Dihedral solutions of the set-theoretic Yang-Baxter equation

Alex W. Nowak
Howard University
Joint w. C. Buell, A. Zamojska-Dzienio, J.D.H. Smith

Loops 2023
Mathematical Conference and Research Center, Będlewo Poland

June 30, 2023

Summary

1 Background

2 Latin braided sets with triality

3 Dihedral solutions

4 Looking forward

Set-theoretic Yang-Baxter equation

A map $r: X^{2} \rightarrow X^{2} ;(x, y) \mapsto(x \circ y, x \bullet y)$ is a set-theoretic solution of the Yang-Baxter equation (SYBE) if, on X^{3},

$$
r^{12} r^{23} r^{12}=r^{23} r^{12} r^{23}
$$

Set-theoretic Yang-Baxter equation

A map $r: X^{2} \rightarrow X^{2} ;(x, y) \mapsto(x \circ y, x \bullet y)$ is a set-theoretic solution of the Yang-Baxter equation (SYBE) if, on X^{3},

$$
r^{12} r^{23} r^{12}=r^{23} r^{12} r^{23}
$$

Call (X, r) a braided set. quasigroup and (X, \bullet) is a right-quasigroup.

Set-theoretic Yang-Baxter equation

A map $r: X^{2} \rightarrow X^{2} ;(x, y) \mapsto(x \circ y, x \bullet y)$ is a set-theoretic solution of the Yang-Baxter equation (SYBE) if, on X^{3},

$$
r^{12} r^{23} r^{12}=r^{23} r^{12} r^{23}
$$

Call (X, r) a braided set.

- We'll be dealing with Latin solutions, which means (X, \circ) is a quasigroup and (X, \bullet) is a right-quasigroup.

Derived solutions and derived racks

A derived solution has the form $r:(x, y) \mapsto(x \circ y, x)$.

Conversely, any rack yields a derived solution.

Derived solutions and derived racks

- A derived solution has the form $r:(x, y) \mapsto(x \circ y, x)$.

This makes (X, o) a rack.
Conversely, any rack yields a derived solution.

Derived solutions and derived racks

- A derived solution has the form $r:(x, y) \mapsto(x \circ y, x)$.
- This makes (X, \circ) a rack.
- Conversely, any rack yields a derived solution.

To any left non-degenerate solution $r:(x, y) \mapsto(x \circ y, x \bullet y)$, we may associate the derived (left) rack of the solution

$$
x \triangleright_{r} y=x \circ(y \bullet(y \backslash \circ x)) .
$$

Involutive quandles

Definition: Involutive quandle (Takasaki, 1942)

An involutive quandle (X, \cdot) is one for which the left multiplication maps are involutions, ie, $x \cdot(x \cdot y)=y$.

We've seen the dihedral quandles $x \cdot y=2 x-y \bmod n$.

Involutive quandles

Definition: Involutive quandle (Takasaki, 1942)

An involutive quandle (X, \cdot) is one for which the left multiplication maps are involutions, ie, $x \cdot(x \cdot y)=y$.

- We've seen the dihedral quandles $x \cdot y=2 x-y \bmod n$.
\square Represent the set of reflections in D_{n} under conjugation.

Involutive quandles

Definition: Involutive quandle (Takasaki, 1942)

An involutive quandle (X, \cdot) is one for which the left multiplication maps are involutions, ie, $x \cdot(x \cdot y)=y$.

- We've seen the dihedral quandles $x \cdot y=2 x-y \bmod n$.
\square Represent the set of reflections in D_{n} under conjugation.
A commutative, involutive quandle is a distrbiutive Steiner quasigroup (STS).

Motivating example

Example (Smith 2015):

If $(X,+, 0)$ is a CML_{3}, then $r:(x, y) \mapsto(-x+y,-x)$ is a Latin SYBE solution.

Motivating example

Example (Smith 2015):

If $(X,+, 0)$ is a CML_{3}, then $r:(x, y) \mapsto(-x+y,-x)$ is a Latin SYBE solution.

