When is the commutant of a Moufang loop normal?

J.D. Phillips

Northern Michigan University

Loops '23, Będlewo

Commutant

Commutant

Commutant of a loop, L:

$$
C(L)=\{x \in L: \forall y \in L, x y=y x\}
$$

Commutant

Commutant of a loop, L:

$$
C(L)=\{x \in L: \forall y \in L, x y=y x\}
$$

Semantic caution:

Commutant

Commutant of a loop, L:

$$
C(L)=\{x \in L: \forall y \in L, x y=y x\}
$$

Semantic caution: commutator,

Commutant

Commutant of a loop, L:

$$
C(L)=\{x \in L: \forall y \in L, x y=y x\}
$$

Semantic caution: commutator, Moufang center,

Commutant

Commutant of a loop, L:

$$
C(L)=\{x \in L: \forall y \in L, x y=y x\}
$$

Semantic caution: commutator, Moufang center, commutative center,

Commutant

Commutant of a loop, L:

$$
C(L)=\{x \in L: \forall y \in L, x y=y x\}
$$

Semantic caution: commutator, Moufang center, commutative center, etc.

Commutant

Commutant of a loop, L:

$$
C(L)=\{x \in L: \forall y \in L, x y=y x\}
$$

Semantic caution: commutator, Moufang center, commutative center, etc.

The commutant of a loop need not be a subloop.

Commutant

Commutant of a loop, L:

$$
C(L)=\{x \in L: \forall y \in L, x y=y x\}
$$

Semantic caution: commutator, Moufang center, commutative center, etc.

The commutant of a loop need not be a subloop.

In Moufang loops, the commutant is a subloop.

Commutant

Commutant of a loop, L:

$$
C(L)=\{x \in L: \forall y \in L, x y=y x\}
$$

Semantic caution: commutator, Moufang center, commutative center, etc.

The commutant of a loop need not be a subloop.

In Moufang loops, the commutant is a subloop.
Is it normal?

(Basic) Inner Mappings, Normality

(Basic) Inner Mappings, Normality

Translations:

$$
x R(y)=y L(x)=x y
$$

(Basic) Inner Mappings, Normality

Translations:

$$
x R(y)=y L(x)=x y
$$

(Basic) Inner mappings:

$$
\begin{gathered}
T(x)=R(x) L(x)^{-1} \\
L(x, y)=L(x) L(y) L(y x)^{-1} \\
R(x, y)=R(x) R(y) R(x y)^{-1}
\end{gathered}
$$

(Basic) Inner Mappings, Normality

Translations:

$$
x R(y)=y L(x)=x y
$$

(Basic) Inner mappings:

$$
\begin{gathered}
T(x)=R(x) L(x)^{-1} \\
L(x, y)=L(x) L(y) L(y x)^{-1} \\
R(x, y)=R(x) R(y) R(x y)^{-1}
\end{gathered}
$$

A subloop is normal if it is invariant, as a set, under the (basic) inner mappings.

Nucleus, Doro Conjecture

Nucleus, Doro Conjecture

$$
N_{\lambda}(L)=\{a \in L: \forall x, y \in L, a \cdot x y=a x \cdot y\}
$$

Nucleus, Doro Conjecture

$$
\begin{aligned}
& N_{\lambda}(L)=\{a \in L: \forall x, y \in L, a \cdot x y=a x \cdot y\} \\
& N_{\mu}(L)=\{a \in L: \forall x, y \in L, x \cdot a y=x a \cdot y\}
\end{aligned}
$$

Nucleus, Doro Conjecture

$$
\begin{aligned}
& N_{\lambda}(L)=\{a \in L: \forall x, y \in L, a \cdot x y=a x \cdot y\} \\
& N_{\mu}(L)=\{a \in L: \forall x, y \in L, x \cdot a y=x a \cdot y\} \\
& N_{\rho}(L)=\{a \in L: \forall x, y \in L, x \cdot y a=x y \cdot a\}
\end{aligned}
$$

Nucleus, Doro Conjecture

$$
\begin{aligned}
& N_{\lambda}(L)=\{a \in L: \forall x, y \in L, a \cdot x y=a x \cdot y\} \\
& N_{\mu}(L)=\{a \in L: \forall x, y \in L, x \cdot a y=x a \cdot y\} \\
& N_{\rho}(L)=\{a \in L: \forall x, y \in L, x \cdot y a=x y \cdot a\}
\end{aligned}
$$

