# Supernilpotent loops 

David Stanovský

Charles University, Prague, Czech Republic

Loops'23, June 2023

## The structure of finite nilpotent groups

Classical Theorems: [quite easy to prove]

- Groups of prime power order are nilpotent.
- $G$ is a finite nilpotent group $\Rightarrow G \simeq \prod G_{p}$ where $G_{p}$ is a nilpotent group of order power of $p$


## The structure of finite nilpotent groups

Classical Theorems: [quite easy to prove]

- Groups of prime power order are nilpotent.
- $G$ is a finite nilpotent group $\Rightarrow G \simeq \prod G_{p}$ where $G_{p}$ is a nilpotent group of order power of $p$

Less Classical Theorems: [quite difficult to prove: Glaubermann, Wright 1968]

- Moufang loops of prime power order are nilpotent.
- $Q$ is a finite nilpotent Moufang loops $\Rightarrow Q \simeq \prod Q_{p}$ where $Q_{p}$ is a nilpotent loop of order power of $p$


## The structure of finite nilpotent groups

Classical Theorems: [quite easy to prove]

- Groups of prime power order are nilpotent.
- $G$ is a finite nilpotent group $\Rightarrow G \simeq \prod G_{p}$ where $G_{p}$ is a nilpotent group of order power of $p$

Less Classical Theorems: [quite difficult to prove: Glaubermann, Wright 1968]

- Moufang loops of prime power order are nilpotent.
- $Q$ is a finite nilpotent Moufang loops $\Rightarrow Q \simeq \prod Q_{p}$ where $Q_{p}$ is a nilpotent loop of order power of $p$

Folklore knowledge: Both properties, in general, fail in loops.

## Bad loops

| $:$ | 1 | $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $a$ | $b$ | $c$ | $d$ |
| $a$ | $a$ | 1 | $c$ | $d$ | $b$ |
| $b$ | $b$ | $d$ | 1 | $a$ | $c$ |
| $c$ | $c$ | $b$ | $d$ | 1 | $a$ |
| $d$ | $d$ | $c$ | $a$ | $b$ | 1 |

not nilpotent

|  | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 2 | 1 | 4 | 3 | 6 | 5 |
| 3 | 3 | 4 | 5 | 6 | 1 | 2 |
| 4 | 4 | 3 | 6 | 5 | 2 | 1 |
| 5 | 5 | 6 | 2 | 1 | 3 | 4 |
| 6 | 6 | 5 | 1 | 2 | 4 | 3 |

nilpotent, no primary decomposition
$Z\left(Q_{2}\right)=\{1,2\}$ is the only proper normal subloop $\operatorname{Mlt}\left(Q_{2}\right)$ is not nilpotent, has order 24
$\operatorname{Inn}\left(Q_{2}\right)=\left(\operatorname{Mlt}\left(Q_{2}\right)\right)_{1}$ is an abelian group of order 4
$Q_{1}$ is simple, $Z\left(Q_{1}\right)=1$

## Ad hoc idea

Theorem: [Bruck 1940s]
$\operatorname{Mlt}(Q)$ is nilpotent $\Rightarrow Q$ is centrally nilpotent

Theorem: [Wright 1969]
$Q$ finite, $\operatorname{Mlt}(Q)$ is nilpotent $\Rightarrow Q \simeq \prod Q_{p}$ where $Q_{p}$ is a nilpotent loop of order power of $p$
... is this a better notion of nilpotence for loops?

## Systematic idea

## UNIVERSAL ALGEBRA

## Systematic idea

## UNIVERSAL ALGEBRA

Terrible idea: CATEGORY THEORY [joke suggested by @ProfKinyon]

## What universal algebra did for us?

| abelian | $\longleftrightarrow$ | abelian group |
| :---: | :---: | :---: |
| ??? | $\longleftrightarrow$ |  |
|  | $\Downarrow$ |  |
| nilpotent | $\longleftrightarrow$ | centrally nilpotent |
|  | $\Downarrow$ |  |
| solvable | $\longleftrightarrow$ | [S, Vojtěchovský 2014] |
|  | $\Downarrow$ |  |
|  |  | (classically) solvable |

