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Classical solvability and congruence solvability

Commutator of congruences

In 1978, Freese and McKenzie developed commutator theory for congruence
modular varieties.

Definition

Let A be an algebra and α, β, δ congruences of A. Then α centralizes β over δ
if

t(−→x ,−→u )δt(−→x ,−→v ) ⇒ t(−→y ,−→u )δt(−→y ,−→v )

whenever t is a term, xiαyi and uiβvi .

Definition

The commutator [α, β] of congruences is the smallest congruence δ such that
α centralizes β over δ.
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Classical solvability and congruence solvability

Solvability in general

Let 0A = {(a, a) : a ∈ A} and 1A = A× A.

An algebra A is solvable if the “derived series”

γ0 = 1A, γ i+1 = [γ i , γ i ]

reaches 0A in finitely many steps.
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Classical solvability and congruence solvability

Congruence commutators in groups and loops

Normal subloops = congruence classes containing 1.

Deviations from commutativity and associativity:

Ta(x) = ax/a, La,b(x) = (ab)\(a(bx)), Ra,b(x) = ((xa)b)/(ab).

Theorem (Stanovský + V 2014, improved by Barnes 2021)

Let α, β be congruences of a loop Q. Then [α, β] is the congruence generated by

(Tu1(a),Tv1(a)), (Lu1,u2(a), Lv1,v2(a)), (Ru1,u2(a),Rv1,v2(a)),

where 1αa and uiβvi .
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Classical solvability and congruence solvability

Classical solvability vs. congruence solvability for loops

Classical solvability: (Bruck, Glauberman)
1 = Q0 ≤ Q1 ≤ · · · ≤ Qn = Q, where each factor Qi+1/Qi is an abelian group.

A normal subloop X of Q induces an abelian congruence if [X ,X ]Q = 1.

Congruence solvability:
1 = Q0 ≤ Q1 ≤ · · · ≤ Qn = Q, where each factor Qi+1/Qi induces an abelian
congruence of Q/Qi .
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Classical solvability and congruence solvability

Open problems

• For which varieties of loops the two solvability theories coincide?

• In which varieties of loops does every abelian normal subloop X ⊴ Q induce
an abelian congruence of Q?

• Moufang loops do not satisfy the second property, but might satisfy the first.
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Abelian extensions

Abelian extensions

Definition

Let (X ,+) be an abelian group and (F , ·) a loop. Then Q = (F × X , ∗) is an
abelian extension of X by F if

(r , x) ∗ (s, y) = (rs, φr ,s(x) + ψr ,s(y) + θr ,s),

where φr ,s , ψr ,s ∈ Aut(X ), θr ,s ∈ X and φr ,1 = ψ1,r = idX , θr ,1 = θ1,r = 0.

Theorem (Stanovský + V)

Let X be an abelian group, X ⊴ Q. Then [X ,X ]Q = 1 iff Q is an abelian
extension of X by Q/X . A loop is congruence solvable iff it is an iterated abelian
extension.
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Abelian extensions

Abelian extensions in groups

Lemma

Let G be a group and X an abelian normal subgroup of Q. Then [X ,X ]Q = 1.

Proof.

Internal version of abelian extension: X ⊴ Q, U a left transversal to X in Q and

rx · sy = ur ,s · φr ,s(x)ψr ,s(y)θr ,s ,

where ur ,s ∈ U ∩ (rs)X .

Here we have

rx · sy = rss−1xsy = ur ,s(u
−1
r ,s rs)(s

−1xs)y = ur ,s(s
−1xs)y(u−1

r ,s rs),

so it suffices to take φr ,s = T−1
s |X , ψr ,s = idX and θr ,s = u−1

r ,s rs.
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Abelian extensions

Nuclear case

The next result follows nearly as easily as the group case:

Lemma

Let X be an abelian normal subloop of Q such that X ≤ Nucm(Q) ∩Nucr (Q).
Then [X ,X ]Q = 1.

We will greatly generalize this result for Moufang loops, that is, loops satisfying
one of the identities

x(y(xz)) = ((xy)x)z ,

x(y(zy)) = ((xy)z)y ,

(xy)(zx) = (x(yz))x ,

(xy)(zx) = x((yz)x).
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Abelian extensions

A construction for [X ,X ]Q ̸= 1 in Moufang loops

• W = (W ,+) be a commutative group with subgroups F ≤ B ≤ W
(specialize to F = B at first reading)

• F = {0, 1} and W = W /B an elementary abelian 2-group,

• q : W → F a quadratic form with associated bilinear form h : W ×W → F ,

• q : W → F and h : W ×W → F defined by q(u) = q(u) and
h(u, v) = h(u, v),

• define multiplication on Q = F ×W by

(i , u) · (j , v) = (i + j , u + v + jq(u) + ih(u, v)).

Vojtěchovský (DU) Solvability in Moufang loops Loops ’23 12 / 28



Abelian extensions

A construction for [X ,X ]Q ̸= 1 in Moufang loops

Then:

• Q is a centrally nilpotent loop, a central extension of the commutative
group B by the elementary abelian 2-group F ×W ,

• Q is congruence solvable and hence classically solvable,

• Q is a Moufang loop,

• Q is a group if and only if the quadratic form q is linear,

• X = 0×W is an abelian normal subloop of Q,

• if Q is not a group, then the congruence of Q induced by X is not abelian.
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Preliminary results for Moufang loops

Results of Bruck (more or less)

From now on let Q be a Moufang loop.

