X, \imath_X) \simeq H^1(B, X)$$

QUASI-PROJECTIONS ON MONOIDS

DEFINITION

A *left quasi-projection on a monoid* A is a set map $I : A \rightarrow A$ such that for all $a, a' \in A$:

- (L1) I(1) = 1.
- (L2) $\mathbf{I}(a) \cdot \mathbf{I}(a') = \mathbf{I}(\mathbf{I}(a) \cdot a').$
- (L3) $\mathbf{I}(a \cdot a') = \mathbf{I}(a \cdot \mathbf{I}(a'))$.

DEFINITION

A *left quasi-projection on a monoid* A is a set map $I : A \rightarrow A$ such that for all $a, a' \in A$:

- (L1) I(1) = 1.
- (L2) $\mathbf{I}(a) \cdot \mathbf{I}(a') = \mathbf{I}(\mathbf{I}(a) \cdot a').$
- (L3) $\mathbf{I}(a \cdot a') = \mathbf{I}(a \cdot \mathbf{I}(a'))$.

Symmetrically, a *right quasi-projection on a monoid* A is a set map $\mathbf{r} : A \rightarrow A$ satisfying the following conditions:

(R1)
$$\mathbf{r}(1) = 1$$
.
(R2) $\mathbf{r}(a) \cdot \mathbf{r}(a') = \mathbf{r}(a \cdot \mathbf{r}(a')) \quad (\forall a, a' \in A)$.
(R3) $\mathbf{r}(a \cdot a') = \mathbf{r}(\mathbf{r}(a) \cdot a') \quad (\forall a, a' \in A)$.

DEFINITION

A *left quasi-projection on a monoid* A is a set map $I : A \rightarrow A$ such that for all $a, a' \in A$:

- (L1) I(1) = 1.
- (L2) $\mathbf{I}(a) \cdot \mathbf{I}(a') = \mathbf{I}(\mathbf{I}(a) \cdot a').$
- (L3) $\mathbf{I}(a \cdot a') = \mathbf{I}(a \cdot \mathbf{I}(a'))$.

Symmetrically, a *right quasi-projection on a monoid* A is a set map $\mathbf{r} : A \rightarrow A$ satisfying the following conditions:

(R1)
$$\mathbf{r}(1) = 1$$
.
(R2) $\mathbf{r}(a) \cdot \mathbf{r}(a') = \mathbf{r}(a \cdot \mathbf{r}(a')) \quad (\forall a, a' \in A)$.
(R3) $\mathbf{r}(a \cdot a') = \mathbf{r}(\mathbf{r}(a) \cdot a') \quad (\forall a, a' \in A)$.

Condition L3 (resp. R3) implies that a left (resp. right) quasi-projection is an idempotent map.

(A. Razmadze Mathematical Institute of I. JavQuasi-projections and factorizations of monoic 10/21

QUASI-PROJECTIONS ON MONOIDS

Let *A* be a monoid. To each map $\mathbf{u} : A \to A$ of sets, one can associate two subsets of *A*:

$$A^{\mathsf{u}} = \{a \in A : \mathsf{u}(a) = a\}$$

and

$$A_{\mathsf{u}} = Ker(\mathsf{u}) = \{a \in A : \mathsf{u}(a) = 1\}.$$

We write $i^{\mathbf{u}} : A^{\mathbf{u}} \rightarrow A$ and $i_{\mathbf{u}} : A_{\mathbf{u}} \rightarrow A$ for the canonical inclusions. If, in addition, **u** is an idempotent map, then it factorizes through $A^{\mathbf{u}}$:

QUASI-PROJECTIONS ON MONOIDS

Let *A* be a monoid. To each map $\mathbf{u} : A \to A$ of sets, one can associate two subsets of *A*:

$$A^{\mathsf{u}} = \{a \in A : \mathsf{u}(a) = a\}$$

and

$$A_{\mathsf{u}} = Ker(\mathsf{u}) = \{a \in A : \mathsf{u}(a) = 1\}.$$

We write $i^{\mathbf{u}} : A^{\mathbf{u}} \rightarrow A$ and $i_{\mathbf{u}} : A_{\mathbf{u}} \rightarrow A$ for the canonical inclusions. If, in addition, **u** is an idempotent map, then it factorizes through $A^{\mathbf{u}}$:

PROPOSITION

If I (resp. r) is a left (resp. right) quasi-projection on a monoid A, then A^{I} and A_{I} (resp. A^{r} and A_{r}) are both submonoids of A. If, in addition, A is a group, then A^{I} and A_{I} (resp. A^{r} and A_{r}) are subgroups of A.