## What universal algebra did for us?

| abelian | $\longleftrightarrow$ | abelian group |
| :---: | :---: | :---: |
| ??? | $\longleftrightarrow$ | $\prod Q_{p}$ for $Q_{p}$ nilpotent p-loop |
|  | $\Downarrow$ |  |
| nilpotent | $\longleftrightarrow$ | centrally nilpotent |
| solvable | $\longleftrightarrow$ | [S, Vojtěchovský 2014] |
|  | $\Downarrow$ |  |
|  |  | (classically) solvable |

??? = supernilpotence

## Commutator, nilpotence

$C(\alpha ; \beta ; \delta)$ iff for every term $t$ and every $\bar{a} \stackrel{\alpha}{\equiv} \bar{b}, \bar{u} \stackrel{\beta}{=} \bar{v}$

$$
t(\bar{a}, \bar{u}) \xlongequal{\equiv} t(\bar{a}, \bar{v}) \Rightarrow t(\bar{b}, \bar{u}) \xlongequal{\equiv} t(\bar{b}, \bar{v})
$$

The commutator $[\alpha, \beta]$ is the smallest $\delta$ such that $C(\alpha ; \beta ; \delta)$.
The center $\zeta(A)$ is the largest congruence $\zeta$ such that $C\left(\zeta ; 1_{A} ; 0_{A}\right)$.

## Commutator, nilpotence

$C(\alpha ; \beta ; \delta)$ iff for every term $t$ and every $\bar{a} \stackrel{\alpha}{\equiv} \bar{b}, \bar{u} \stackrel{\beta}{=} \bar{v}$

$$
t(\bar{a}, \bar{u}) \xlongequal{\equiv} t(\bar{a}, \bar{v}) \Rightarrow t(\bar{b}, \bar{u}) \xlongequal{\equiv} t(\bar{b}, \bar{v})
$$

The commutator $[\alpha, \beta]$ is the smallest $\delta$ such that $C(\alpha ; \beta ; \delta)$.
The center $\zeta(A)$ is the largest congruence $\zeta$ such that $C\left(\zeta ; 1_{A} ; 0_{A}\right)$.

An algebra $A$ is $k$-nilpotent, if there are congruences $\alpha_{i}$ such that

$$
0_{A}=\alpha_{0} \leq \alpha_{1} \leq \ldots \leq \alpha_{k}=1_{A}
$$

and $\alpha_{i+1} / \alpha_{i} \leq \zeta\left(A / \alpha_{i}\right)$.
Fact: A loop is $k$-nilpotent if and only if centrally nilpotent of class $\leq k$.

## Higher commutator, supernilpotence

$C_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1} ; \beta ; \gamma\right)$ iff for every term $t$ and every $\bar{a}_{i} \xlongequal{\underline{\alpha_{i}}} \bar{b}_{i}, \bar{u} \stackrel{\beta}{\bar{\beta}} \bar{v}$
$t\left(\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{u}\right) \xlongequal{\risingdotseq} t\left(\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{v}\right) \quad \forall\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \in\left\{\bar{a}_{1}, \bar{b}_{1}\right\} \times \ldots \times\left\{\bar{a}_{n}, \bar{b}_{n}\right\}$ $\neq\left\{\left(\bar{b}_{1}, \ldots, \bar{b}_{n}\right)\right\}$
$\Downarrow$
$t\left(\bar{b}_{1}, \ldots, \bar{b}_{n}, \bar{u}\right) \stackrel{\delta}{\equiv} t\left(\bar{b}_{1}, \ldots, \bar{b}_{n}, \bar{v}\right)$.

The $n$-ary commutator $\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is the smallest $\delta$ such that $C_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1} ; \alpha_{n} ; \delta\right)$.
Fact: $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \geq\left[\alpha_{1},\left[\alpha_{2},\left[\ldots,\left[\alpha_{n-1}, \alpha_{n}\right]\right]\right]\right] \quad$ (in Mal'tsev varieties)

