BARYCENTRIC ALGEBRAS and BARYCENTRIC COORDINATES

A.B. Romanowska¹, J.D.H. Smith², A. Zamojska-Dzienio¹

¹Warsaw University of Technology, Warsaw, Poland ²Iowa State University, Ames, Iowa, USA

CONTENTS

- Affine spaces and convex sets
- Barycentric algebras; basic examples and properties
- Barycentric coordinates in polytopes
- Special barycentric coordinates in polygones

AFFINE SUBSPACES and CONVEX SUBSETS of \mathbb{R}^n

 \mathbb{R} — the field of reals; $I^{\circ} :=]0, 1[=(0,1) \subset \mathbb{R}.$

The line $L_{x,y}$ through $x, y \in \mathbb{R}^n$: $L_{x,y} = \{xy \underline{p} = x(1-p) + yp \in \mathbb{R}^n \mid p \in \mathbb{R}\}.$

 $A \subseteq \mathbb{R}^n$ is a (non-trivial) **affine subspace** of \mathbb{R}^n if together with any two different points x and y it contains the line $L_{x,y}$.

The line segment $I_{x,y}$ joining the points x, y: $I_{x,y} = \{xy \underline{p} = x(1-p) + yp \in \mathbb{R}^n \mid p \in I^\circ\}.$

 $C \subseteq \mathbb{R}^n$ is a (non-trivial) **convex subset** of \mathbb{R}^n if together with any two different points x and y it contains the line segment $I_{x,y}$.

AFFINE SPACES

R — a subfield of \mathbb{R} . An affine space over R (or affine R-space) — an algebra (A, \underline{R}) , where

$$\underline{R} = \{\underline{p} \mid p \in R\}$$

and

$$xy\underline{p} = \underline{p}(x, y) = x(1-p) + yp.$$

Note: (A, \underline{R}) is equivalent to the algebra

$$\left(A, \sum_{i=1}^{n} x_i r_i \middle| \sum_{i=1}^{n} r_i = 1\right).$$

THEOREM: The class of affine *R*-spaces is a variety (equationally defined class of algebras).

BARYCENTRIC ALGEBRAS

R — a subfield of \mathbb{R} ; $I^{\circ} :=]0, 1[=(0,1) \subset R$.

Barycentric algebra — an algebra $(A, \underline{I}^{\circ})$, with a binary operation \underline{p} for each operator $p \in I^{\circ}$, axiomatized by the following:

idempotence (I): $xx\underline{p} = x$,

skew-commutativity (SC): $xy\underline{p} = xy\underline{1-p} =: xy\underline{p}'$,

skew-associativity (SA): $[xy\underline{p}] z \underline{q} = x [yz\underline{q}/(p \circ q)] \underline{p} \circ q$

for all $p, q \in I^{\circ}$, where $p \circ q = (p'q')' = p + q - pq$.

Proposition: The class \mathcal{B} of barycentric algebras is the smallest variety containing the class \mathcal{C} of convex sets.

For all $p, q \in I^{\circ}$, \mathcal{B} also satisfies: entropicity (E): $[xy\underline{p}] [zt\underline{p}] \underline{q} = [xz\underline{q}] [yt\underline{q}] \underline{p}$, and

distributivity (D):
$$[xy\underline{p}] z \underline{q} = [xz\underline{q}] [yz\underline{q}] \underline{p},$$

 $x [yz\underline{p}] \underline{q} = [xy\underline{q}] [xz\underline{q}] \underline{p},$

and $\ensuremath{\mathcal{C}}$ satisfies:

the cancellation laws (CI): $(xy\underline{p} = xz\underline{p}) \rightarrow (y = z)$.

Proposition: C is the subquasivariety of the variety \mathcal{B} defined by the cancellation laws.

EXAMPLES OF BARYCENTRIC ALGEBRAS

• **Convex subsets** of affine *R*-spaces under the operations

$$xy\underline{p} = xp' + yp = x(1-p) + yp$$

for each $p \in I^{\circ}$.

In particular,

• **Polytopes** - finitely generated convex sets.

The minimal set of generators of a polytope P is the set of its vertices (extreme points).

In particular:

• Simplices

Proposition: The *n*-dimensional simplex Δ_n is the free barycentric algebra on n+1 free generators x_0, x_1, \ldots, x_n — the vertices of Δ_n .

The elements of Δ_n may be expressed in the **standard form**:

$$(\dots ((x_0x_1\underline{p}_1)x_2\underline{p}_2)\dots)x_n\underline{p}_n$$

for $p_i \in I$, or as **convex combinations**:

 $x_0q_0+\cdots+x_nq_n,$

where $q_i \in I$ and $\sum_{i=0}^{n} q_i = 1$.