PROPOSITION

Let A be a monoid. A map $\mathbf{u} : A \to A$ is a left (resp. right) quasi-projection on A if and only if the inclusion $\imath^{\mathbf{u}} : A^{\mathbf{u}} \to A$ makes $A^{\mathbf{u}}$ a submonoid of A and there is (necessarily) a unique element $q^{\mathbf{u}} \in \mathcal{Z}_{l}^{1}(A/A^{\mathbf{u}}, \imath^{\mathbf{u}})$ (resp. $p^{\mathbf{u}} \in \mathcal{Z}_{r}^{1}(A/A^{\mathbf{u}}, \imath^{\mathbf{u}})$) such that $\mathbf{u} = \imath^{\mathbf{u}}q^{\mathbf{u}}$ (resp. $\mathbf{u} = \imath^{\mathbf{u}}p^{\mathbf{u}}$).

PROPOSITION

Let A be a monoid. A map $\mathbf{u} : A \to A$ is a left (resp. right) quasi-projection on A if and only if the inclusion $\imath^{\mathbf{u}} : A^{\mathbf{u}} \to A$ makes $A^{\mathbf{u}}$ a submonoid of A and there is (necessarily) a unique element $q^{\mathbf{u}} \in \mathcal{Z}_{l}^{1}(A/A^{\mathbf{u}}, \imath^{\mathbf{u}})$ (resp. $p^{\mathbf{u}} \in \mathcal{Z}_{r}^{1}(A/A^{\mathbf{u}}, \imath^{\mathbf{u}})$) such that $\mathbf{u} = \imath^{\mathbf{u}}q^{\mathbf{u}}$ (resp. $\mathbf{u} = \imath^{\mathbf{u}}p^{\mathbf{u}}$).

For a given monoid A, we write LQ(A) (resp. RQ(A)) for the set of all left (resp. right) quasi-projections on A.

PROPOSITION

Let A be a monoid. A map $\mathbf{u} : A \to A$ is a left (resp. right) quasi-projection on A if and only if the inclusion $\imath^{\mathbf{u}} : A^{\mathbf{u}} \to A$ makes $A^{\mathbf{u}}$ a submonoid of A and there is (necessarily) a unique element $q^{\mathbf{u}} \in \mathcal{Z}_{I}^{1}(A/A^{\mathbf{u}}, \imath^{\mathbf{u}})$ (resp. $p^{\mathbf{u}} \in \mathcal{Z}_{r}^{1}(A/A^{\mathbf{u}}, \imath^{\mathbf{u}})$) such that $\mathbf{u} = \imath^{\mathbf{u}}q^{\mathbf{u}}$ (resp. $\mathbf{u} = \imath^{\mathbf{u}}p^{\mathbf{u}}$).

For a given monoid A, we write LQ(A) (resp. RQ(A)) for the set of all left (resp. right) quasi-projections on A.

PROPOSITION

For any submonoid $X \subseteq A$ of a monoid A, the assignment $q \mapsto \imath_X q$ yields an injective map

$$\kappa_X: \mathcal{Z}^1(A/X, \iota_X) \to LQ(A).$$

THEOREM

For any monoid A, the map

$$\bigsqcup_{X \leqslant A} \kappa_X : \bigsqcup_{X \leqslant A} \mathcal{Z}^1_I(A/X, \imath_X) \to LQ(A)$$

is bijective. Its inverse takes $I \in LQ(A)$ to q^I , where q^I is the first factor in the factorization $I = \imath^I q^I$ of the idempotent map I.

DEFINITION

Let I and **r** be respectively left and right quasi-projections on a monoid *A*. We say that (I, r) is a *complementary pair of quasi-projections on A* provided the following conditions are satisfied:

(I)
$$\mathbf{lr} = \mathbf{rl} = \mathbf{0}_{A,A}$$
 and

(II)
$$\mathbf{I} * \mathbf{r} = \mathbf{1}_A$$
,

where the map $\mathbf{I} * \mathbf{r} : A \to A$ is defined by $(\mathbf{I} * \mathbf{r})(a) = \mathbf{I}(a)\mathbf{r}(a)$.