- Some observations:

1 The derived rack of r is the dihedral quandle $x \cdot y=-x-y$.

Motivating example

Example (Smith 2015):

If $(X,+, 0)$ is a CML_{3}, then $r:(x, y) \mapsto(-x+y,-x)$ is a Latin SYBE solution.

- Some observations:

1 The derived rack of r is the dihedral quandle $x \cdot y=-x-y$.
$2 r:(x, y) \mapsto(x \cdot(e \cdot y), e \cdot x)=\left(S_{x}\left(S_{e}(y)\right), S_{e}(x)\right)$

Motivating example

Example (Smith 2015):

If $(X,+, 0)$ is a CML_{3}, then $r:(x, y) \mapsto(-x+y,-x)$ is a Latin SYBE solution.

- Some observations:

1 The derived rack of r is the dihedral quandle $x \cdot y=-x-y$.
$2 r:(x, y) \mapsto(x \cdot(e \cdot y), e \cdot x)=\left(S_{x}\left(S_{e}(y)\right), S_{e}(x)\right)$
$3 r^{3}=(t r)^{2}=1$, where $t:(x, y) \mapsto(y, x)$ is the trivial solution. That is, we have D_{3}-symmetry.

Motivating example

Example (Smith 2015):

If $(X,+, 0)$ is a CML_{3}, then $r:(x, y) \mapsto(-x+y,-x)$ is a Latin SYBE solution.

- Some observations:

1 The derived rack of r is the dihedral quandle $x \cdot y=-x-y$.
$2 r:(x, y) \mapsto(x \cdot(e \cdot y), e \cdot x)=\left(S_{x}\left(S_{e}(y)\right), S_{e}(x)\right)$
$3 r^{3}=(t r)^{2}=1$, where $t:(x, y) \mapsto(y, x)$ is the trivial solution. That is, we have D_{3}-symmetry.
Is the coupling of D_{3}-symmetry with the dihedral quandle a coincidence?

Latin braided sets with triality

Definition: (B.N.S.Z.-D.)

Let $r:(x, y) \mapsto(x \circ y, x \bullet y)$ be a Latin braiding. If $r^{3}=(t r)^{2}=\mathrm{id}_{X^{2}}$, then (X, r) is a Latin, braided set with triality (LBST).

Latin braided sets with triality

Definition: (B.N.S.Z.-D.)

Let $r:(x, y) \mapsto(x \circ y, x \bullet y)$ be a Latin braiding. If $r^{3}=(t r)^{2}=\mathrm{id}_{X^{2}}$, then (X, r) is a Latin, braided set with triality (LBST).

Question: How much can LBST stray from our motivating example?

Latin braided sets with triality

Definition: (B.N.S.Z.-D.)

Let $r:(x, y) \mapsto(x \circ y, x \bullet y)$ be a Latin braiding. If $r^{3}=(t r)^{2}=\mathrm{id}_{X^{2}}$, then (X, r) is a Latin, braided set with triality (LBST).

Question: How much can LBST stray from our motivating example?
Answer: Not very far!

Latin braided sets with triality

Definition: (B.N.S.Z.-D.)

Let $r:(x, y) \mapsto(x \circ y, x \bullet y)$ be a Latin braiding. If $r^{3}=(t r)^{2}=\mathrm{id}_{X^{2}}$, then (X, r) is a Latin, braided set with triality (LBST).

Question: How much can LBST stray from our motivating example?
Answer: Not very far!
Result 1: B.N.S.Z.-D.
If (X, r) is a finite LBST, then $|X|=3^{n}$.

Latin braided sets with triality

Definition: (B.N.S.Z.-D.)

Let $r:(x, y) \mapsto(x \circ y, x \bullet y)$ be a Latin braiding. If $r^{3}=(t r)^{2}=\mathrm{id}_{X^{2}}$, then (X, r) is a Latin, braided set with triality (LBST).

