BARYCENTRIC ALGEBRAS and BARYCENTRIC COORDINATES

A.B. Romanowska ${ }^{1}$, J.D.H. Smith ${ }^{2}$, A. Zamojska-Dzienio ${ }^{1}$
${ }^{1}$ Warsaw University of Technology, Warsaw, Poland
${ }^{2}$ Iowa State University, Ames, Iowa, USA

CONTENTS

- Affine spaces and convex sets
- Barycentric algebras;
basic examples and properties
- Barycentric coordinates in polytopes
- Special barycentric coordinates in polygones

AFFINE SUBSPACES and CONVEX SUBSETS of \mathbb{R}^{n}
\mathbb{R} - the field of reals; $\left.I^{\circ}:=\right] 0,1[=(0,1) \subset \mathbb{R}$.
The line $L_{x, y}$ through $x, y \in \mathbb{R}^{n}$:
$L_{x, y}=\left\{x y \underline{p}=x(1-p)+y p \in \mathbb{R}^{n} \mid p \in \mathbb{R}\right\}$.
$A \subseteq \mathbb{R}^{n}$ is a (non-trivial) affine subspace of \mathbb{R}^{n} if together with any two different points x and y it contains the line $L_{x, y}$.

The line segment $I_{x, y}$ joining the points x, y :
$I_{x, y}=\left\{x y \underline{p}=x(1-p)+y p \in \mathbb{R}^{n} \mid p \in I^{\circ}\right\}$.
$C \subseteq \mathbb{R}^{n}$ is a (non-trivial) convex subset of \mathbb{R}^{n} if together with any two different points x and y it contains the line segment $I_{x, y}$.

AFFINE SPACES

R - a subfield of \mathbb{R}. An affine space over R (or affine R space) - an algebra (A, \underline{R}), where

$$
\underline{R}=\{\underline{p} \mid p \in R\}
$$

and

$$
x y \underline{p}=\underline{p}(x, y)=x(1-p)+y p .
$$

Note: (A, \underline{R}) is equivalent to the algebra

$$
\left(A, \sum_{i=1}^{n} x_{i} r_{i} \mid \sum_{i=1}^{n} r_{i}=1\right) .
$$

THEOREM: The class of affine R-spaces is a variety (equationally defined class of algebras).

BARYCENTRIC ALGEBRAS

R - a subfield of $\left.\mathbb{R} ; I^{\circ}:=\right] 0,1[=(0,1) \subset R$.
Barycentric algebra - an algebra (A, \underline{I}°), with a binary operation \underline{p} for each operator $p \in I^{\circ}$, axiomatized by the following:
idempotence (I): $\quad x x \underline{p}=x$,
skew-commutativity (SC):
$x y \underline{p}=x y \underline{1-p}=: x y \underline{p}^{\prime}$,
skew-associativity (SA):
$[x y \underline{p}] z \underline{q}=x[y z \underline{q /(p \circ q)}] \underline{p \circ q}$
for all $p, q \in I^{\circ}$, where $p \circ q=\left(p^{\prime} q^{\prime}\right)^{\prime}=p+q-p q$.

Proposition: The class \mathcal{B} of barycentric algebras is the smallest variety containing the class \mathcal{C} of convex sets.

For all $p, q \in I^{\circ}, \mathcal{B}$ also satisfies:
entropicity (E): $[x y \underline{p}][z t \underline{p}] \underline{q}=[x z \underline{q}][y t \underline{q}] \underline{p}$, and
distributivity (D): $[x y \underline{p}] z \underline{q}=[x z \underline{q}][y z \underline{q}] \underline{p}$,

$$
x[y z \underline{p}] \underline{q}=[x y \underline{q}][x z \underline{q}] \underline{p},
$$

and \mathcal{C} satisfies:
the cancellation laws $(\mathrm{Cl}):(x y \underline{p}=x z \underline{p}) \rightarrow(y=z)$.

Proposition: \mathcal{C} is the subquasivariety of the variety \mathcal{B} defined by the cancellation laws.

EXAMPLES OF BARYCENTRIC ALGEBRAS

- Convex subsets of affine R-spaces under the operations

$$
x y \underline{p}=x p^{\prime}+y p=x(1-p)+y p
$$

for each $p \in I^{\circ}$.

In particular,

- Polytopes - finitely generated convex sets.

The minimal set of generators of a polytope P is the set of its vertices (extreme points).

In particular:

- Simplices

Proposition: The n-dimensional simplex Δ_{n} is the free barycentric algebra on $n+1$ free generators $x_{0}, x_{1}, \ldots, x_{n}$ - the vertices of Δ_{n}.