DEFINITION

Let I and **r** be respectively left and right quasi-projections on a monoid *A*. We say that (I, r) is a *complementary pair of quasi-projections on A* provided the following conditions are satisfied:

(I)
$$\mathbf{lr} = \mathbf{rl} = \mathbf{0}_{A,A}$$
 and

(II)
$$\mathbf{I} * \mathbf{r} = \mathbf{1}_A$$

where the map $\mathbf{I} * \mathbf{r} : A \to A$ is defined by $(\mathbf{I} * \mathbf{r})(a) = \mathbf{I}(a)\mathbf{r}(a)$.

Given a monoid A, we write CP(A) for the set of complementary pair of quasi-projections an A.

PROPOSITION

Let A be a monoid and $(I, r) \in CP(A)$. Then A factorizes through A^I and A_I; i.e., the map

$$[\imath',\imath_I]: A' \times A_I \to A$$

is bijective.

PROPOSITION

Let A be a monoid and $(I, r) \in CP(A)$. Then A factorizes through A^I and A_I; i.e., the map

$$[\imath',\imath_I]: A' \times A_I \to A$$

is bijective.

THEOREM

For any monoid A, the correspondence

$$(I, r) \longmapsto (A', A')$$

yields a bijection

 $CP(A) \simeq FAC(A).$

Let *A* be a monoid and $I : A \to A$ a set-theoretical map such that A^{I} is a subgroup of *A*. Then since $I(a) \in A^{I}$, it follows that $I(a)^{-1} \in A^{I}$. Hence it makes sense to define a map $I^{\triangleright} : A \to A$ by $I^{\triangleright}(a) = I(a)^{-1} a$.

Let *A* be a monoid and $I : A \to A$ a set-theoretical map such that A^{I} is a subgroup of *A*. Then since $I(a) \in A^{I}$, it follows that $I(a)^{-1} \in A^{I}$. Hence it makes sense to define a map $I^{\triangleright} : A \to A$ by $I^{\triangleright}(a) = I(a)^{-1} a$.

PROPOSITION

Suppose that I is a left quasi-projection on a monoid A. Then the map $I^{\triangleright} : A \to A$ is a right quasi-projection on A and the pair (I, I^{\triangleright}) is complementary.

THEOREM

For any group A, we have a bijection

 $LQ(A) \rightarrow FAC(A)$

given by $I \mapsto (A^I, A_I)$. The inverse map is given by

$$(X,B)\longmapsto (A \xrightarrow{[\imath_X,\imath_B]^{-1}} X \times B \xrightarrow{\pi_X} X \xrightarrow{\imath_X} A).$$

Symmetrically, the correspondence

$$\mathbf{r} \mapsto (\mathbf{A_r}, \mathbf{A^r})$$

yields a bijection $RQ(A) \rightarrow FAC(A)$, whose inverse takes (X, B) $\in FAC(A)$ to the composite $A \xrightarrow{[\imath_X,\imath_B]^{-1}} X \times B \xrightarrow{\pi_B} B \xrightarrow{\imath_B} A$.

Recall that any group *A* acts from the left on itself by conjugation, namely we have a left action

• :
$$A \times A \rightarrow A$$
, $a \bullet b = aba^{-1}$.

Thus one can define the set of all non-abelian 1-cocycles $\mathcal{Z}^1(A, A)$.

Recall that any group *A* acts from the left on itself by conjugation, namely we have a left action

• :
$$A \times A \rightarrow A$$
, $a \bullet b = aba^{-1}$.

Thus one can define the set of all non-abelian 1-cocycles $\mathcal{Z}^1(A, A)$.

PROPOSITION

Let A be a group. The following are equivalent for an idempotent map $I: A \rightarrow A$ of sets:

Recall that any group *A* acts from the left on itself by conjugation, namely we have a left action

• : $A \times A \rightarrow A$, $a \bullet b = aba^{-1}$.

Thus one can define the set of all non-abelian 1-cocycles $\mathcal{Z}^1(A, A)$.

PROPOSITION

Let A be a group. The following are equivalent for an idempotent map $I: A \rightarrow A$ of sets:

I[▷] is a group homomorphism.

Recall that any group *A* acts from the left on itself by conjugation, namely we have a left action

• :
$$A \times A \rightarrow A$$
, $a \bullet b = aba^{-1}$.

Thus one can define the set of all non-abelian 1-cocycles $\mathcal{Z}^1(A, A)$.