## Higher commutator, supernilpotence

$C_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1} ; \beta ; \gamma\right)$ iff for every term $t$ and every $\bar{a}_{i} \stackrel{\alpha_{i}}{\overline{\alpha_{i}}} \bar{b}_{i} \bar{u} \stackrel{\beta}{\bar{\beta}} \bar{v}$
$t\left(\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{u}\right) \xlongequal{\risingdotseq} t\left(\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{v}\right) \quad \forall\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \in\left\{\bar{a}_{1}, \bar{b}_{1}\right\} \times \ldots \times\left\{\bar{a}_{n}, \bar{b}_{n}\right\}$ $\neq\left\{\left(\bar{b}_{1}, \ldots, \bar{b}_{n}\right)\right\}$
$\Downarrow$
$t\left(\bar{b}_{1}, \ldots, \bar{b}_{n}, \bar{u}\right) \stackrel{\delta}{\risingdotseq} t\left(\bar{b}_{1}, \ldots, \bar{b}_{n}, \bar{v}\right)$.

The $n$-ary commutator $\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is the smallest $\delta$ such that $C_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1} ; \alpha_{n} ; \delta\right)$.
Fact: $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \geq\left[\alpha_{1},\left[\alpha_{2},\left[\ldots,\left[\alpha_{n-1}, \alpha_{n}\right]\right]\right]\right] \quad$ (in Mal'tsev varieties)

An algebra is $k$-supernilpotent if $\left[1_{A}, \ldots, 1_{A}\right]=0_{A}$.

## Supernilpotence - a better "definition"

Theorem: [Aichinger, Mudrinski, 2010] In Mal'tsev varieties,
(1) an algebra is $k$-supernilpotent if and only if all absorbing polynomials of arity $>k$ are constant.
(2) a finite algebra is $k$-supernilpotent if and only if $A \simeq \prod A_{p}$ where $A_{p}$ is a nilpotent algebra of order power of $p$

In loops:
Polynomial in $Q$ is a term with constants from $Q$.
Example: $p(x, y, z)=(x / a)(y \backslash(z a))$ where $a \in Q$ is fixed
A polynomial is absorbing if $p\left(a_{1}, \ldots, a_{n}\right)=1$ whenever at least one $a_{i}=1$.
Examples: $[x, y],[x, y, z], L_{x, y}(z) / z, \ldots,[x y, u] /([x, u][y, u]), \ldots$

## Supernilpotent groups

Theorem: [Aichinger, Ecker, 2006; S, Vojtěchovský 2023]
A group is $k$-supernilpotent iff $k$-nilpotent.

In general, not at all.
(1) $k$-supernilpotence $\Rightarrow k$-nilpotence
(2) nilpotence $\nRightarrow$ supernilpotence
(3) the degree of supernilpotence can be $\gg$ degree of nilpotence

## Degrees of nilpotence

- $\mathrm{cl}_{c n}(Q)=$ the class of central nilpotence of $Q$
- $\operatorname{cl}_{m}(Q)=$ the class of nilpotence of $\operatorname{Mlt}(Q)$
- $\operatorname{cl}_{s n}(Q)=$ the class of supernilpotence of $Q$

Theorem [S+Semanišinová - Bruck - Wright]:

$$
\begin{gathered}
\operatorname{cl}_{s n}(Q) \geq \operatorname{cl}_{m}(Q) \geq \operatorname{cl}_{c n}(Q) \\
Q \text { finite } \Rightarrow\left[\operatorname{cl}_{s n}(Q)<\infty \Leftrightarrow \operatorname{cl}_{m}(Q)<\infty\right]
\end{gathered}
$$

Examples:

- the bad loop of order 6: $\operatorname{cl}_{c n}(Q)=2, \operatorname{cl}_{m}(Q)=\operatorname{cl}_{s n}(Q)=\infty$
- 34 loops of order $8: \mathrm{cl}_{c n}(Q)=2, \operatorname{cl}_{m}(Q)=3, \mathrm{cl}_{s n}(Q) \geq 4$


## Equational basis for $k$-supernilpotence, in groups

In groups: supernilpotence $=$ nilpotence

A group is $k$-(super)nilpotent if and only if

$$
\left[x_{1},\left[x_{2},\left[\ldots,\left[x_{k}, x_{k+1}\right]\right]\right]\right]=1
$$

