Public key cryptographic algorithms on vector-valued functions Conference "LOOPS"23"

Fedir Sokhatsky

Vasyl' Stus Donetsk National University
Vinnytsia, Ukraine

$$
\text { July 1, } 2023
$$

Problem:

To build an asymmetric algorithm that is resistant to hacking on an arbitrary computer.

Invertibility of binary operations

Let Q be a set, \mathcal{O}_{2} the set of all binary operations on Q.
(1) the left and right multiplications of binary operations:

$$
\binom{\binom{f \otimes g}{1}(x, y):=f(g(x, y), y)}{\binom{\otimes}{2}}(x, y):=f(x, g(x, y)) ; ~ \$
$$

(3) the left and right selectors: $e_{1}(x, y):=x, e_{2}(x, y):=y$;
(3) f is called: left (right) invertible if f is an invertible element in the left $\left(\mathcal{O}_{2} ; \otimes, e_{1}\right)$ (resp. right $\left.\left(\mathcal{O}_{2} ; \otimes, e_{2}\right)\right)$ symmetric monoid; invertible if f is invertible in both left and right symmetric monoids;
© functional definition: $(Q ; f)$ is a quasigroup iff f is invertible.

Invertibility of binary operations

Let Q be a set, \mathcal{O}_{2} the set of all binary operations on Q.
(1) the left and right multiplications of binary operations:

$$
\binom{\binom{f \otimes g}{1}(x, y):=f(g(x, y), y)}{\binom{\otimes}{f}}(x, y):=f(x, g(x, y)) ; ~ \$
$$

(2) the left and right selectors: $e_{1}(x, y):=x, e_{2}(x, y):=y$;
in the left $\left(\mathcal{O}_{2} ; \otimes, e_{1}\right)$ (resp. right $\left.\left(\mathcal{O}_{2} ; \otimes, e_{2}\right)\right)$ symmetric
monoid: invertible if f is invertible in both left and right
symmetric monoids;
(0) functional definition: $(Q ; f)$ is a quasigroup iff f is invertible.

Invertibility of binary operations

Let Q be a set, \mathcal{O}_{2} the set of all binary operations on Q.
(1) the left and right multiplications of binary operations:

$$
\binom{\binom{f \otimes g}{1}(x, y):=f(g(x, y), y)}{\binom{\otimes}{2}}(x, y):=f(x, g(x, y)) ; ~ \$
$$

(2) the left and right selectors: $e_{1}(x, y):=x, e_{2}(x, y):=y$;
(3) f is called: left (right) invertible if f is an invertible element in the left $\left(\mathcal{O}_{2} ; \otimes_{1}^{\otimes}, e_{1}\right)$ (resp. right $\left.\left(\mathcal{O}_{2} ; \underset{2}{\otimes}, e_{2}\right)\right)$ symmetric monoid; invertible if f is invertible in both left and right symmetric monoids;
(O) functional definition: $(Q ; f)$ is a quasigroup iff f is invertible.

Invertibility of binary operations

Let Q be a set, \mathcal{O}_{2} the set of all binary operations on Q.
(1) the left and right multiplications of binary operations:

$$
\binom{f \otimes g}{\left(\begin{array}{c}
1 \\
f \otimes g \\
2
\end{array}\right)}(x, y):=f(g(x, y), y),=f(x, g(x, y)) ; ~ \$
$$

(2) the left and right selectors: $e_{1}(x, y):=x, e_{2}(x, y):=y$;
(3) f is called: left (right) invertible if f is an invertible element in the left $\left(\mathcal{O}_{2} ; \underset{1}{\otimes}, \boldsymbol{e}_{1}\right)$ (resp. right $\left.\left(\mathcal{O}_{2} ; \underset{2}{\otimes}, e_{2}\right)\right)$ symmetric monoid; invertible if f is invertible in both left and right symmetric monoids;
(1) functional definition: $(Q ; f)$ is a quasigroup iff f is invertible.

