Dihedral solutions of the set-theoretic Yang-Baxter equation

Alex W. Nowak Howard University Joint w. C. Buell, A. Zamojska-Dzienio, J.D.H. Smith

Loops 2023 Mathematical Conference and Research Center, Będlewo Poland

June 30, 2023

A. W. Nowak (Howard)

Dihedral SYBE Solutions

Background

Latin braided sets with triality

3 Dihedral solutions

4 Looking forward

A. W. Nowak (Howard)

 $) \land \bigcirc$

Set-theoretic Yang-Baxter equation

A map $r: X^2 \to X^2; (x, y) \mapsto (x \circ y, x \bullet y)$ is a set-theoretic solution of the Yang-Baxter equation (SYBE) if, on X^3 ,

$$r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}.$$

• Call (X, r) a <u>braided set</u>.

■ We'll be dealing with <u>Latin solutions</u>, which means (X, ◦) is a quasigroup and (X, •) is a right-quasigroup.

A. W. Nowak (Howard)

Dihedral SYBE Solutions

Set-theoretic Yang-Baxter equation

A map $r: X^2 \to X^2; (x, y) \mapsto (x \circ y, x \bullet y)$ is a <u>set-theoretic solution of the Yang-Baxter equation</u> (SYBE) if, on X^3 ,

$$r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}.$$

• Call (X, r) a <u>braided set</u>.

■ We'll be dealing with <u>Latin solutions</u>, which means (X, ∘) is a quasigroup and (X, •) is a right-quasigroup.

A. W. Nowak (Howard)

Dihedral SYBE Solutions

Set-theoretic Yang-Baxter equation

A map $r: X^2 \to X^2; (x, y) \mapsto (x \circ y, x \bullet y)$ is a set-theoretic solution of the Yang-Baxter equation (SYBE) if, on X^3 ,

$$r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}.$$

- Call (X, r) a <u>braided set</u>.
- We'll be dealing with <u>Latin solutions</u>, which means (X, \circ) is a quasigroup and (X, \bullet) is a right-quasigroup.

A. W. Nowak (Howard)

Dihedral SYBE Solutions

Derived solutions and derived racks

• A <u>derived</u> solution has the form $r : (x, y) \mapsto (x \circ y, x)$.

- This makes (X, \circ) a rack.
- Conversely, any rack yields a derived solution.
- To any left non-degenerate solution r : (x, y) → (x ∘ y, x y), we may associate the derived (left) rack of the solution

 $x \triangleright_r y = x \circ (y \bullet (y \backslash_{\circ} x)).$

Derived solutions and derived racks

- A <u>derived</u> solution has the form $r:(x,y)\mapsto (x\circ y,x).$
 - This makes (X, \circ) a rack.
 - Conversely, any rack yields a derived solution.
- To any left non-degenerate solution r : (x, y) → (x ∘ y, x y), we may associate the derived (left) rack of the solution

 $x \triangleright_r y = x \circ (y \bullet (y \backslash_{\circ} x)).$

Derived solutions and derived racks

- A <u>derived</u> solution has the form $r:(x,y)\mapsto (x\circ y,x).$
 - This makes (X, \circ) a rack.
 - Conversely, any rack yields a derived solution.
- To any left non-degenerate solution $r : (x, y) \mapsto (x \circ y, x \bullet y)$, we may associate the derived (left) rack of the solution

$$x \triangleright_r y = x \circ (y \bullet (y \backslash_{\circ} x)).$$

Involutive quandles

Definition: Involutive quandle (Takasaki, 1942)

An involutive quandle (X, \cdot) is one for which the left multiplication maps are involutions, ie, $x \cdot (x \cdot y) = y$.

We've seen the dihedral quandles $x \cdot y = 2x - y \mod n$.

- Represent the set of reflections in D_n under conjugation.
- A commutative, involutive quandle is a distrbiutive Steiner quasigroup (STS).

Involutive quandles

Definition: Involutive quandle (Takasaki, 1942)

An involutive quandle (X, \cdot) is one for which the left multiplication maps are involutions, ie, $x \cdot (x \cdot y) = y$.