Question: How much can LBST stray from our motivating example?
Answer: Not very far!
Result 1: B.N.S.Z.-D.
If (X, r) is a finite LBST, then $|X|=3^{n}$.
Result 2: B.N.S.Z.-D.
If $\mathrm{Sq}_{\mathrm{\circ}}: x \mapsto x \circ x$ is homomorphic, (X, r) is a split extension of a derived solution by one of the form $(x, y) \mapsto(-x+y,-x)$ for $(X,+)$ a CML_{3}.

Identities in LBST

For any LBST (X, r), we have the following:

Identities in LBST

For any LBST (X, r), we have the following:
$x \bullet y=x \backslash_{\circ} x$, ie, $r:(x, y) \mapsto\left(x \circ y, x \backslash_{\circ} x\right)$ (using Prover9).

Identities in LBST

For any LBST (X, r), we have the following:
$x \bullet y=x \backslash_{\circ} x$, ie, $r:(x, y) \mapsto\left(x \circ y, x \backslash_{\circ} x\right)$ (using Prover9). Because $x \bullet y=x \backslash \circ y$, we'll abbreviate \。 to \backslash.

$$
\text { Proving commutativity of }(X, \backslash) \text { also "required" Prover9. }
$$

Identities in LBST

For any LBST (X, r), we have the following:
$\square x \bullet y=x \backslash_{\circ} x$, ie, $r:(x, y) \mapsto\left(x \circ y, x \backslash_{\circ} x\right)$ (using Prover9). - Because $x \bullet y=x \backslash \circ y$, we'll abbreviate $_{\circ}$ to \backslash.

- X, \backslash) is a commutative quasigroup in which the squaring map $\mathrm{Sq} \backslash: x \mapsto x \backslash x$ is an involutive endomorphism.
- In particular, $(x \backslash x) \backslash(x \backslash x)=x$

Identities in LBST

For any LBST (X, r), we have the following:
$\square x \bullet y=x \backslash_{\circ} x$, ie, $r:(x, y) \mapsto\left(x \circ y, x \backslash_{\circ} x\right)$ (using Prover9). - Because $x \bullet y=x \backslash \circ y$, we'll abbreviate $_{\circ}$ to \backslash.
(X, \backslash) is a commutative quasigroup in which the squaring map $\mathrm{Sq} \backslash x \mapsto x \backslash x$ is an involutive endomorphism.

- In particular, $(x \backslash x) \backslash(x \backslash x)=x$
- Proving commutativity of (X, \backslash) also "required" Prover9.

The structure rack

Proposition: B.N.S.Z.-D.
The sturcture rack of an LBST (X, r) has form

$$
x \triangleright_{r} y=x \circ(y \backslash y) .
$$

This is an affine STS, and it is principally isotopic to (X, \circ)

The structure rack

Proposition: B.N.S.Z.-D.
The sturcture rack of an LBST (X, r) has form

$$
x \triangleright_{r} y=x \circ(y \backslash y)
$$

This is an affine STS, and it is principally isotopic to (X, \circ)
Corollary: B.N.S.Z.-D.
If (X, r) is a finite LBST, then $|X|=3^{n}$.

Another squaring map and a structure theorem

Consider Sq。 $: x \mapsto x \circ x$

Another squaring map and a structure theorem

- Consider $\mathrm{Sq}_{\mathrm{\circ}}: x \mapsto x \circ x$

This maps into a subquasigroup of idempotents of $(X, \circ, /, \backslash)$.

Another squaring map and a structure theorem

- Consider $\mathrm{Sq}_{\circ}: x \mapsto x \circ x$

This maps into a subquasigroup of idempotents of $(X, \circ, /, \backslash)$.
$=\left(\mathrm{Sq}_{\circ}(X), \circ\right)$ is a subquandle of $\left(X, \triangleright_{r}\right)$.

Another squaring map and a structure theorem

- Consider $\mathrm{Sq}_{\circ}: x \mapsto x \circ x$

This maps into a subquasigroup of idempotents of $(X, \circ, /, \backslash)$.

- $\left(\mathrm{Sq}_{\circ}(X), o\right)$ is a subquandle of $\left(X, \triangleright_{r}\right)$.