Invertibility of multiary operations

Let x_{i}^{j} be x_{i}, \ldots, x_{j}, Q be a set, \mathcal{O}_{n} the set of all n-ary operations on Q.
Then for all $i=1, \ldots, n$
(1) i-th multiplication of n-ary operations and i-th selector:

$$
(f \otimes g g)\left(x_{1}^{n}\right):=f\left(x_{1}^{i-1}, g\left(x_{1}^{n}\right), x_{i+1}^{n}\right), \quad e_{i}\left(x_{1}^{n}\right):=x_{i}
$$

(3) i-th symmetric monoid: $\left(\mathcal{O}_{n} ; \otimes, e_{i}\right)$;
(3) an operation f is called:
i-invertible if f is an invertible element in i-th symmetric monoid $\left(\mathcal{O}_{n} ; \otimes, e_{i}\right)$;
invertible if f is i-th invertible for all i;
(0) functional definition: $(Q ; f)$ is a quasigroup iff f is invertible.

Invertibility of multiary operations

Let x_{i}^{j} be x_{i}, \ldots, x_{j}, Q be a set, \mathcal{O}_{n} the set of all n-ary operations on Q.
Then for all $i=1, \ldots, n$
(1) i-th multiplication of n-ary operations and i-th selector:

$$
(f \otimes g g)\left(x_{1}^{n}\right):=f\left(x_{1}^{i-1}, g\left(x_{1}^{n}\right), x_{i+1}^{n}\right), \quad e_{i}\left(x_{1}^{n}\right):=x_{i}
$$

(2) i-th symmetric monoid: $\left(\mathcal{O}_{n} ; \underset{i}{\otimes}, \boldsymbol{e}_{i}\right)$;
(3) an operation f is called:
i-invertible if f is an invertible element in i-th symmetric monoid $\left(\mathcal{O}_{n} ; \otimes, e_{i}\right)$; invertible if f is i-th invertible for all i;
(- functional definition: $(Q ; f)$ is a quasigroup iff f is invertible.

Invertibility of multiary operations

Let x_{i}^{j} be x_{i}, \ldots, x_{j}, Q be a set, \mathcal{O}_{n} the set of all n-ary operations on Q.
Then for all $i=1, \ldots, n$
(1) i-th multiplication of n-ary operations and i-th selector:

$$
(f \otimes g g)\left(x_{1}^{n}\right):=f\left(x_{1}^{i-1}, g\left(x_{1}^{n}\right), x_{i+1}^{n}\right), \quad e_{i}\left(x_{1}^{n}\right):=x_{i}
$$

(2) i-th symmetric monoid: $\left(\mathcal{O}_{n} ; \underset{i}{\otimes}, \boldsymbol{e}_{i}\right)$;
(3) an operation f is called:
i-invertible if f is an invertible element in i-th symmetric $\operatorname{monoid}\left(\mathcal{O}_{n} ; \underset{i}{\otimes}, e_{i}\right)$;
invertible if f is i-th invertible for all i;
(-) functional definition: $(Q ; f)$ is a quasigroup iff f is invertible.

Invertibility of multiary operations

Let x_{i}^{j} be x_{i}, \ldots, x_{j}, Q be a set, \mathcal{O}_{n} the set of all n-ary operations on Q.
Then for all $i=1, \ldots, n$
(1) i-th multiplication of n-ary operations and i-th selector:

$$
(f \otimes g)\left(x_{1}^{n}\right):=f\left(x_{1}^{i-1}, g\left(x_{1}^{n}\right), x_{i+1}^{n}\right), \quad e_{i}\left(x_{1}^{n}\right):=x_{i}
$$

(2) i-th symmetric monoid: $\left(\mathcal{O}_{n} ; \underset{i}{\otimes}, \boldsymbol{e}_{i}\right)$;
(3) an operation f is called:
i-invertible if f is an invertible element in i-th symmetric $\operatorname{monoid}\left(\mathcal{O}_{n} ; \underset{i}{\otimes}, e_{i}\right)$; invertible if f is i-th invertible for all i;
(1) functional definition: $(Q ; f)$ is a quasigroup iff f is invertible.

Vector-valued operations $=$ vector operations

Vector-valued operations

$g: Q^{n} \rightarrow Q^{k}$ is a vector-valued operation, n an arity, k a rank. It is also called (m, k)-operation or multioperation.
Example. Let \mathbb{F} be the set of all real numbers. $g: \mathbb{F}^{n} \rightarrow \mathbb{F}^{k}$. If g is linear, then $g(\bar{x})=A \bar{x}$ for some matrix A over \mathbb{F}.