- We've seen the dihedral quandles $x \cdot y = 2x y \mod n$.
 - **Represent the set of reflections in** D_n under conjugation.
- A commutative, involutive quandle is a distrbiutive Steiner quasigroup (STS).

Involutive quandles

Definition: Involutive quandle (Takasaki, 1942)

An involutive quandle (X, \cdot) is one for which the left multiplication maps are involutions, ie, $x \cdot (x \cdot y) = y$.

- We've seen the dihedral quandles $x \cdot y = 2x y \mod n$.
 - **Represent the set of reflections in** D_n under conjugation.
- A commutative, involutive quandle is a distrbiutive Steiner quasigroup (STS).

Example (Smith 2015):

If (X, +, 0) is a CML₃, then $r : (x, y) \mapsto (-x + y, -x)$ is a Latin SYBE solution.

Some observations:

- **1** The derived rack of r is the dihedral quandle $x \cdot y = -x y$.
- **2** $r: (x, y) \mapsto (x \cdot (e \cdot y), e \cdot x) = (S_x(S_e(y)), S_e(x))$
- 3 r³ = (tr)² = 1, where t : (x, y) → (y, x) is the trivial solution. That is, we have D₃-symmetry.
- Is the coupling of D₃-symmetry with the dihedral quandle a coincidence?

Example (Smith 2015):

If (X, +, 0) is a CML₃, then $r : (x, y) \mapsto (-x + y, -x)$ is a Latin SYBE solution.

Some observations:

1 The derived rack of r is the dihedral quandle $x \cdot y = -x - y$.

- 2 $r: (x,y) \mapsto (x \cdot (e \cdot y), e \cdot x) = (S_x(S_e(y)), S_e(x))$
- 3 $r^3 = (tr)^2 = 1$, where $t : (x, y) \mapsto (y, x)$ is the trivial solution. That is, we have D_3 -symmetry.
- Is the coupling of D₃-symmetry with the dihedral quandle a coincidence?

Example (Smith 2015):

If (X, +, 0) is a CML₃, then $r : (x, y) \mapsto (-x + y, -x)$ is a Latin SYBE solution.

Some observations:

1 The derived rack of r is the dihedral quandle $x \cdot y = -x - y$.

2
$$r: (x, y) \mapsto (x \cdot (e \cdot y), e \cdot x) = (S_x(S_e(y)), S_e(x))$$

3 $r^3 = (tr)^2 = 1$, where $t : (x, y) \mapsto (y, x)$ is the trivial solution. That is, we have D_3 -symmetry.

Is the coupling of D₃-symmetry with the dihedral quandle a coincidence?

Example (Smith 2015):

If (X, +, 0) is a CML₃, then $r : (x, y) \mapsto (-x + y, -x)$ is a Latin SYBE solution.

Some observations:

1 The derived rack of r is the dihedral quandle $x \cdot y = -x - y$.

2
$$r: (x, y) \mapsto (x \cdot (e \cdot y), e \cdot x) = (S_x(S_e(y)), S_e(x))$$

- 3 $r^3 = (tr)^2 = 1$, where $t : (x, y) \mapsto (y, x)$ is the trivial solution. That is, we have D_3 -symmetry.
- Is the coupling of D₃-symmetry with the dihedral quandle a coincidence?

Example (Smith 2015):

If (X, +, 0) is a CML₃, then $r : (x, y) \mapsto (-x + y, -x)$ is a Latin SYBE solution.

- Some observations:
 - **1** The derived rack of r is the dihedral quandle $x \cdot y = -x y$.

2
$$r: (x, y) \mapsto (x \cdot (e \cdot y), e \cdot x) = (S_x(S_e(y)), S_e(x))$$

- 3 $r^3 = (tr)^2 = 1$, where $t : (x, y) \mapsto (y, x)$ is the trivial solution. That is, we have D_3 -symmetry.
- Is the coupling of D₃-symmetry with the dihedral quandle a coincidence?

Definition: (B.N.S.Z.-D.)

Let $r: (x, y) \mapsto (x \circ y, x \bullet y)$ be a Latin braiding. If $r^3 = (tr)^2 = \operatorname{id}_{X^2}$, then (X, r) is a Latin, braided set with triality (LBST).