For any $e \in X, X_{e}=\left\{x \in X \mid \mathrm{Sq}_{\circ}(x)=\mathrm{Sq}_{\circ}(e)\right\}$ is a subquasigroup of $(X, \circ, /, \backslash)$, and $\left(X_{e}, \backslash, e\right)$ is a CML_{3}.

- Prover9 to the rescue again!

Another squaring map and a structure theorem

- Consider $\mathrm{Sq}_{\circ}: x \mapsto x \circ x$
- This maps into a subquasigroup of idempotents of $(X, \circ, /, \backslash)$.
$\square\left(\mathrm{Sq}_{\circ}(X), \circ\right)$ is a subquandle of $\left(X, \triangleright_{r}\right)$.
For any $e \in X, X_{e}=\left\{x \in X \mid \mathrm{Sq}_{0}(x)=\mathrm{Sq}_{0}(e)\right\}$ is a subquasigroup of $(X, \circ, /, \backslash)$, and $\left(X_{e}, \backslash, e\right)$ is a CML_{3}.
- Prover9 to the rescue again!

A Structure Theorem (B.N.S.Z.-D.)
Let (X, r) be an LBST. If Sq_{\circ} is an endomorphism of (X, \circ), then we have a split exact sequence of quasigroups

$$
\{*\} \rightarrow X_{e} \rightarrow X \rightarrow \mathrm{Sq}_{\circ}(X) \rightarrow\{*\}
$$

The structure theorem cont.

Question: Is Sq_{\circ} always a homomorphism?

The structure theorem cont.

Question: Is Sq_{\circ} always a homomorphism?

- A naive Prover9 attempt ran out of memory.
$\mathrm{Sq} q_{0}$ is a homomorphism here

The structure theorem cont.

Question: Is Sq_{\circ} always a homomorphism?

- A naive Prover9 attempt ran out of memory.

A naive Mace4 attempt found no counterexample of order 3, 9, or 27. Ran out of memory at 81 .
$S q_{0}$ is a homomorphism here.

The structure theorem cont.

Question: Is Sq_{\circ} always a homomorphism?

- A naive Prover9 attempt ran out of memory.
- A naive Mace4 attempt found no counterexample of order 3, 9, or 27. Ran out of memory at 81 .
Any linear LBST is of the form

$$
(x, y) \mapsto\left(-x+\varphi^{-1}(y), 2 \varphi(x)\right)
$$

where $2 \varphi^{3}+\varphi^{2}+\varphi-1=0$.
$-\mathrm{Sq}_{\circ}$ is a homomorphism here.

Generalizations of LBST

Both

$$
\begin{aligned}
& 1 \quad r: \mathbb{Z}_{n}^{2} \rightarrow \mathbb{Z}_{n}^{2} ;(x, y) \mapsto(2 x-y, x) \\
& 2 r \\
& 2 r: \mathbb{Z}_{n}^{2} \rightarrow \mathbb{Z}_{n}^{2} ;(x, y) \mapsto(2 x+y,-x)
\end{aligned}
$$

$$
\text { are SYBE solutions satisfying } D_{n} \text {-relations } r^{n}=(t r)^{2}=\mathrm{id}_{X^{2}} \text {. }
$$

Generalizations of LBST

Both

$$
\begin{array}{ll}
1 & r: \mathbb{Z}_{n}^{2} \rightarrow \mathbb{Z}_{n}^{2} ;(x, y) \mapsto(2 x-y, x) \\
2 & r: \mathbb{Z}_{n}^{2} \rightarrow \mathbb{Z}_{n}^{2} ;(x, y) \mapsto(2 x+y,-x)
\end{array}
$$

are SYBE solutions satisfying D_{n}-relations $r^{n}=(t r)^{2}=\mathrm{id}_{X^{2}}$.