Coordinate operations
Each of the operations, say g, defines and is defined by a
sequence of n-ary operations g_{1}, \ldots, g_{k} :

$g=\left(g_{1}\right.$,
g_{n}).

Vector-valued operations $=$ vector operations

Vector-valued operations

$g: Q^{n} \rightarrow Q^{k}$ is a vector-valued operation, n an arity, k a rank. It is also called (m, k)-operation or multioperation.
Example. Let \mathbb{F} be the set of all real numbers. $g: \mathbb{F}^{n} \rightarrow \mathbb{F}^{k}$. If g is linear, then $g(\bar{x})=A \bar{x}$ for some matrix A over \mathbb{F}.

Coordinate operations

Each of the operations, say g, defines and is defined by a sequence of n-ary operations g_{1}, \ldots, g_{k} :

$$
g\left(x_{1}^{n}\right)=\left(g_{1}\left(x_{1}^{n}\right), \ldots, g_{k}\left(x_{1}^{n}\right)\right), \quad g=\left(g_{1}, \ldots, g_{n}\right)
$$

Symmetric monoids of vector operations

Let Q be a set; $\mathcal{O}_{n, k}$ the set of all n-ary vector-valued operations of the rank $k \leqslant n ; \varkappa:=\left\{j_{1}, \ldots, j_{k}\right\} \subseteq\{1, \ldots, n\} ; f$ and g are n-ary vector operations, and $g=\left(g_{1}, \ldots, g_{k}\right)$.

s-multiplication and x-selector:

x-invertibility

An n-ary vector operation of the rank k is called x-invertible if
f is invertible element in the monoid $\left(\mathcal{O}_{n, k} ; \otimes, e_{\varkappa}\right)$.

Symmetric monoids of vector operations

Let Q be a set; $\mathcal{O}_{n, k}$ the set of all n-ary vector-valued operations of the rank $k \leqslant n ; \varkappa:=\left\{j_{1}, \ldots, j_{k}\right\} \subseteq\{1, \ldots, n\} ; f$ and g are n-ary vector operations, and $g=\left(g_{1}, \ldots, g_{k}\right)$.
x-multiplication and x-selector:

$$
\begin{aligned}
(f \otimes g)\left(x_{1}^{n}\right)= & f\left(x_{1}^{j_{1}-1}, g_{1}\left(x_{1}^{n}\right), x_{j_{1}+1}^{j_{2}-1}, \ldots, x_{j_{k-1}+1}^{j_{k}-1} g_{k}\left(x_{1}^{n}\right), x_{j_{k}+1}^{n}\right), \\
& e_{\varkappa}\left(x_{1}, \ldots, x_{n}\right):=\left(x_{j_{1}}, \ldots, x_{j_{k}}\right) .
\end{aligned}
$$

x-invertibility
An n-ary vector operation of the rank k is called x-invertible if
f is invertible element in the monoid $\left(\mathcal{O}_{n, k} ; \otimes, e_{\varkappa}\right)$.

Symmetric monoids of vector operations

Let Q be a set; $\mathcal{O}_{n, k}$ the set of all n-ary vector-valued operations of the rank $k \leqslant n ; \varkappa:=\left\{j_{1}, \ldots, j_{k}\right\} \subseteq\{1, \ldots, n\} ; f$ and g are n-ary vector operations, and $g=\left(g_{1}, \ldots, g_{k}\right)$.
\varkappa-multiplication and \varkappa-selector:

$$
\begin{aligned}
(f \otimes g)\left(x_{1}^{n}\right)= & f\left(x_{1}^{j_{1}-1}, g_{1}\left(x_{1}^{n}\right), x_{j_{1}+1}^{j_{2}-1}, \ldots, x_{j_{k-1}+1}^{j_{k}-1} g_{k}\left(x_{1}^{n}\right), x_{j_{k}+1}^{n}\right), \\
& e_{\varkappa}\left(x_{1}, \ldots, x_{n}\right):=\left(x_{j_{1}}, \ldots, x_{j_{k}}\right) .
\end{aligned}
$$

\varkappa-invertibility

An n-ary vector operation of the rank k is called \varkappa-invertible if f is invertible element in the monoid $\left(\mathcal{O}_{n, k} ; \otimes, e_{\varkappa}\right)$.