<u>Question</u>: How much can LBST stray from our motivating example?
 Answer: Not very far!

Result 1: B.N.S.Z.-D.

If (X, r) is a finite LBST, then $|X| = 3^n$.

Result 2: B.N.S.Z.-D.

If Sq_o : $x \mapsto x \circ x$ is homomorphic, (X, r) is a split extension of a derived solution by one of the form $(x, y) \mapsto (-x + y, -x)$ for (X, +) a CML₃.

A. W. Nowak (Howard)

Definition: (B.N.S.Z.-D.)

Let $r: (x, y) \mapsto (x \circ y, x \bullet y)$ be a Latin braiding. If $r^3 = (tr)^2 = \mathrm{id}_{X^2}$, then (X, r) is a Latin, braided set with triality (LBST).

<u>Question</u>: How much can LBST stray from our motivating example? Answer: Not very far!

Result 1: B.N.S.Z.-D.

If (X, r) is a finite LBST, then $|X| = 3^n$.

Result 2: B.N.S.Z.-D.

If Sq_o : $x \mapsto x \circ x$ is homomorphic, (X, r) is a split extension of a derived solution by one of the form $(x, y) \mapsto (-x + y, -x)$ for (X, +) a CML₃.

A. W. Nowak (Howard)

Definition: (B.N.S.Z.-D.)

Let $r: (x, y) \mapsto (x \circ y, x \bullet y)$ be a Latin braiding. If $r^3 = (tr)^2 = \mathrm{id}_{X^2}$, then (X, r) is a Latin, braided set with triality (LBST).

<u>Question</u>: How much can LBST stray from our motivating example?
 <u>Answer</u>: Not very far!

Result 1: B.N.S.Z.-D.

If (X, r) is a finite LBST, then $|X| = 3^n$.

Result 2: B.N.S.Z.-D.

If Sq_o : $x \mapsto x \circ x$ is homomorphic, (X, r) is a split extension of a derived solution by one of the form $(x, y) \mapsto (-x + y, -x)$ for (X, +) a CML₃.

A. W. Nowak (Howard)

Definition: (B.N.S.Z.-D.)

Let $r: (x, y) \mapsto (x \circ y, x \bullet y)$ be a Latin braiding. If $r^3 = (tr)^2 = id_{X^2}$, then (X, r) is a Latin, braided set with triality (LBST).

<u>Question</u>: How much can LBST stray from our motivating example?
 <u>Answer</u>: Not very far!

Result 1: B.N.S.Z.-D.

If (X, r) is a finite LBST, then $|X| = 3^n$.

Result 2: B.N.S.Z.-D.

If Sq_o : $x \mapsto x \circ x$ is homomorphic, (X, r) is a split extension of a derived solution by one of the form $(x, y) \mapsto (-x + y, -x)$ for (X, +) a CML₃.

A. W. Nowak (Howard)

Definition: (B.N.S.Z.-D.)

Let $r: (x, y) \mapsto (x \circ y, x \bullet y)$ be a Latin braiding. If $r^3 = (tr)^2 = \mathrm{id}_{X^2}$, then (X, r) is a Latin, braided set with triality (LBST).

<u>Question</u>: How much can LBST stray from our motivating example?
 <u>Answer</u>: Not very far!

Result 1: B.N.S.Z.-D.

If (X, r) is a finite LBST, then $|X| = 3^n$.

Result 2: B.N.S.Z.-D.

If $Sq_{\circ}: x \mapsto x \circ x$ is homomorphic, (X, r) is a split extension of a derived solution by one of the form $(x, y) \mapsto (-x + y, -x)$ for (X, +) a CML₃.

For any LBST (X, r), we have the following:

- $x \bullet y = x \setminus_{\circ} x$, ie, $r : (x, y) \mapsto (x \circ y, x \setminus_{\circ} x)$ (using Prover9). • Because $x \bullet y = x \setminus_{\circ} y$ we'll abbreviate λ to λ
- (X, \setminus) is a commutative quasigroup in which the squaring map $Sq_{\lambda} : x \mapsto x \setminus x$ is an involutive endomorphism.
 - In particular, $(x \setminus x) \setminus (x \setminus x) = x$
- Proving commutativity of (X, \setminus) also "required" Prover9.

