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AFFINE SUBSPACES and
CONVEX SUBSETS of Rn

R — the field of reals; I◦ :=]0,1[= (0,1) ⊂ R.

The line Lx,y through x, y ∈ Rn:
Lx,y = {xy p = x(1− p) + yp ∈ Rn | p ∈ R}.

A ⊆ Rn is a (non-trivial) affine subspace of Rn if together with
any two different points x and y it contains the line Lx,y.

The line segment Ix,y joining the points x, y:
Ix,y = {xy p = x(1− p) + yp ∈ Rn | p ∈ I◦}.

C ⊆ Rn is a (non-trivial) convex subset of Rn if together with
any two different points x and y it contains the line segment Ix,y.
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AFFINE SPACES

R — a subfield of R. An affine space over R (or affine R-
space) — an algebra (A,R), where

R = {p | p ∈ R}
and

xyp = p(x, y) = x(1− p) + yp.

Note: (A,R) is equivalent to the algebra(
A,

n∑
i=1

xiri

∣∣∣∣ n∑
i=1

ri = 1
)
.

THEOREM: The class of affine R-spaces is a variety
(equationally defined class of algebras).
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BARYCENTRIC ALGEBRAS

R — a subfield of R; I◦ :=]0,1[= (0,1) ⊂ R.

Barycentric algebra — an algebra (A, I◦),
with a binary operation p for each operator p ∈ I◦,
axiomatized by the following:

idempotence (I): xxp = x ,

skew-commutativity (SC):
xyp = xy1− p =: xyp′ ,

skew-associativity (SA):
[xyp] z q = x [yzq/(p ◦ q)] p ◦ q

for all p, q ∈ I◦, where p ◦ q = (p′q′)′ = p+ q − pq.

5



Proposition: The class B of barycentric algebras is the smallest

variety containing the class C of convex sets.

For all p, q ∈ I◦, B also satisfies:

entropicity (E): [xyp] [ztp] q = [xzq] [ytq] p, and

distributivity (D): [xyp] z q = [xzq] [yzq] p,

x [yzp] q = [xyq] [xzq] p,

and C satisfies:

the cancellation laws (Cl): (xyp = xzp) → (y = z).

Proposition: C is the subquasivariety of the variety B defined by

the cancellation laws.
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EXAMPLES OF BARYCENTRIC ALGEBRAS

• Convex subsets of affine R-spaces under the operations

xyp = xp′ + yp = x(1− p) + yp

for each p ∈ I◦.

In particular,

• Polytopes - finitely generated convex sets.

The minimal set of generators of a polytope P is the set of its

vertices (extreme points).
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In particular:

• Simplices

Proposition: The n-dimensional simplex ∆n is
the free barycentric algebra on n+1 free generators x0, x1, . . . , xn
— the vertices of ∆n.

The elements of ∆n may be expressed in the standard form:

(. . . ((x0x1p1)x2p2) . . . )xnpn

for pi ∈ I, or as convex combinations:

x0q0 + · · ·+ xnqn,

where qi ∈ I and
∑n

i=0 qi = 1.

∆n is the Io-subreduct of the free affine R-space Rn over the
same set of generators.
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• Semilattices

“Stammered” semilattices (S, ·) - barycentric algebras with

the operation x · y = xyp for all p ∈ I◦.

Proposition: Stammered semilattices form the only non-trivial

proper subvariety SL of B, defined by

xyp = xyq

for all p, q ∈ I◦.
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• Semilattice sums

Lemma: Each barycentric algebra A has a homomorphism ϱ

onto a (stammered) semilattice S, with open convex sets As as

the congruence classes ϱ−1(s) for s ∈ S.

S is the semilattice replica of A.

And we say that A is a semilattice sum of As.

THEOREM: Each barycentric algebra is a semilattice sum of

open convex sets.
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WALLS

A wall of a barycentric algebra (B, Io) — a subset W of B such

that

∀ a, b ∈ B , ∀ p ∈ Io, abp ∈ W ⇔ a ∈ W and b ∈ W.

The walls of a polytope P are precisely its faces. (0-dimensional

faces — its vertices, 1-dimensional faces — its edges.)

The faces of a polytope are again polytopes, and under inclusion,

they form a lattice.

A polytope P is the union of its (relative) boundary (the union

of proper faces) and its (relative) interior.
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BARYCENTRIC COORDINATES IN A POLYTOPE

Simplex ∆n in Rn with ordered set v0,v1, . . . ,vn of vertices.

Each element x of ∆n may be presented uniquely as the convex
combination

x = v0p0 + · · ·+ vnpn,

with pi ∈ I and
∑n

i=0 pi = 1.

If x and vi are given by Cartesian coordinates of Rn,
the barycentric coordinates pi may be calculated by solving the
above equation.