Construction of \varkappa-invertibile vector operations

Definition

Let f be an n-ary vector operation of the rank k on a set Q, $\varkappa \subseteq\{1, \ldots, n\}$ and $k=|\varkappa|$. A transformation of the set Q^{k} which defined by the term

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{k}\right)
$$

by replacing all $x_{i}, i \in \varkappa$ with some elements of Q is called a x-translation of f.

Proposition
Each translation of an n-ary x-invertible vector operation of the rank $k=|\varkappa|$ defined on a set Q is a permutation of the set Q^{k}

Construction of \varkappa-invertibile vector operations

Definition

Let f be an n-ary vector operation of the rank k on a set Q, $\varkappa \subseteq\{1, \ldots, n\}$ and $k=|\varkappa|$. A transformation of the set Q^{k} which defined by the term

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{k}\right)
$$

by replacing all $x_{i}, i \in \varkappa$ with some elements of Q is called a \varkappa-translation of f.

Proposition

Each translation of an n-ary \varkappa-invertible vector operation of the rank $k=|\varkappa|$ defined on a set Q is a permutation of the set Q^{k}.

The number of invertible multioperations

Proposition

Let $\left\{\varkappa, \varkappa^{\prime}\right\}$ be a partition of $\{1, \ldots, n\} ; \bar{x}_{\varkappa}, \bar{x}_{\varkappa^{\prime}}$ be \varkappa-subtuples of $\left(x_{1}, \ldots, x_{n}\right)$, and $\overline{\boldsymbol{a}} \mapsto \lambda_{\bar{a}}$ a mapping of the set Q^{n-k} to the set $S_{Q^{k}}$ of all permutations of the set Q^{k}; then f defined by

$$
f\left(x_{1}, \ldots, x_{n}\right):=\lambda_{\bar{x}_{\varkappa^{\prime}}}\left(\bar{x}_{\varkappa}\right),
$$

is an n-ary \varkappa-invertible multioperation of the rank $k=|\varkappa|$ on Q.

Corollary
The number of all n-ary x-invertible operations of the rank $k:=|\varkappa|$ on an m-element set is

The number of invertible multioperations

Proposition

Let $\left\{\varkappa, \varkappa^{\prime}\right\}$ be a partition of $\{1, \ldots, n\} ; \bar{x}_{\varkappa}, \bar{x}_{\varkappa^{\prime}}$ be \varkappa-subtuples of $\left(x_{1}, \ldots, x_{n}\right)$, and $\overline{\mathbf{a}} \mapsto \lambda_{\bar{a}}$ a mapping of the set Q^{n-k} to the set $S_{Q^{k}}$ of all permutations of the set Q^{k}; then f defined by

$$
f\left(x_{1}, \ldots, x_{n}\right):=\lambda_{\bar{x}_{\varkappa^{\prime}}}\left(\bar{x}_{\varkappa}\right),
$$

is an n-ary \varkappa-invertible multioperation of the rank $k=|\varkappa|$ on Q.

Corollary

The number of all n-ary x-invertible operations of the rank $k:=|\varkappa|$ on an m-element set is

$$
\begin{equation*}
\left(\left(m^{k}\right)!\right)^{m^{n-k}} \tag{1}
\end{equation*}
$$

Algorithm

Randomly selection:

- an integer n;
- a partition $\pi:=\left\{\varkappa_{1}, \ldots, \varkappa_{s}\right\}$ of the set $\overline{1, n}:=\{1, \ldots, n\}$;
- n-ary \varkappa_{i}-invertible vector operation f_{i} of the rank $\left|\varkappa_{i}\right|$ for each $i \in \overline{1, s}$;
- a permutation σ of $\overline{1, n}$ and a permutation τ of $\overline{1, s}$.