For any LBST (X, r), we have the following:

- $x \bullet y = x \setminus_{\circ} x$, ie, $r : (x, y) \mapsto (x \circ y, x \setminus_{\circ} x)$ (using Prover9).
- (X, \backslash) is a commutative quasigroup in which the squaring map $Sq_{\backslash} : x \mapsto x \backslash x$ is an involutive endomorphism.

In particular, $(x \setminus x) \setminus (x \setminus x) = x$

Proving commutativity of (X,\) also "required" Prover9.

For any LBST (X, r), we have the following:

• $x \bullet y = x \setminus_{\circ} x$, ie, $r : (x, y) \mapsto (x \circ y, x \setminus_{\circ} x)$ (using Prover9).

Because $x \bullet y = x \setminus_{\circ} y$, we'll abbreviate \setminus_{\circ} to \setminus .

• (X, \backslash) is a commutative quasigroup in which the squaring map $Sq_{\backslash} : x \mapsto x \backslash x$ is an involutive endomorphism.

In particular, $(x \setminus x) \setminus (x \setminus x) = x$

Proving commutativity of (X, \) also "required" Prover9.

For any LBST (X, r), we have the following:

• $x \bullet y = x \setminus x$, ie, $r : (x, y) \mapsto (x \circ y, x \setminus x)$ (using Prover9).

Because $x \bullet y = x \setminus_{\circ} y$, we'll abbreviate \setminus_{\circ} to \setminus .

• (X, \setminus) is a commutative quasigroup in which the squaring map $Sq_{\lambda} : x \mapsto x \setminus x$ is an involutive endomorphism.

In particular, $(x \setminus x) \setminus (x \setminus x) = x$

Proving commutativity of (X, \setminus) also "required" Prover9.

For any LBST (X, r), we have the following:

• $x \bullet y = x \setminus x$, ie, $r : (x, y) \mapsto (x \circ y, x \setminus x)$ (using Prover9).

Because $x \bullet y = x \setminus_{\circ} y$, we'll abbreviate \setminus_{\circ} to \setminus .

• (X, \setminus) is a commutative quasigroup in which the squaring map $Sq_{\lambda} : x \mapsto x \setminus x$ is an involutive endomorphism.

In particular, $(x \setminus x) \setminus (x \setminus x) = x$

Proving commutativity of (X, \setminus) also "required" Prover9.

The structure rack

Proposition: B.N.S.Z.-D.

The sturcture rack of an LBST (X, r) has form

 $x \triangleright_r y = x \circ (y \backslash y).$

This is an affine STS, and it is principally isotopic to (X, \circ)

Corollary: B.N.S.Z.-D. If (X, r) is a finite LBST, then $|X| = 3^n$.

A. W. Nowak (Howard)

Dihedral SYBE Solutions

The structure rack

Proposition: B.N.S.Z.-D.

The sturcture rack of an LBST (X, r) has form

 $x \triangleright_r y = x \circ (y \backslash y).$

This is an affine STS, and it is principally isotopic to (X, \circ)

Corollary: B.N.S.Z.-D.

If (X, r) is a finite LBST, then $|X| = 3^n$.

• Consider $Sq_{\circ}: x \mapsto x \circ x$

- This maps into a subquasigroup of idempotents of $(X, \circ, /, \backslash)$.
- $(Sq_o(X), \circ)$ is a subquandle of (X, \triangleright_r) .
- For any e ∈ X, X_e = {x ∈ X | Sq_o(x) = Sq_o(e)} is a subquasigroup of (X, o, /, \), and (X_e, \, e) is a CML₃.
 - Prover9 to the rescue again!
- A Structure Theorem (B.N.S.Z.-D.)