• every inner mapping is a pseudoautomorphism, that is, cf (x) · f (y) = cf (xy)
for a suitable c ,

• every pseudoautomorphism is a semiautomorphism, that is,
f (xyx) = f (x)f (y)f (x) and f (1) = 1,

• semiautomorphisms satisfy f (xn) = f (x)n

Lemma

Let X be a 2-divisible abelian group. Then every semiautomorphism of X is an
automorphism of X .

Proof.

f (xy)=f (u2y)=f (uyu)=f (u)f (y)f (u)=f (u)2f (y)=f (u2)f (y)=f (x)f (y).

Vojtěchovský (DU) Solvability in Moufang loops Loops ’23 15 / 28



Preliminary results for Moufang loops

Results of Bruck (more or less)

Corollary

Let Q be a Moufang loop and X an abelian normal subloop of Q that is
2-divisible. Then every inner mapping of Q restricts to an automorphism of X .

Vojtěchovský (DU) Solvability in Moufang loops Loops ’23 16 / 28



Preliminary results for Moufang loops

Results of Gagola

Theorem

Suppose that Q = ⟨S⟩ is a Moufang loop such that every element of S is a cube.
Then Inn(Q) = ⟨Tu : u ∈ Q⟩.

Theorem

Let Q be a Moufang loop and x , y , u ∈ Q. Then

u3ix · u3jy = u3(i+j)T−i−2j
u (T i−j

u (x)T i−j
u (y))

for all i , j ∈ Z.
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The 6-divisible case

Abelian extensions again

Suppose that Q is a 3-divisible Moufang loop with a 2-divisible abelian normal
subgroup X . Let’s calculate:

rx · sy = rx · sys−1s = rx · Ts(y)s
and Ts restricts to an automorphism of X since X is 2-divisible

rx · Ts(y)s = (s · (s−1r)f (x)) · Ts(y)s = s · ((s−1r)f (x) · Ts(y)) · s
with the inner mapping f = L−1

s−1rL
−1
s Lr

rewrite as s(uv · w)s = s(u(vu−1 · uw)s) = su · (vu−1 · uw)s
using Moufang identities

vu−1 · uw = va−3 · a3w = T−1
a (Ta(v)Ta(w)) = vw

by 3-divisibility and Gagola

get su · (vw)s, etc, bring it to the desired form.
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The 6-divisible case

The 6-divisible case

Theorem (D+V)

Let Q be a 3-divisible Moufang loop and X a 2-divisible abelian normal subgroup
of Q. Then [X ,X ]Q = 1.

Corollary (D+V)

Let Q be a 6-divisible Moufang loop. Then Q is congruence solvable iff it is
classically solvable.
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The 3-divisible finite case

Characterizing [X ,X ]Q = 1

Theorem (D+V)

Let Q be a Moufang loop and X a normal subloop of Q. Then [X ,X ]Q = 1 (in
particular, X is an abelian group) iff every inner mapping of Q restricts to an
automorphism of X and u · xy = uy · x for all u ∈ Q and x , y ∈ X .
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The 3-divisible finite case

Characterizing [X ,X ]Q = 1 when Q is 3-divisible

Theorem (D+V)

Let Q be a 3-divisible Moufang loop and X a normal subloop of Q. Then
[X ,X ]Q = 1 iff u · xy = uy · x for all u ∈ Q and x , y ∈ X .

Proof.

By Gagola, it suffices to check that Tu|X is an automorphism of X . By the
second result of Gagola, we have

u3 · xy = u3 · yx = u3x · y = u3T−1
u (Tu(x)Tu(y)).
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The 3-divisible finite case

The main result here

After much additional work and using this result of Aleš:

Theorem (Drápal)

Let Q be a finite Moufang loop, p a prime and S a p-subloop of Q. Then
MltQ(S) = ⟨Ls ,Rs : s ∈ S⟩ is a p-group.

... we proved

Theorem (D+V)

Let Q be a finite 3-divisible Moufang loop. Then Q is congruence solvable iff it is
classically solvable.
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The Odd Order Theorem for Moufang loops

Results of Glauberman and Csörgő

We wish to strengthen the following result:

Theorem (Glauberman)

Every Moufang loop of odd order is classically solvable.

We will use:

Theorem (Csörgő)

Every nontrivial Moufang loop of odd order has a nontrivial nucleus.
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The Odd Order Theorem for Moufang loops

The final result

Theorem (D+V)

Every Moufang loop of odd order is congruence solvable.

• let Q be a smallest counterexample

• clearly 1 < Q, so 1 < N = Nuc(Q) by Csörgő

• we can assume N < Q else we are done by Feit-Thompson

• let X be a minimal characteristic subgroup of N and f ∈ Inn(Q)

• since X ≤ N and X ⊴ Q, we have f |X ∈ Aut(X )

• standard group theory argument implies that X is an abelian group

• thus [X ,X ]Q = 1

• since Q/X is congruence solvable by minimality, Q is an iterated abelian
extension
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The Odd Order Theorem for Moufang loops

Thank you!
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