PROPOSITION

Let A be a group. The following are equivalent for an idempotent map $I: A \rightarrow A$ of sets:

- I[▷] is a group homomorphism.
- **②** $I^{-1} \in Z^1(A, A)$, where the map $I^{-1} : A \to A$ is defined by $I^{-1}(a) = (I(a))^{-1}$.

Recall that any group *A* acts from the left on itself by conjugation, namely we have a left action

• : $A \times A \rightarrow A$, $a \bullet b = aba^{-1}$.

Thus one can define the set of all non-abelian 1-cocycles $\mathcal{Z}^1(A, A)$.

PROPOSITION

Let A be a group. The following are equivalent for an idempotent map $I: A \rightarrow A$ of sets:

- I[▷] is a group homomorphism.
- ◎ $I^{-1} \in Z^1(A, A)$, where the map $I^{-1} : A \to A$ is defined by $I^{-1}(a) = (I(a))^{-1}$.
- I is a left quasi-projection on A such that A^I is a normal subgroup of A.

Recall that any group *A* acts from the left on itself by conjugation, namely we have a left action

• :
$$A \times A \rightarrow A$$
, $a \bullet b = aba^{-1}$.

Thus one can define the set of all non-abelian 1-cocycles $\mathcal{Z}^1(A, A)$.

PROPOSITION

Let A be a group. The following are equivalent for an idempotent map $I: A \rightarrow A$ of sets:

- I[▷] is a group homomorphism.
- ◎ $I^{-1} \in Z^1(A, A)$, where the map $I^{-1} : A \to A$ is defined by $I^{-1}(a) = (I(a))^{-1}$.
- I is a left quasi-projection on A such that A^I is a normal subgroup of A.

When these hold, A is isomorphic to the semi-direct product $A^{I} \rtimes A^{I^{\diamond}}$.

THEOREM

For any group A, the assignment

$$(X,B)\longmapsto (A \xrightarrow{[\imath_X,\imath_B]^{-1}} X \times B \xrightarrow{\pi_X} X \xrightarrow{\imath_X} A),$$

establishes a bijection

$$FAC^{\rtimes}(A)\simeq \mathcal{Z}^{1}_{ld}(A,A).$$

Here, FAC^s(A) is the subset of FAC[×](A) containing of semi-direct factorizations of A, while $\mathcal{Z}_{ld}^1(A, A)$ is the subset of $\mathcal{Z}^1(A, A)$ whose elements are idempotent non-abelian 1-cocycles $A \to A$.

Two submonoids *B* and *B'* of a monoid *A* are called *conjugate* if $B' = aBa^{-1}$ for some invertible $a \in A$. When this is the case, one says that *a* conjugates *B* to *B'*.

Two submonoids *B* and *B'* of a monoid *A* are called *conjugate* if $B' = aBa^{-1}$ for some invertible $a \in A$. When this is the case, one says that *a* conjugates *B* to *B'*.

PROPOSITION

If $(X, B) \in FAC(A)$, then $(X, B') \in FAC(A)$ for any conjugate B' of B.

Two submonoids *B* and *B'* of a monoid *A* are called *conjugate* if $B' = aBa^{-1}$ for some invertible $a \in A$. When this is the case, one says that *a* conjugates *B* to *B'*.

PROPOSITION

If $(X, B) \in FAC(A)$, then $(X, B') \in FAC(A)$ for any conjugate B' of B.

THEOREM

Let a monoid B acts from the left on a monoid B and $X \rtimes B$ be the corresponding semi-direct product. Then the assignment

$$\chi \rightarrow \{(\chi(b), b) : b \in B\}$$

yields an isomorphism

$$H^1(B,U(A))\simeq FAC(X
times B/X)/_\sim$$

of pointed sets.

(A. Razmadze Mathematical Institute of I. JavQuasi-projections and factorizations of monoic 20/21

Let *X* be a normal subgroup of a group *A*. Then $(a, x) \mapsto axa^{-1}$ yields a left action of the group *A* on the group *X* and so we may define the pointed set $\mathcal{Z}^1(A, X)$. We write $\mathcal{Z}^1_{\bullet}(A, X)$ for the subset of $\mathcal{Z}^1(A, X)$ containing of the maps $\chi : A \to X$ such that $\chi(x) = x^{-1}$ for all $x \in X$.