Construction:

- the operations $g_{1}, g_{2}, \ldots, g_{s}$ on Q by $g_{1}:=f_{1}$, and

$$
g_{i}:=\left(\ldots\left(\left(f_{i} \otimes f_{i-1}\right) \otimes \varkappa_{\varkappa_{i-1}} f_{i-2}\right) \ldots\right) \otimes f_{1}, \quad i \in \overline{2, s}, \quad \text { (2) }
$$

- a transformation θ of Q^{n} :

$$
\theta\left(x_{1}^{n}\right):=\left(g_{1 \tau}\left(x_{1 \sigma}, x_{2 \sigma}, \ldots, x_{n \sigma}\right), \ldots, g_{s \tau}\left(x_{1 \sigma}, x_{2 \sigma}, \ldots, x_{n \sigma}\right)\right) .
$$

Algorithm

Randomly selection:

- an integer n;
- a partition $\pi:=\left\{\varkappa_{1}, \ldots, \varkappa_{s}\right\}$ of the set $\overline{1, n}:=\{1, \ldots, n\}$;
- n-ary \varkappa_{i}-invertible vector operation f_{i} of the rank $\varkappa_{i} \mid$ for each $i \in \overline{1, s}$;
- a permutation σ of $1, n$ and a permutation τ of $1, S$.

Construction:

- the operations $g_{1}, g_{2}, \ldots, g_{s}$ on Q by $g_{1}:=f_{1}$, and

$$
\begin{equation*}
g_{i}:=\left(\ldots\left(\left(f_{i} \otimes f_{i-1}\right) \otimes x_{x_{i-1}} f_{i-2}\right) \ldots\right) \otimes f_{x_{i-2}}, \quad i \in \overline{2, s}, \tag{2}
\end{equation*}
$$

- a transformation θ of Q^{n} :

$$
\theta\left(x_{1}^{n}\right):=\left(g_{1 \tau}\left(x_{1 \sigma}, x_{2 \sigma}, \ldots, x_{n \sigma}\right), \ldots, g_{s \tau}\left(x_{1 \sigma}, x_{2 \sigma}, \ldots, x_{n \sigma}\right)\right)
$$

Algorithm

Randomly selection:

- an integer n;
- a partition $\pi:=\left\{\varkappa_{1}, \ldots, \varkappa_{s}\right\}$ of the set $\overline{1, n}:=\{1, \ldots, n\}$;
- n-ary \varkappa_{i}-invertible vector operation f_{i} of the rank $\left|\varkappa_{i}\right|$ for each $i \in \overline{1, s}$;
- a permutation σ of $\overline{1, n}$ and a permutation τ of $\overline{1, s}$.

Construction:

- the operations $g_{1}, g_{2}, \ldots, g_{s}$ on Q by $g_{1}:=f_{1}$, and $g_{i}:=(\ldots(\left(f_{i} \otimes f_{i-1}\right) \otimes \overbrace{\varkappa_{i-1}}) \ldots) \otimes f_{i-2}) \quad i \in \overline{2, s}, \quad(2)$
- a transformation θ of Q^{n}.

$$
\theta\left(x_{1}^{n}\right):=\left(g_{1 \tau}\left(x_{1 \sigma}, x_{2 \sigma}, \ldots, x_{n \sigma}\right), \ldots, g_{s \tau}\left(x_{1 \sigma}, x_{2 \sigma}, \ldots, x_{n \sigma}\right)\right)
$$

Algorithm

Randomly selection:

- an integer n;
- a partition $\pi:=\left\{\varkappa_{1}, \ldots, \varkappa_{s}\right\}$ of the set $\overline{1, n}:=\{1, \ldots, n\}$;
- n-ary \varkappa_{i}-invertible vector operation f_{i} of the rank $\left|\varkappa_{i}\right|$ for each $i \in \overline{1, s}$;
- a permutation σ of $\overline{1, n}$ and a permutation τ of $\overline{1, \boldsymbol{s}}$.