Let (X,r) be an LBST. If Sq_o is an endomorphism of (X,\circ) , then we have a split exact sequence of quasigroups

 $\{*\} \to X_e \to X \to \mathsf{Sq}_{\mathsf{o}}(X) \to \{*\}$

A. W. Nowak (Howard)

Dihedral SYBE Solutions

- Consider $Sq_{\circ} : x \mapsto x \circ x$
- This maps into a subquasigroup of idempotents of $(X, \circ, /, \backslash)$.
- $(Sq_{\circ}(X), \circ)$ is a subquandle of (X, \triangleright_r) .
- For any $e \in X$, $X_e = \{x \in X \mid \mathsf{Sq}_{\circ}(x) = \mathsf{Sq}_{\circ}(e)\}$ is a subquasigroup of $(X, \circ, /, \backslash)$, and (X_e, \backslash, e) is a CML_3 .
 - Prover9 to the rescue again!
- A Structure Theorem (B.N.S.Z.-D.)

Let (X,r) be an LBST. If Sq_o is an endomorphism of (X,\circ) , then we have a split exact sequence of quasigroups

$\{*\} \to X_e \to X \to \mathsf{Sq}_{\diamond}(X) \to \{*\}$

A. W. Nowak (Howard)

Dihedral SYBE Solutions

- Consider $Sq_{\circ} : x \mapsto x \circ x$
- This maps into a subquasigroup of idempotents of $(X, \circ, /, \backslash)$.
- $(Sq_{\circ}(X), \circ)$ is a subquandle of (X, \triangleright_r) .
- For any $e \in X$, $X_e = \{x \in X \mid \mathsf{Sq}_{\circ}(x) = \mathsf{Sq}_{\circ}(e)\}$ is a subquasigroup of $(X, \circ, /, \backslash)$, and (X_e, \backslash, e) is a CML_3 .
 - Prover9 to the rescue again!

A Structure Theorem (B.N.S.Z.-D.)

Let (X,r) be an LBST. If Sq_o is an endomorphism of (X,\circ) , then we have a split exact sequence of quasigroups

$\{*\} \to X_e \to X \to \mathsf{Sq}_{\circ}(X) \to \{*\}$

A. W. Nowak (Howard)

• Consider
$$Sq_{\circ}: x \mapsto x \circ x$$

- This maps into a subquasigroup of idempotents of $(X, \circ, /, \backslash)$.
- $(Sq_{\circ}(X), \circ)$ is a subquandle of (X, \triangleright_r) .
- For any $e \in X$, $X_e = \{x \in X \mid \mathsf{Sq}_\circ(x) = \mathsf{Sq}_\circ(e)\}$ is a subquasigroup of $(X, \circ, /, \backslash)$, and (X_e, \backslash, e) is a CML_3 .

Prover9 to the rescue again!

A Structure Theorem (B.N.S.Z.-D.)

Let (X,r) be an LBST. If Sq_o is an endomorphism of (X, \circ) , then we have a split exact sequence of quasigroups

$$\{*\} \to X_e \to X \to \mathsf{Sq}_{\circ}(X) \to \{*\}$$

A. W. Nowak (Howard)

• Consider
$$Sq_{\circ}: x \mapsto x \circ x$$

This maps into a subquasigroup of idempotents of $(X, \circ, /, \backslash)$.

•
$$(Sq_{\circ}(X), \circ)$$
 is a subquandle of (X, \triangleright_r) .

For any $e \in X$, $X_e = \{x \in X \mid \mathsf{Sq}_{\circ}(x) = \mathsf{Sq}_{\circ}(e)\}$ is a subquasigroup of $(X, \circ, /, \backslash)$, and (X_e, \backslash, e) is a CML_3 .

Prover9 to the rescue again!

A Structure Theorem (B.N.S.Z.-D.)

Let (X, r) be an LBST. If Sq_o is an endomorphism of (X, \circ) , then we have a split exact sequence of quasigroups

$$\{*\} \to X_e \to X \to \mathsf{Sq}_{\circ}(X) \to \{*\}$$

Question: Is Sq_o always a homomorphism?

- A naive Prover9 attempt ran out of memory.
- A naive Mace4 attempt found no counterexample of order 3, 9, or 27. Ran out of memory at 81.