Every polytope P with n+1 vertices is a homomorphic image of
the simplex ∆n.
Hence each of its elements can also be presented by the above
convex combination, however not in a unique way.
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A problem which appears in many applications of polytopes:

Given the set V of vertices vi of a polytope P , find some

specific barycentric coordinates of any x of P in some ho-

mogeneous way.

One looks for a function that assigns to each point x ∈ P , the

barycentric coordinates p(x,v) so that
∑

v∈V p(x,v) = 1 and

x =
∑
v∈V

p(x,v)v,

with some specific choice of p(x,v) ∈ I.

Some of the methods of solving this problem are based on a

decomposition of a polytope into the union of some simplices.
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A sample method

DECOMPOSITION THEOREM: P — a k-dimensional

polytope with set V of n+1 vertices. Fix v ∈ V .

Then P is the union of simplices isomorphic to ∆k,

each generated by a (k +1)-element subset of V containing v.

Note: Any two simplices of the decomposition Dv

of the Decomposition Theorem have a common wall that is a

simplex containing v.

Choose a simplex S of Dv. Then each point a of S

is the convex combination of some vertices of S.

The coefficients of the remaining vertices of P are 0.
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Presentation of points of P as affine or convex combination

• The generators of S freely generate the affine space Rk as well.

So one can represent any point of P as an affine combination of

the vertices of S. However some of the coordinates pi may be

negative.

• To find convex coordinates of any point a of P , one needs a

method of deciding to which simplex S of Dv the point a belongs.
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BARYCENTRIC COORDINATES IN A POLYGON

A polygon Π will be decomposed as a union of triangles.
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Areal coordinates in a triangle

τ123 - a triangle spanned by affinely independent elements

v1 < v2 < v3 of R2 in counterclockwise order.

Each x ∈ R2 has a unique represention as an affine combination

x = v1p1 + v2p2 + v3p3, (1)

with p1 = 1− p2 − p3.
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The unique solution of (1) with respect to p1, p2 and p3 is given

by

pj =
A

(
vj−1,x,vj+1

)
A (v1,v2,v3)

The suffix addition is taken modulo 3 here, and A(a,b, c)

is the area of the triangle spanned by counterclockwise ordered

a < b < c.
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A point x different from a vertex belongs to τ123 if at least one

of pi is positive and 0 ≤ p1, p2, p3 < 1.

If all pi > 0, one obtains classical areal coordinates of interior

points x of τ123 (Möbius, 1827 and Muggeridge, 1901). If one

of pi is zero, then x belongs to a side of τ123.

Points outside of τ123 have at least one negative coordinate.

E.g. x lies to the left of the line L12 through v1 and v2, precisely

when A (v2,x,v1) > 0, and x lies to the right of the line L12 if

A (v2,x,v1) < 0.
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The case of a general polygon

Π - a polygon spanned by counterclockwise ordered vertices

v1 < · · · < vn.

Decomposition Theorem provides the decomposition D1 = Dv1

of Π into the union of the triangles:

τ123, τ134, . . . , τ1n−1n. (2)

Let a ∈ Π. To find to which triangle a belongs, one calculates the

affine coordinates of a consecutively in triangles of (2). The first

triple i, j, k for which the coordinates are nonnegative provides the

triangle τijk containing a, and the coordinates pi, pj, pk, all other

coordinates are 0.
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Chordal decompositions, parsing trees: hexagon examples
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Chordal coordinates in a polygon

The skeleton of the polygon Π is the cyclic graph Cn constituted

by the vertices and undirected edges of the polygon.

In the cyclic graph Cn, a chord is an edge connecting vertices

which are not adjacent in Cn.

A chordal decomposition of the polygon Π with ordered vertex

set V = {v1 < v2 < · · · < vn} is a system of n − 3 non-crossing

chords of Cn that decompose Π as a union of n − 2 simplices

(triangles) whose vertices are vertices of Π.

Given a chordal decomposition, one obtains others by the action

of the dihedral group Dn.
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The hexagon as a representative example
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Three distinct types provide a full set of representatives for the

orbits of the group Dn on the chordally subdivided graph C6.

The number of all decompositions equals 14 (Catalan number).
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Chordal decompositions and parsing trees

To each chordal decomposition of Π, one assigns a parsing tree.

This is shown on the example of a hexagon.

The trees provide a basis for a recursive procedure for triangle

identification and orientation including the location of a given

point within a triangle. The procedure is founded on the cor-

respondence between chordal decompositions of Π and rooted

binary trees.
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Chordal decompositions, parsing trees: hexagon examples
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Cartographic coordinates

If a point a belongs to a triangle τijk of a chordal decomposition

δ of Π, then the chordal coordinates pi, pj, pk are the areal

coordinates in τijk, and all other coordinates are 0.

Any bias introduced by a particular decomposition may subse-

quently be removed taking the average of a point’s coordinates

in each of the decompositions appearing in the orbit of a dihedral

group. In this way one obtains cartographic coordinates.
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Thank you for your attention!
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