Construction:

- the operations $g_{1}, g_{2}, \ldots, g_{s}$ on Q by $g_{1}:=f_{1}$, and

- a transformation θ of Q^{n} :

$$
\theta\left(x_{1}^{\eta}\right):=\left(g_{1 \tau}\left(x_{1 \sigma}, x_{2 \sigma}, \ldots, x_{n \sigma}\right), \ldots, g_{s \tau}\left(x_{1 \sigma}, x_{2 \sigma}, \ldots, x_{n \sigma}\right)\right)
$$

Algorithm

Randomly selection:

- an integer n;
- a partition $\pi:=\left\{\varkappa_{1}, \ldots, \varkappa_{s}\right\}$ of the set $\overline{1, n}:=\{1, \ldots, n\}$;
- n-ary \varkappa_{i}-invertible vector operation f_{i} of the $\operatorname{rank}\left|\varkappa_{i}\right|$ for each $i \in \overline{1, s}$;
- a permutation σ of $\overline{1, n}$ and a permutation τ of $\overline{1, \boldsymbol{s}}$.

Construction:

- the operations $g_{1}, g_{2}, \ldots, g_{s}$ on Q by $g_{1}:=f_{1}$, and

$$
\begin{equation*}
g_{i}:=\left(\ldots\left(\left(f_{i} \otimes f_{i-1}\right) \otimes \varkappa_{\varkappa_{i-1}} f_{i-2}\right) \ldots\right) \otimes f_{\varkappa_{1}}, \quad i \in \overline{2, s}, \tag{2}
\end{equation*}
$$

$\theta\left(x_{1}^{n}\right):=\left(g_{1 \tau}\left(x_{1 \sigma}, x_{2 \sigma}, \ldots, x_{n \sigma}\right)\right.$,
$\left.g_{S \tau}\left(x_{1 \sigma}, x_{2 \sigma}, \ldots, x_{n \sigma}\right)\right)$

Algorithm

Randomly selection:

- an integer n;
- a partition $\pi:=\left\{\varkappa_{1}, \ldots, \varkappa_{s}\right\}$ of the set $\overline{1, n}:=\{1, \ldots, n\}$;
- n-ary \varkappa_{i}-invertible vector operation f_{i} of the rank $\left|\varkappa_{i}\right|$ for each $i \in \overline{1, s}$;
- a permutation σ of $\overline{1, n}$ and a permutation τ of $\overline{1, \boldsymbol{s}}$.

Construction:

- the operations $g_{1}, g_{2}, \ldots, g_{s}$ on Q by $g_{1}:=f_{1}$, and

$$
\begin{equation*}
g_{i}:=\left(\ldots\left(\left(f_{i} \otimes f_{i-1}\right) \varkappa_{\varkappa_{i-1}}^{\otimes} f_{i-2}\right) \ldots\right) \otimes_{\varkappa_{i}} f_{1}, \quad i \in \overline{2, s}, \tag{2}
\end{equation*}
$$

- a transformation θ of Q^{n} :

$$
\theta\left(x_{1}^{n}\right):=\left(g_{1 \tau}\left(x_{1 \sigma}, x_{2 \sigma}, \ldots, x_{n \sigma}\right), \ldots, g_{s \tau}\left(x_{1 \sigma}, x_{2 \sigma}, \ldots, x_{n \sigma}\right)\right)
$$

Algorithm

Keys:

- Public key: the pair (n, θ).
- Private key: the sequence of all other parameters: π, f_{1}, \ldots, f_{S}, S, σ, τ.

Action of the algorithm

Let \mathcal{I} be the information sequence of the alphabet Q that Bob is going to send to Alice.

Algorithm

Keys:

- Public key: the pair (n, θ).
- Private key: the sequence of all other parameters: π, f_{1}, \ldots, f_{S}, s, σ, τ.

Action of the algorithm

Let \mathcal{I} be the information sequence of the alphabet Q that Bob is going to send to Alice.

Algorithm

Keys:

- Public key: the pair (n, θ).
- Private key: the sequence of all other parameters: π, f_{1}, \ldots, f_{s}, s, σ, τ.

Action of the algorithm

Let \mathcal{I} be the information sequence of the alphabet Q that Bob is going to send to Alice.

Algorithm

Keys:

- Public key: the pair (n, θ).
- Private key: the sequence of all other parameters: π, f_{1}, \ldots, f_{s}, s, σ, τ.