Nucleus:

$$
\operatorname{Nuc}(L)=N_{\lambda}(L) \cap N_{\mu}(L) \cap N_{\rho}(L)
$$

Nucleus, Doro Conjecture

$$
\begin{aligned}
& N_{\lambda}(L)=\{a \in L: \forall x, y \in L, a \cdot x y=a x \cdot y\} \\
& N_{\mu}(L)=\{a \in L: \forall x, y \in L, x \cdot a y=x a \cdot y\} \\
& N_{\rho}(L)=\{a \in L: \forall x, y \in L, x \cdot y a=x y \cdot a\}
\end{aligned}
$$

Nucleus:

$$
\operatorname{Nuc}(L)=N_{\lambda}(L) \cap N_{\mu}(L) \cap N_{\rho}(L)
$$

Conjecture (Doro):
If $\operatorname{Nuc}(L)=1$, then $C(L)$ is normal.

Doro

Doro

Fiath. Proc. Camb. Phil. Soc. (1978), 83, 377

Simple Moufang loops

By STEPHEN DORO

Michigan State University, East Lansing, Michigan 48824

(Received 7 March 1977, revised version 11 November 1977)
Introduction. If H is a Moufang loop, and $x \in H$, there are defined permutations of H, $L(x): y \mapsto x y$ and $R(x): y \mapsto y x$. The group $\operatorname{Gr}(H)$, generated by these permutations for all choices of x, is called the multiplication group of H. It has a close connexion with the structure of H, as shown, for instance, in the papers of Albert(1). The purpose of this paper is to investigate the correspondence between groups and loops, so that group theoretic results may be applied to determine the structure of Moufang loops.

Glauberman(6) points out that for Moufang loops M with trivial nucleus, the multiplication group $\operatorname{Gr}(M)$ admits a certain dihedral group D of automorphisms, with $|D|=6$. For fixed generators $\sigma, \rho \in D$ with $|\sigma|=2,|\rho|=3$, the following equation holds for any x in $\operatorname{Gr}(M)$:

$$
\begin{equation*}
[x, \sigma][x, \sigma]^{\rho}[x, \sigma]^{\rho^{2}}=1 \text {, i.e. } \quad\left([x, \sigma] \rho^{2}\right)^{3}=1 . \tag{1}
\end{equation*}
$$

We shall call groups G with such automorphisms, and satisfying the condition $[G, D]=G$, groups with triality, since the most striking example is $D_{4}(q)$ with its graph automorphisms.

History, Drama

History, Drama

If commutants are always normal in Moufang loops, then Doro's conjecture is trivial.

History, Drama

If commutants are always normal in Moufang loops, then Doro's conjecture is trivial. So there must be a counterexample.

History, Drama

If commutants are always normal in Moufang loops, then Doro's conjecture is trivial. So there must be a counterexample. Right?

History, Drama

If commutants are always normal in Moufang loops, then Doro's conjecture is trivial. So there must be a counterexample. Right?

A bit of a saga.

History, Drama

If commutants are always normal in Moufang loops, then Doro's conjecture is trivial. So there must be a counterexample. Right?

A bit of a saga.

Talked to Zavarnitsine.

History, Drama

If commutants are always normal in Moufang loops, then Doro's conjecture is trivial. So there must be a counterexample. Right?

A bit of a saga.

Talked to Zavarnitsine. Solved a few weeks later.

History, Drama

If commutants are always normal in Moufang loops, then Doro's conjecture is trivial. So there must be a counterexample. Right?

A bit of a saga.

Talked to Zavarnitsine. Solved a few weeks later.

Classification and conjecture.

Counterexamples, lots of them

Counterexamples, lots of them

A. Grishkov and A. Zavarnitsine. "Moufang loops with nonnormal commutative centre", Math. Proc. Cambridge Philos. Soc., 2021.

Counterexamples, lots of them

A. Grishkov and A. Zavarnitsine. "Moufang loops with nonnormal commutative centre", Math. Proc. Cambridge Philos. Soc., 2021.

Two different infinite families of counterexamples.

Counterexamples, lots of them

A. Grishkov and A. Zavarnitsine. "Moufang loops with nonnormal commutative centre", Math. Proc. Cambridge Philos. Soc., 2021.

Two different infinite families of counterexamples. For any Moufang loop of exponent 3 which does not satisfy the identity $[[x, y], z]=1$ there is a Moufang loop with nonnormal commutant.

Counterexamples, lots of them

A. Grishkov and A. Zavarnitsine. "Moufang loops with nonnormal commutative centre", Math. Proc. Cambridge Philos. Soc., 2021.

Two different infinite families of counterexamples. For any Moufang loop of exponent 3 which does not satisfy the identity $[[x, y], z]=1$ there is a Moufang loop with nonnormal commutant. One family uses groups with triality.