Any linear LBST is of the form

$(x,y)\mapsto (-x+\varphi^{-1}(y),2\varphi(x)),$

where $2\varphi^3 + \varphi^2 + \varphi - 1 = 0$.

Sq_o is a homomorphism here.

Question: Is Sq_o always a homomorphism?

- A naive Prover9 attempt ran out of memory.
- A naive Mace4 attempt found no counterexample of order 3, 9, or 27. Ran out of memory at 81.
- Any linear LBST is of the form

$$(x,y) \mapsto (-x + \varphi^{-1}(y), 2\varphi(x)),$$

where $2\varphi^3 + \varphi^2 + \varphi - 1 = 0$.

Sq_o is a homomorphism here.

Question: Is Sq_o always a homomorphism?

- A naive Prover9 attempt ran out of memory.
- A naive Mace4 attempt found no counterexample of order 3, 9, or 27. Ran out of memory at 81.

Any linear LBST is of the form

$$(x,y) \mapsto (-x + \varphi^{-1}(y), 2\varphi(x)),$$

where $2\varphi^3 + \varphi^2 + \varphi - 1 = 0$.

Sq_o is a homomorphism here.

Question: Is Sq_o always a homomorphism?

- A naive Prover9 attempt ran out of memory.
- A naive Mace4 attempt found no counterexample of order 3, 9, or 27. Ran out of memory at 81.

Any linear LBST is of the form

$$(x,y)\mapsto (-x+\varphi^{-1}(y),2\varphi(x)),$$

where $2\varphi^3 + \varphi^2 + \varphi - 1 = 0$.

Sq_o is a homomorphism here.

Generalizations of LBST

Both 1 $r: \mathbb{Z}_n^2 \to \mathbb{Z}_n^2; (x, y) \mapsto (2x - y, x)$ 2 $r: \mathbb{Z}_n^2 \to \mathbb{Z}_n^2; (x, y) \mapsto (2x + y, -x)$ are SYBE solutions satisfying D_n -relations $r^n = (tr)^2 = \operatorname{id}_{X^2}$. 6 Given any pointed involutive quandle, (X, \cdot, e) , $r: (x, y) \mapsto (x \cdot (e \cdot y), e \cdot x) = (S_x(S_e(y)), S_e(x))$

is a SYBE solution with D_∞ -symmetry: $(tr)^2=\mathsf{id}_{X^2}.$

A. W. Nowak (Howard)

Generalizations of LBST

Both

 $\begin{array}{ll} \mathbf{1} & r: \mathbb{Z}_n^2 \to \mathbb{Z}_n^2; (x,y) \mapsto (2x-y,x) \\ \mathbf{2} & r: \mathbb{Z}_n^2 \to \mathbb{Z}_n^2; (x,y) \mapsto (2x+y,-x) \end{array}$

are SYBE solutions satisfying D_n -relations $r^n = (tr)^2 = id_{X^2}$. Given any pointed involutive quandle, (X, \cdot, e) ,

$$r:(x,y)\mapsto (x\cdot (e\cdot y),e\cdot x)=(S_x(S_e(y)),S_e(x))$$

is a SYBE solution with D_{∞} -symmetry: $(tr)^2 = id_{X^2}$.

Braided dihedral sets

Definition:

Let (X, r) be a Latin, braided set. If $(tr)^2 = id_{X^2}$, (X, r) is a Latin, braided, dihedral set (LBDS).

Proposition: B.N.S.Z.-D.

Let (X, r) be a LBDS. Then

- $1 r: (x,y) \mapsto (x \circ y, x \backslash_{\circ} x);$
- 2 the structure rack (X, \triangleright_r) is an involutive quandle.

 Because, \o is not necessarily commutative, they lack the rigidity of LBST.

Braided dihedral sets

Definition:

Let (X, r) be a Latin, braided set. If $(tr)^2 = id_{X^2}$, (X, r) is a Latin, braided, dihedral set (LBDS).

Proposition: B.N.S.Z.-D.

Let (X, r) be a LBDS. Then

- 1 $r: (x, y) \mapsto (x \circ y, x \setminus_{\circ} x);$
- **2** the structure rack (X, \triangleright_r) is an involutive quandle.