The elements of Δ_{n} may be expressed in the standard form:

$$
\left(\ldots\left(\left(x_{0} x_{1} \underline{p}_{1}\right) x_{2} \underline{p}_{2}\right) \ldots\right) x_{n} \underline{p}_{n}
$$

for $p_{i} \in I$, or as convex combinations:

$$
x_{0} q_{0}+\cdots+x_{n} q_{n}
$$

where $q_{i} \in I$ and $\sum_{i=0}^{n} q_{i}=1$.
Δ_{n} is the \underline{I}^{o}-subreduct of the free affine R-space R^{n} over the same set of generators.

- Semilattices
"Stammered" semilattices (S, \cdot) - barycentric algebras with the operation $x \cdot y=x y \underline{p}$ for all $p \in I^{\circ}$.

Proposition: Stammered semilattices form the only non-trivial proper subvariety $\mathcal{S L}$ of \mathcal{B}, defined by

$$
x y \underline{p}=x y \underline{q}
$$

for all $p, q \in I^{\circ}$.

- Semilattice sums

Lemma: Each barycentric algebra A has a homomorphism ϱ onto a (stammered) semilattice S, with open convex sets A_{s} as the congruence classes $\varrho^{-1}(s)$ for $s \in S$.
S is the semilattice replica of A.
And we say that A is a semilattice sum of A_{s}.

THEOREM: Each barycentric algebra is a semilattice sum of open convex sets.

WALLS

A wall of a barycentric algebra $\left(B, \underline{I}^{o}\right)$ - a subset W of B such that

$$
\forall a, b \in B, \forall p \in I^{o}, a b \underline{p} \in W \Leftrightarrow a \in W \text { and } b \in W
$$

The walls of a polytope P are precisely its faces. (0-dimensional faces - its vertices, 1-dimensional faces - its edges.)

The faces of a polytope are again polytopes, and under inclusion, they form a lattice.

A polytope P is the union of its (relative) boundary (the union of proper faces) and its (relative) interior.

BARYCENTRIC COORDINATES IN A POLYTOPE

Simplex Δ_{n} in \mathbb{R}^{n} with ordered set $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of vertices.
Each element x of Δ_{n} may be presented uniquely as the convex combination

$$
\mathbf{x}=\mathbf{v}_{0} p_{0}+\cdots+\mathbf{v}_{n} p_{n}
$$

with $p_{i} \in I$ and $\sum_{i=0}^{n} p_{i}=1$.
If \mathbf{x} and \mathbf{v}_{i} are given by Cartesian coordinates of \mathbb{R}^{n}, the barycentric coordinates p_{i} may be calculated by solving the above equation.

Every polytope P with $n+1$ vertices is a homomorphic image of the simplex Δ_{n}.
Hence each of its elements can also be presented by the above convex combination, however not in a unique way.

A problem which appears in many applications of polytopes:

Given the set V of vertices v_{i} of a polytope P, find some specific barycentric coordinates of any x of P in some homogeneous way.

One looks for a function that assigns to each point $\mathrm{x} \in P$, the barycentric coordinates $p(\mathbf{x}, \mathbf{v})$ so that $\sum_{\mathbf{v} \in V} p(\mathbf{x}, \mathbf{v})=1$ and

$$
\mathbf{x}=\sum_{\mathbf{v} \in V} p(\mathbf{x}, \mathbf{v}) \mathbf{v}
$$

with some specific choice of $p(\mathbf{x}, \mathbf{v}) \in I$.

Some of the methods of solving this problem are based on a decomposition of a polytope into the union of some simplices.

A sample method

DECOMPOSITION THEOREM: P - a k-dimensional
polytope with set V of $n+1$ vertices. Fix $\mathbf{v} \in V$.
Then P is the union of simplices isomorphic to Δ_{k}, each generated by a ($k+1$)-element subset of V containing \mathbf{v}.

Note: Any two simplices of the decomposition D_{v}
of the Decomposition Theorem have a common wall that is a simplex containing \mathbf{v}.

Choose a simplex S of D_{v}. Then each point a of S is the convex combination of some vertices of S.
The coefficients of the remaining vertices of P are 0 .

Presentation of points of P as affine or convex combination

- The generators of S freely generate the affine space \mathbb{R}^{k} as well. So one can represent any point of P as an affine combination of the vertices of S. However some of the coordinates p_{i} may be negative.
- To find convex coordinates of any point a of P, one needs a method of deciding to which simplex S of D_{v} the point a belongs.

BARYCENTRIC COORDINATES IN A POLYGON

A polygon Π will be decomposed as a union of triangles.

Areal coordinates in a triangle

τ_{123} - a triangle spanned by affinely independent elements $\mathrm{v}_{1}<\mathrm{v}_{2}<\mathrm{v}_{3}$ of \mathbb{R}^{2} in counterclockwise order.

Each $\mathrm{x} \in \mathbb{R}^{2}$ has a unique represention as an affine combination

$$
\begin{equation*}
\mathbf{x}=\mathbf{v}_{1} p_{1}+\mathbf{v}_{2} p_{2}+\mathbf{v}_{3} p_{3}, \tag{1}
\end{equation*}
$$

with $p_{1}=1-p_{2}-p_{3}$.