- Given any pointed involutive quandle, (X, \cdot, e),

$$
r:(x, y) \mapsto(x \cdot(e \cdot y), e \cdot x)=\left(S_{x}\left(S_{e}(y)\right), S_{e}(x)\right)
$$

is a SYBE solution with D_{∞}-symmetry: $(t r)^{2}=\mathrm{id}_{X^{2}}$.

Braided dihedral sets

Definition:

Let (X, r) be a Latin, braided set. If $(t r)^{2}=\mathrm{id}_{X^{2}},(X, r)$ is a Latin, braided, dihedral set (LBDS).

Braided dihedral sets

Definition:

Let (X, r) be a Latin, braided set. If $(t r)^{2}=\mathrm{id}_{X^{2}},(X, r)$ is a Latin, braided, dihedral set (LBDS).

Proposition: B.N.S.Z.-D.
Let (X, r) be a LBDS. Then
$1 r:(x, y) \mapsto\left(x \circ y, x \backslash_{\circ} x\right)$;
2 the structure rack $\left(X, \triangleright_{r}\right)$ is an involutive quandle.
Because, \o is not necessarily commutative, they lack the rigidity of LBST.

Conjugation in D_{n}

- In the conjugation quandle $\operatorname{Conj}\left(D_{n}\right)$, products take the form

$$
r^{j} s \triangleright r^{k} s=r^{2 j-k} s
$$

Conjugation in D_{n}

- In the conjugation quandle $\operatorname{Conj}\left(D_{n}\right)$, products take the form
$r^{j} s \triangleright r^{k} s=r^{2 j-k} s$
$\square r^{j} \triangleright r^{k}=r^{k}$

Conjugation in D_{n}

- In the conjugation quandle $\operatorname{Conj}\left(D_{n}\right)$, products take the form
$r^{j} s \triangleright r^{k} s=r^{2 j-k} s$
$\square r^{j} \triangleright r^{k}=r^{k}$
$r^{j} \triangleright r^{k} s=r^{2 j+k} s$

Conjugation in D_{n}

- In the conjugation quandle $\operatorname{Conj}\left(D_{n}\right)$, products take the form
$-r^{j} s \triangleright r^{k} s=r^{2 j-k} s$
$\square r^{j} \triangleright r^{k}=r^{k}$
$r^{j} \triangleright r^{k} s=r^{2 j+k} s$
$r^{j} s \triangleright r^{k}=r^{-k}$

Conjugation in D_{n}

- In the conjugation quandle $\operatorname{Conj}\left(D_{n}\right)$, products take the form
$r^{j} s \triangleright r^{k} s=r^{2 j-k} s$
$\square r^{j} \triangleright r^{k}=r^{k}$
$\square r^{j} \triangleright r^{k} s=r^{2 j+k} s$
$\square r^{j} s \triangleright r^{k}=r^{-k}$
All operations in LBST with homomorphic squaring map take one of these forms!
conjugation quandle of the group

Conjugation in D_{n}

- In the conjugation quandle $\operatorname{Conj}\left(D_{n}\right)$, products take the form
$r^{j} s \triangleright r^{k} s=r^{2 j-k} s$
$\square r^{j} \triangleright r^{k}=r^{k}$
$r^{j} \triangleright r^{k} s=r^{2 j+k} s$
$r^{j} s \triangleright r^{k}=r^{-k}$
All operations in LBST with homomorphic squaring map take one of these forms!
- Is there anything information about a braided set (X, r) hiding in the conjugation quandle of the group $\langle r, t\rangle$?

Other avenues

- Expand the notion of LBDS to $(s r)^{2}=1$, where s is any involutive solution, not just the trivial one.
Non-Latin dihedral solutions

References

Lebed, V. On structure groups of set-theoretic solutions to the Yang-Baxter equation, Proc. Edinb. Math. Soc. 62 (2019), 683-717.
Smith, J.D.H, Quantum idempotence, distributivity, and the Yang-Baxter equation Comment. Math. Univ. Carol. 57 (2016), 567-583
Stanovský, D. and P. Vojtěchovský, Idempotent solutions of the Yang-Baxter equation and twisted group division, Fund. Math. 255 (2021) 51-68.