Action of the algorithm

Let \mathcal{I} be the information sequence of the alphabet Q that Bob is going to send to Alice.
(1) Alice creates the pair (n, θ) and sends it to Bob;
(2) Bob divides the sequence \mathcal{I} into vectors of the length n, applies θ to each of them, and sends the received sequence to Alice;
(3) Alice decrypts the ciphertext using the privat key.

Algorithm

Keys:

- Public key: the pair (n, θ).
- Private key: the sequence of all other parameters: π, f_{1}, \ldots, f_{s}, s, σ, τ.

Action of the algorithm

Let \mathcal{I} be the information sequence of the alphabet Q that Bob is going to send to Alice.
(1) Alice creates the pair (n, θ) and sends it to Bob;
(2) Bob divides the sequence \mathcal{I} into vectors of the length n, applies θ to each of them, and sends the received sequence to Alice;
(8) Alice decrypts the ciphertext using the privat key.

Algorithm

Keys:

- Public key: the pair (n, θ).
- Private key: the sequence of all other parameters: π, f_{1}, \ldots, f_{s}, s, σ, τ.

Action of the algorithm

Let \mathcal{I} be the information sequence of the alphabet Q that Bob is going to send to Alice.
(1) Alice creates the pair (n, θ) and sends it to Bob;
(2) Bob divides the sequence \mathcal{I} into vectors of the length n, applies θ to each of them, and sends the received sequence to Alice;
(3) Alice decrypts the ciphertext using the privat key.

Algorithm

Keys:

- Public key: the pair (n, θ).
- Private key: the sequence of all other parameters: π, f_{1}, \ldots, f_{s}, s, σ, τ.

Action of the algorithm

Let \mathcal{I} be the information sequence of the alphabet Q that Bob is going to send to Alice.
(1) Alice creates the pair (n, θ) and sends it to Bob;
(2) Bob divides the sequence \mathcal{I} into vectors of the length n, applies θ to each of them, and sends the received sequence to Alice;
(3) Alice decrypts the ciphertext using the privat key.

Example

Suppose that a computer makes 10^{c} calculations per second and one calculation is one cipher check (for today's fastest computer $c<19)$. Let

$$
\begin{aligned}
& m=2(\text { cardinality of the alphabet } Q), \\
& n=20(\text { arity of the vector operations }),
\end{aligned}
$$

\square $\left|\varkappa_{1}\right|=2, \quad\left|\varkappa_{2}\right|=3, \quad\left|x_{3}\right|=4, \quad\left|\varkappa_{4}\right|=5, \quad\left|\varkappa_{5}\right|=6$.

The biute force attack

To consider all possibilities, the computer needs more than $10^{3000000-c}$ years.

Example

Suppose that a computer makes 10^{c} calculations per second and one calculation is one cipher check (for today's fastest computer $c<19)$. Let

$$
\begin{gathered}
m=2(\text { cardinality of the alphabet } Q), \\
n=20(\text { arity of the vector operations), } \\
\left.s=5 \text { (the number of classes } \varkappa_{i} \text { in the partition of }\{1, \ldots, 20\}\right), \\
\left|\varkappa_{1}\right|=2, \quad\left|\varkappa_{2}\right|=3, \quad\left|\varkappa_{3}\right|=4, \quad\left|\varkappa_{4}\right|=5, \quad\left|\varkappa_{5}\right|=6 .
\end{gathered}
$$

\square
To consider all possibilities, the computer needs more than $10^{3000000-c}$

Example

Suppose that a computer makes 10^{c} calculations per second and one calculation is one cipher check (for today's fastest computer $c<19)$. Let
$m=2($ cardinality of the alphabet $Q)$,
$n=20$ (arity of the vector operations),
$s=5$ (the number of classes \varkappa_{i} in the partition of $\{1, \ldots, 20\}$),

$$
\left|\varkappa_{1}\right|=2, \quad\left|\varkappa_{2}\right|=3, \quad\left|\varkappa_{3}\right|=4, \quad\left|\varkappa_{4}\right|=5, \quad\left|\varkappa_{5}\right|=6 .
$$

The brute force attack

To consider all possibilities, the computer needs more than $10^{3000000-c}$ years.

Thank you for your attention!