 Δ_n is the <u>I</u>^o-subreduct of the free affine R-space \mathbb{R}^n over the same set of generators.

• Semilattices

"Stammered" semilattices (S, \cdot) - barycentric algebras with the operation $x \cdot y = xyp$ for all $p \in I^{\circ}$.

Proposition: Stammered semilattices form the only non-trivial proper subvariety SL of B, defined by

$$xy\underline{p} = xy\underline{q}$$

for all $p, q \in I^{\circ}$.

• Semilattice sums

Lemma: Each barycentric algebra A has a homomorphism ϱ onto a (stammered) semilattice S, with open convex sets A_s as the congruence classes $\varrho^{-1}(s)$ for $s \in S$.

S is the semilattice replica of A. And we say that A is a semilattice sum of A_s .

THEOREM: Each barycentric algebra is a semilattice sum of open convex sets.

WALLS

A wall of a barycentric algebra (B, \underline{I}^o) — a subset W of B such that

$$\forall a, b \in B, \forall p \in I^o, abp \in W \Leftrightarrow a \in W \text{ and } b \in W.$$

The walls of a polytope P are precisely its faces. (0-dimensional faces — its vertices, 1-dimensional faces — its edges.)

The faces of a polytope are again polytopes, and under inclusion, they form a lattice.

A polytope P is the union of its (relative) **boundary** (the union of proper faces) and its (relative) **interior**.

BARYCENTRIC COORDINATES IN A POLYTOPE

Simplex Δ_n in \mathbb{R}^n with ordered set $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_n$ of vertices.

Each element ${\bf x}$ of Δ_n may be presented uniquely as the convex combination

 $\mathbf{x} = \mathbf{v}_0 p_0 + \dots + \mathbf{v}_n p_n,$

with $p_i \in I$ and $\sum_{i=0}^n p_i = 1$.

If x and v_i are given by Cartesian coordinates of \mathbb{R}^n , the barycentric coordinates p_i may be calculated by solving the above equation.

Every polytope P with n+1 vertices is a homomorphic image of the simplex Δ_n .

Hence each of its elements can also be presented by the above convex combination, however not in a unique way.

A problem which appears in many applications of polytopes:

Given the set V of vertices v_i of a polytope P, find some specific barycentric coordinates of any x of P in some homogeneous way.

One looks for a function that assigns to each point $\mathbf{x} \in P$, the barycentric coordinates $p(\mathbf{x}, \mathbf{v})$ so that $\sum_{\mathbf{v} \in V} p(\mathbf{x}, \mathbf{v}) = 1$ and

$$\mathbf{x} = \sum_{\mathbf{v} \in V} p(\mathbf{x}, \mathbf{v}) \mathbf{v},$$

with some specific choice of $p(\mathbf{x}, \mathbf{v}) \in I$.

Some of the methods of solving this problem are based on a decomposition of a polytope into the union of some simplices.

A sample method

DECOMPOSITION THEOREM: P — a k-dimensional polytope with set V of n + 1 vertices. Fix $\mathbf{v} \in V$. Then P is the union of simplices isomorphic to Δ_k , each generated by a (k + 1)-element subset of V containing \mathbf{v} .

Note: Any two simplices of the decomposition D_v of the Decomposition Theorem have a common wall that is a simplex containing v.

Choose a simplex S of D_v . Then each point a of S is the convex combination of some vertices of S. The coefficients of the remaining vertices of P are 0.

Presentation of points of *P* as affine or convex combination

• The generators of S freely generate the affine space \mathbb{R}^k as well. So one can represent any point of P as an affine combination of the vertices of S. However some of the coordinates p_i may be negative.

• To find convex coordinates of any point \mathbf{a} of P, one needs a method of deciding to which simplex S of D_v the point \mathbf{a} belongs.

BARYCENTRIC COORDINATES IN A POLYGON

A polygon Π will be decomposed as a union of triangles.

Areal coordinates in a triangle

 τ_{123} - a triangle spanned by affinely independent elements $v_1 < v_2 < v_3$ of \mathbb{R}^2 in counterclockwise order.

Each $\mathbf{x} \in \mathbb{R}^2$ has a unique represention as an affine combination

$$\mathbf{x} = \mathbf{v}_1 p_1 + \mathbf{v}_2 p_2 + \mathbf{v}_3 p_3, \tag{1}$$

with $p_1 = 1 - p_2 - p_3$.