 Because, \o is not necessarily commutative, they lack the rigidity of LBST.

In the conjugation quandle Conj (D_n) , products take the form $r^{j}s > r^{k}s = r^{2j-k}s$

- $\blacksquare r^j \triangleright r^k = r^k$
- $\blacksquare r^j \triangleright r^k s = r^{2j+k} s$
- $\blacksquare r^j s \triangleright r^k = r^{-k}$
- All operations in LBST with homomorphic squaring map take one of these forms!
- Is there anything information about a braided set (X, r) hiding in the conjugation quandle of the group (r, t)?

In the conjugation quandle ${\sf Conj}(D_n)$, products take the form

- $\blacksquare r^j s \triangleright r^k s = r^{2j-k} s$
- $\ \ \, r^j \triangleright r^k = r^k$
- $\blacksquare r^j \triangleright r^k s = r^{2j+k} s$
- $\blacksquare r^j s \triangleright r^k = r^{-k}$
- All operations in LBST with homomorphic squaring map take one of these forms!
- Is there anything information about a braided set (X, r) hiding in the conjugation quandle of the group (r, t)?

In the conjugation quandle ${\sf Conj}(D_n)$, products take the form

 $\ \ \, r^js\triangleright r^ks=r^{2j-k}s$

$$r^j \triangleright r^k = r^k$$

$$r^j \triangleright r^k s = r^{2j+k} s$$

- $\blacksquare r^j s \triangleright r^k = r^{-1}$
- All operations in LBST with homomorphic squaring map take one of these forms!
- Is there anything information about a braided set (X, r) hiding in the conjugation quandle of the group (r, t)?

In the conjugation quandle ${\sf Conj}(D_n)$, products take the form

$$\blacksquare r^js \triangleright r^ks = r^{2j-k}s$$

$$r^j \triangleright r^k = r^k$$

$$r^j \triangleright r^k s = r^{2j+k} s$$

$$r^j s \triangleright r^k = r^{-k}$$

- All operations in LBST with homomorphic squaring map take one of these forms!
- Is there anything information about a braided set (*X*, *r*) hiding in the conjugation quandle of the group ⟨*r*, *t*⟩?

In the conjugation quandle ${\sf Conj}(D_n)$, products take the form

$$\begin{array}{l} \bullet \ r^j s \triangleright r^k s = r^{2j-k} s \\ \bullet \ r^j \triangleright r^k = r^k \end{array}$$

$$r^j \triangleright r^k s = r^{2j+k} s$$

$$r^j s \triangleright r^k = r^{-k}$$

All operations in LBST with homomorphic squaring map take one of these forms!

Is there anything information about a braided set (X, r) hiding in the conjugation quandle of the group ⟨r, t⟩?

- In the conjugation quandle ${\sf Conj}(D_n)$, products take the form
 - $\begin{array}{c} r^{j}s \triangleright r^{k}s = r^{2j-k}s \\ r^{j} \triangleright r^{k} = r^{k} \\ r^{j} \triangleright r^{k}s = r^{2j+k}s \\ r^{j} \triangleright r^{k}s = r^{2j+k}s \end{array}$
 - $\bullet r^j s \triangleright r^k = r^{-k}$
- All operations in LBST with homomorphic squaring map take one of these forms!
- Is there anything information about a braided set (X, r) hiding in the conjugation quandle of the group $\langle r, t \rangle$?

Other avenues

- Expand the notion of LBDS to $(sr)^2 = 1$, where s is any involutive solution, not just the trivial one.
- Non-Latin dihedral solutions

References

- Lebed, V. On structure groups of set-theoretic solutions to the Yang-Baxter equation, Proc. Edinb. Math. Soc. 62 (2019), 683-717.
- Smith, J.D.H, Quantum idempotence, distributivity, and the Yang-Baxter equation Comment. Math. Univ. Carol. 57 (2016), 567-583
- Stanovský, D. and P. Vojtěchovský, Idempotent solutions of the Yang-Baxter equation and twisted group division, Fund. Math. 255 (2021) 51-68.