Let *X* be a normal subgroup of a group *A*. Then $(a, x) \mapsto axa^{-1}$ yields a left action of the group *A* on the group *X* and so we may define the pointed set $\mathcal{Z}^1(A, X)$. We write $\mathcal{Z}^1_{\bullet}(A, X)$ for the subset of $\mathcal{Z}^1(A, X)$ containing of the maps $\chi : A \to X$ such that $\chi(x) = x^{-1}$ for all $x \in X$.

THEOREM

Let X be a normal subgroup of a group A. Then the following are equivalent:

Let *X* be a normal subgroup of a group *A*. Then $(a, x) \mapsto axa^{-1}$ yields a left action of the group *A* on the group *X* and so we may define the pointed set $\mathcal{Z}^1(A, X)$. We write $\mathcal{Z}^1_{\bullet}(A, X)$ for the subset of $\mathcal{Z}^1(A, X)$ containing of the maps $\chi : A \to X$ such that $\chi(x) = x^{-1}$ for all $x \in X$.

THEOREM

Let X be a normal subgroup of a group A. Then the following are equivalent:

(I) The short exact sequence $0 \to X \xrightarrow{\iota_X} A \xrightarrow{p} A/X \to 0$, where $p: A \to A/X$ is the quotient map, splits;

Let *X* be a normal subgroup of a group *A*. Then $(a, x) \mapsto axa^{-1}$ yields a left action of the group *A* on the group *X* and so we may define the pointed set $\mathcal{Z}^1(A, X)$. We write $\mathcal{Z}^1_{\bullet}(A, X)$ for the subset of $\mathcal{Z}^1(A, X)$ containing of the maps $\chi : A \to X$ such that $\chi(x) = x^{-1}$ for all $x \in X$.

THEOREM

Let X be a normal subgroup of a group A. Then the following are equivalent:

- (1) The short exact sequence $0 \to X \xrightarrow{i_X} A \xrightarrow{p} A/X \to 0$, where $p: A \to A/X$ is the quotient map, splits; *i.e.*, there exists a homomorphism $s: A/X \to A$ of groups with $ps = Id_{A/X}$.
- (II) X is the first component of a group factorization of A; i.e., there is a subgroup B of A such that $(X, B) \in FAC(A)$.

Let *X* be a normal subgroup of a group *A*. Then $(a, x) \mapsto axa^{-1}$ yields a left action of the group *A* on the group *X* and so we may define the pointed set $\mathcal{Z}^1(A, X)$. We write $\mathcal{Z}^1_{\bullet}(A, X)$ for the subset of $\mathcal{Z}^1(A, X)$ containing of the maps $\chi : A \to X$ such that $\chi(x) = x^{-1}$ for all $x \in X$.

THEOREM

Let X be a normal subgroup of a group A. Then the following are equivalent:

- (1) The short exact sequence $0 \to X \xrightarrow{i_X} A \xrightarrow{p} A/X \to 0$, where $p: A \to A/X$ is the quotient map, splits; *i.e.*, there exists a homomorphism $s: A/X \to A$ of groups with $ps = Id_{A/X}$.
- (II) X is the first component of a group factorization of A; i.e., there is a subgroup B of A such that $(X, B) \in FAC(A)$.

(III) $\mathcal{Z}_{I}^{1}(A/X, \iota_{X}) \neq \emptyset.$

Let *X* be a normal subgroup of a group *A*. Then $(a, x) \mapsto axa^{-1}$ yields a left action of the group *A* on the group *X* and so we may define the pointed set $\mathcal{Z}^1(A, X)$. We write $\mathcal{Z}^1_{\bullet}(A, X)$ for the subset of $\mathcal{Z}^1(A, X)$ containing of the maps $\chi : A \to X$ such that $\chi(x) = x^{-1}$ for all $x \in X$.

THEOREM

Let X be a normal subgroup of a group A. Then the following are equivalent:

- (1) The short exact sequence $0 \to X \xrightarrow{i_X} A \xrightarrow{p} A/X \to 0$, where $p: A \to A/X$ is the quotient map, splits; *i.e.*, there exists a homomorphism $s: A/X \to A$ of groups with $ps = Id_{A/X}$.
- (II) X is the first component of a group factorization of A; i.e., there is a subgroup B of A such that $(X, B) \in FAC(A)$.
- (III) $\mathcal{Z}_{I}^{1}(A/X, \iota_{X}) \neq \emptyset.$
- (IV) $\mathcal{Z}^1_{\bullet}(A, X) \neq \emptyset$.