Counterexamples, lots of them

A. Grishkov and A. Zavarnitsine. "Moufang loops with nonnormal commutative centre", Math. Proc. Cambridge Philos. Soc., 2021.

Two different infinite families of counterexamples. For any Moufang loop of exponent 3 which does not satisfy the identity $[[x, y], z]=1$ there is a Moufang loop with nonnormal commutant. One family uses groups with triality. Smallest example has order $3^{6}=729$.

Right Inner Mappings

Right Inner Mappings

In Moufang loops, $L(x, y)=R\left(x^{-1}, y^{-1}\right)$.

Right Inner Mappings

In Moufang loops, $L(x, y)=R\left(x^{-1}, y^{-1}\right)$. Also, if $c \in C(L)$, then $c T(x)=c$.

Right Inner Mappings

In Moufang loops, $L(x, y)=R\left(x^{-1}, y^{-1}\right)$. Also, if $c \in C(L)$, then $c T(x)=c$. Thus, the question of the normality of $C(L)$ is reduced to the question of whether or not $C(L)$ is invariant under each $R(x, y)$.

Right Inner Mappings

In Moufang loops, $L(x, y)=R\left(x^{-1}, y^{-1}\right)$. Also, if
$c \in C(L)$, then $c T(x)=c$. Thus, the question of the normality of $C(L)$ is reduced to the question of whether or not $C(L)$ is invariant under each $R(x, y)$.

Theorem

In a Moufang loop, L, if any one of x, y and z is in $C(L)$, then $z R(x, y)^{3}=z$.

Equational

Equational

Fix $a, b \in L, c \in C(L)$. Let

$$
d=c R(a, b)
$$

Equational

Fix $a, b \in L, c \in C(L)$. Let

$$
d=c R(a, b)=(c a \cdot b)(a b)^{-1}
$$

Equational

Fix $a, b \in L, c \in C(L)$. Let

$$
d=c R(a, b)=(c a \cdot b)(a b)^{-1}=(c a \cdot b)\left(b^{-1} a^{-1}\right)
$$

Equational

Fix $a, b \in L, c \in C(L)$. Let

$$
d=c R(a, b)=(c a \cdot b)(a b)^{-1}=(c a \cdot b)\left(b^{-1} a^{-1}\right)
$$

Thus, the question of the normality of $C(L)$ becomes: is $d \in \mathrm{C}(L)$?

Equational

Fix $a, b \in L, c \in C(L)$. Let

$$
d=c R(a, b)=(c a \cdot b)(a b)^{-1}=(c a \cdot b)\left(b^{-1} a^{-1}\right)
$$

Thus, the question of the normality of $C(L)$ becomes: is $d \in \mathrm{C}(L)$? Explicitly: if e is an arbitrary element in L, does $d \cdot e=e \cdot d$?

Entirely equational

Entirely equational

Theorem
Fix $a, b, e \in L$ and $c \in C(L)$; set $d=c R(a, b)=$ $(c a \cdot b)\left(b^{-1} a^{-1}\right)$.

Entirely equational

Theorem

Fix $a, b, e \in L$ and $c \in C(L)$; set $d=c R(a, b)=$ $(c a \cdot b)\left(b^{-1} a^{-1}\right)$.

1. If a, b, or c is a cube, then $d=c$.

Entirely equational

Theorem

Fix $a, b, e \in L$ and $c \in C(L)$; set $d=c R(a, b)=$ $(c a \cdot b)\left(b^{-1} a^{-1}\right)$.

1. If a, b, or c is a cube, then $d=c$.
2. If e is a product of cubes, then $d \cdot e=e \cdot d$.

Entirely equational

Theorem

Fix $a, b, e \in L$ and $c \in C(L)$; set $d=c R(a, b)=$
$(c a \cdot b)\left(b^{-1} a^{-1}\right)$.

1. If a, b, or c is a cube, then $d=c$.
2. If e is a product of cubes, then $d \cdot e=e \cdot d$.

Corollary

If L is generated by cubes, then $C(L)$ is normal.

Generalized Conjecture

Generalized Conjecture

Doro's inspiration was Glauberman's result (1968) about Moufang loops with trivial nucleus, namely, that their multiplication groups admit S_{3} as group of automorphisms.

Generalized Conjecture

Doro's inspiration was Glauberman's result (1968) about Moufang loops with trivial nucleus, namely, that their multiplication groups admit S_{3} as group of automorphisms.

Generalized Conjecture :
" $\operatorname{Nuc}(L)=1$ " lives or dies with " $\operatorname{Mlt}(L)$ admits triality."

Dziękuję!

Thanks for your kind attention!