The unique solution of (1) with respect to p_1, p_2 and p_3 is given by

$$p_{j} = \frac{A\left(\mathbf{v}_{j-1}, \mathbf{x}, \mathbf{v}_{j+1}\right)}{A\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)}$$

The suffix addition is taken modulo 3 here, and $A(\mathbf{a}, \mathbf{b}, \mathbf{c})$ is the area of the triangle spanned by counterclockwise ordered $\mathbf{a} < \mathbf{b} < \mathbf{c}$.

A point x different from a vertex belongs to τ_{123} if at least one of p_i is positive and $0 \le p_1, p_2, p_3 < 1$.

If all $p_i > 0$, one obtains classical **areal coordinates** of interior points x of τ_{123} (Möbius, 1827 and Muggeridge, 1901). If one of p_i is zero, then x belongs to a side of τ_{123} .

Points outside of τ_{123} have at least one negative coordinate. E.g. x lies to the left of the line \mathcal{L}_{12} through \mathbf{v}_1 and \mathbf{v}_2 , precisely when $A(\mathbf{v}_2, \mathbf{x}, \mathbf{v}_1) > 0$, and x lies to the right of the line \mathcal{L}_{12} if $A(\mathbf{v}_2, \mathbf{x}, \mathbf{v}_1) < 0$.

The case of a general polygon

 Π - a polygon spanned by counterclockwise ordered vertices $\mathbf{v}_1 < \cdots < \mathbf{v}_n.$

Decomposition Theorem provides the decomposition $\mathcal{D}_1 = \mathcal{D}_{v_1}$ of Π into the union of the triangles:

$$\tau_{123}, \tau_{134}, \dots, \tau_{1n-1n}.$$
 (2)

Let $\mathbf{a} \in \Pi$. To find to which triangle a belongs, one calculates the affine coordinates of a consecutively in triangles of (2). The first triple i, j, k for which the coordinates are nonnegative provides the triangle τ_{ijk} containing \mathbf{a} , and the coordinates p_i, p_j, p_k , all other coordinates are 0.

(-)

Chordal decompositions, parsing trees: hexagon examples

Chordal coordinates in a polygon

The **skeleton** of the polygon Π is the cyclic graph C_n constituted by the vertices and undirected edges of the polygon. In the cyclic graph C_n , a **chord** is an edge connecting vertices which are not adjacent in C_n .

A chordal decomposition of the polygon Π with ordered vertex set $V = \{v_1 < v_2 < \cdots < v_n\}$ is a system of n - 3 non-crossing chords of C_n that decompose Π as a union of n - 2 simplices (triangles) whose vertices are vertices of Π .

Given a chordal decomposition, one obtains others by the action of the dihedral group D_n .

The hexagon as a representative example

Three distinct types provide a full set of representatives for the orbits of the group D_n on the chordally subdivided graph C_6 .

The number of all decompositions equals 14 (Catalan number).

Chordal decompositions and parsing trees

To each chordal decomposition of Π , one assigns a parsing tree. This is shown on the example of a hexagon.

The trees provide a basis for a recursive procedure for triangle identification and orientation including the location of a given point within a triangle. The procedure is founded on the correspondence between chordal decompositions of Π and rooted binary trees.

Chordal decompositions, parsing trees: hexagon examples

25

Cartographic coordinates

If a point a belongs to a triangle τ_{ijk} of a chordal decomposition δ of Π , then the **chordal coordinates** p_i, p_j, p_k are the areal coordinates in τ_{ijk} , and all other coordinates are 0.

Any bias introduced by a particular decomposition may subsequently be removed taking the average of a point's coordinates in each of the decompositions appearing in the orbit of a dihedral group. In this way one obtains **cartographic coordinates**.

Some references

- Floater M.S.: Generalized barycentric coordinates and applications, Acta Numer. **24** (2015), 161–214.
- Möbius A.F.: Der Baryzentrische Calcül, Barth, Leipzig, 1827.
- Muggeridge G.D.: Areal coordinates, Math. Gaz. 2 (1901), 45–51.
- Neumann, W.D.: On the quasivariety of convex subsets of affine spaces, Arch. Math. (Basel) 21 (1970), 11–16.
- Romanowska, A.: Convex sets and barycentric algebras, Contemp. Math. **721** (2019), 243–259.
- Romanowska, A.B., Smith, J.D.H.: Modal Theory, Heldermann, Berlin, 1985.
- Romanowska, A.B., Smith, J.D.H.: Modes, World Scientific, Singapore, 2002.
- Warren J.: Barycentric cordinates for convex polytopes, Adv. Comput. Math. 6 (1996), 97–108.

Thank you for your attention!