## Equational basis for $k$-supernilpotence, in loops

Let $\llbracket x, y \rrbracket$ and $\llbracket x, y, z \rrbracket$ be any terms such that, in all loops,

$$
\begin{aligned}
& \llbracket x, y \rrbracket=1 \Leftrightarrow x y=y x \\
& \llbracket x, y, z \rrbracket=1 \Leftrightarrow x(y z)=(x y) z
\end{aligned}
$$

Example: the standard commutator and associator

$$
\llbracket x, y \rrbracket=(y x) \backslash(x y), \llbracket x, y, z \rrbracket=x(y z) \backslash(x y) z
$$

## Equational basis for $k$-supernilpotence, in loops

Let $\llbracket x, y \rrbracket$ and $\llbracket x, y, z \rrbracket$ be any terms such that, in all loops,

$$
\begin{aligned}
\llbracket x, y \rrbracket & =1 \Leftrightarrow x y=y x \\
\llbracket x, y, z \rrbracket & =1 \Leftrightarrow x(y z)=(x y) z
\end{aligned}
$$

Example: the standard commutator and associator

$$
\llbracket x, y \rrbracket=(y x) \backslash(x y), \llbracket x, y, z \rrbracket=x(y z) \backslash(x y) z
$$

Easy facts:
1-supernilpotence: $\llbracket x, y \rrbracket=\llbracket x, y, z \rrbracket=1$ (abelian groups)
2-supernilpotence: $\llbracket x, \llbracket y, z \rrbracket \rrbracket=\llbracket x, y, z \rrbracket=1$ (2-nilpotent groups)

## Equational basis for 3-supernilpotent loops

Theorem: [S, Vojtěchovský, 2023]
TFAE for a loop $Q$ :

- $Q$ is 3-supernilpotent
- $Q$ satisfies the following identities for all $\llbracket ., . \rrbracket, \llbracket ., ., . \rrbracket$
- $Q$ satisfies the following identities for the standard $\llbracket ., . \rrbracket, \llbracket ., ., . \rrbracket$

$$
\begin{align*}
1 & =\llbracket x, \llbracket y, u, v \rrbracket \rrbracket  \tag{1}\\
1 & =\llbracket x, y, \llbracket u, v, w \rrbracket \rrbracket=\llbracket x, \llbracket u, v, w \rrbracket, y \rrbracket=\llbracket \llbracket u, v, w \rrbracket, x, y \rrbracket  \tag{2}\\
1 & =\llbracket x, y, \llbracket u, v \rrbracket \rrbracket=\llbracket x, \llbracket u, v \rrbracket, y \rrbracket=\llbracket \llbracket u, v \rrbracket, x, y \rrbracket  \tag{3}\\
1 & =\llbracket x, \llbracket y, \llbracket u, v \rrbracket \rrbracket \rrbracket=\llbracket x, \llbracket \llbracket u, v \rrbracket, y \rrbracket \rrbracket  \tag{4}\\
1 & =\llbracket \llbracket y, \llbracket u, v \rrbracket \rrbracket, x \rrbracket=\llbracket \llbracket \llbracket u, v \rrbracket, y \rrbracket, x \rrbracket  \tag{5}\\
1 & =\llbracket \llbracket x, y \rrbracket, \llbracket u, v \rrbracket \rrbracket  \tag{6}\\
\llbracket x y, u, v \rrbracket & =\llbracket x, u, v \rrbracket \llbracket y, u, v \rrbracket  \tag{7}\\
\llbracket u, x y, v \rrbracket & =\llbracket u, x, v \rrbracket \llbracket u, y, v \rrbracket  \tag{8}\\
\llbracket u, v, x y \rrbracket & =\llbracket u, v, x \rrbracket \llbracket u, v, y \rrbracket \tag{9}
\end{align*}
$$

## Problems

- Find a functions $f, g$ such that

$$
\operatorname{cl}_{s n}(Q) \leq f\left(c l_{c n}(Q)\right), \quad \operatorname{cl}_{s n}(Q) \leq g\left(c l_{m}(Q)\right)
$$

for every supernilpotent loop $Q$.

- Is the implication " $\operatorname{Mlt}(Q)$ nilpotent $\Rightarrow Q$ supernilpotent" true for infinite loops?
- Finite equational basis for the variety of $k$-supernilpotent loops.