The unique solution of (1) with respect to p_{1}, p_{2} and p_{3} is given by

$$
p_{j}=\frac{A\left(\mathbf{v}_{j-1}, \mathbf{x}, \mathbf{v}_{j+1}\right)}{A\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)}
$$

The suffix addition is taken modulo 3 here, and $A(\mathbf{a}, \mathbf{b}, \mathbf{c})$ is the area of the triangle spanned by counterclockwise ordered $\mathbf{a}<\mathbf{b}<\mathbf{c}$.

A point \mathbf{x} different from a vertex belongs to τ_{123} if at least one of p_{i} is positive and $0 \leq p_{1}, p_{2}, p_{3}<1$.

If all $p_{i}>0$, one obtains classical areal coordinates of interior points x of τ_{123} (Möbius, 1827 and Muggeridge, 1901). If one of p_{i} is zero, then x belongs to a side of τ_{123}.

Points outside of τ_{123} have at least one negative coordinate. E.g. x lies to the left of the line \mathcal{L}_{12} through v_{1} and v_{2}, precisely when $A\left(\mathbf{v}_{2}, \mathrm{x}, \mathrm{v}_{1}\right)>0$, and x lies to the right of the line \mathcal{L}_{12} if $A\left(\mathrm{v}_{2}, \mathrm{x}, \mathrm{v}_{1}\right)<0$.

The case of a general polygon

Π - a polygon spanned by counterclockwise ordered vertices
$\mathbf{v}_{1}<\cdots<\mathbf{v}_{n}$.

Decomposition Theorem provides the decomposition $\mathcal{D}_{1}=\mathcal{D}_{v_{1}}$ of Π into the union of the triangles:

$$
\begin{equation*}
\tau_{123}, \tau_{134}, \ldots, \tau_{1 n-1 n} \tag{2}
\end{equation*}
$$

Let $\mathbf{a} \in \Pi$. To find to which triangle a belongs, one calculates the affine coordinates of a consecutively in triangles of (2). The first triple i, j, k for which the coordinates are nonnegative provides the triangle $\tau_{i j k}$ containing \mathbf{a}, and the coordinates p_{i}, p_{j}, p_{k}, all other coordinates are 0.

Chordal decompositions, parsing trees: hexagon examples

Chordal coordinates in a polygon

The skeleton of the polygon Π is the cyclic graph C_{n} constituted by the vertices and undirected edges of the polygon.
In the cyclic graph C_{n}, a chord is an edge connecting vertices which are not adjacent in C_{n}.

A chordal decomposition of the polygon Π with ordered vertex set $V=\left\{\mathbf{v}_{1}<\mathbf{v}_{2}<\cdots<\mathbf{v}_{n}\right\}$ is a system of $n-3$ non-crossing chords of C_{n} that decompose Π as a union of $n-2$ simplices (triangles) whose vertices are vertices of Π.

Given a chordal decomposition, one obtains others by the action of the dihedral group D_{n}.

The hexagon as a representative example

Three distinct types provide a full set of representatives for the orbits of the group D_{n} on the chordally subdivided graph C_{6}.

The number of all decompositions equals 14 (Catalan number).

Chordal decompositions and parsing trees

To each chordal decomposition of Π, one assigns a parsing tree. This is shown on the example of a hexagon.

The trees provide a basis for a recursive procedure for triangle identification and orientation including the location of a given point within a triangle. The procedure is founded on the correspondence between chordal decompositions of Π and rooted binary trees.

Chordal decompositions, parsing trees: hexagon examples

Cartographic coordinates

If a point a belongs to a triangle $\tau_{i j k}$ of a chordal decomposition δ of Π, then the chordal coordinates p_{i}, p_{j}, p_{k} are the areal coordinates in $\tau_{i j k}$, and all other coordinates are 0.

Any bias introduced by a particular decomposition may subsequently be removed taking the average of a point's coordinates in each of the decompositions appearing in the orbit of a dihedral group. In this way one obtains cartographic coordinates.

Some references

- Floater M.S.: Generalized barycentric coordinates and applications, Acta Numer. 24 (2015), 161--214.
- Möbius A.F.: Der Baryzentrische Calcül, Barth, Leipzig, 1827.
- Muggeridge G.D.: Areal coordinates, Math. Gaz. 2 (1901), 45-51.
- Neumann, W.D.: On the quasivariety of convex subsets of affine spaces, Arch. Math. (Basel) 21 (1970), 11-16.
- Romanowska, A.: Convex sets and barycentric algebras,

Contemp. Math. 721 (2019), 243-259.

- Romanowska, A.B., Smith, J.D.H.: Modal Theory, Heldermann, Berlin, 1985.
- Romanowska, A.B., Smith, J.D.H.: Modes, World Scientific, Singapore, 2002.
- Warren J.: Barycentric cordinates for convex polytopes, Adv. Comput. Math. 6 (1996), 97-108.

Thank you for your attention!

