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A tournament of doubles tennis is to be scheduled.
Mathematics is sponsoring three teams, while Physics and
Chemistry are both sponsoring two teams. Matches only
occur between different departments, and the tournament will
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The tournament went so well, the departments decided to
host another tournament. However, they don’t want the
matches to occur in the same order. In particular, the same
matches should occur, but during different hours of the day.
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Work on trades in design theory originated in the 1960s
although the idea behind trades was used as early as 1916.

Essentially, partition an object into subsets satisfying some list
of properties. If we can partition the object into a different set
of subsets which still satisfy the same list of properties, we say
the partitions form a trade.
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Let G be a graph under a proper k-edge-coloring C1. We say
an edge-coloring C2 of G is a mate-coloring of C1 if and only
if the following conditions are true:

1 For every v ∈ V (G), the set of colors assigned to edges
incident to v under C1 is the same as the set of colors assigned
under C2.

2 For every e ∈ E (G), the color assigned to e under C1 is
different than the color assigned under C2.
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The Color-Trade-Spectrum of G , denoted CTS(G), consists of
all values of k for which G has a pair of mate-colorings using
k colors.

Can we find bounds for the minimum and maximum values of
the CTS of a given graph?
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Lemma 2.1
Let G be a simple graph with chromatic index χ′(G).

1. If G contains a vertex of degree one, then CTS(G) = ∅.

2. In a mate-coloring of G, each color must be assigned to at least
two edges of G.

3. χ′(G) ≤ min CTS(G) and max CTS(G) ≤ ⌊ |E(G)|
2 ⌋.
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Exciting as it is to find color trades for a specific value for a
graph G , it would obviously be useful to find ways to expand
the color-trade-spectrum from values which are already known.

Much of the initial work in determining color-trade-spectra
consists of constructing mate k-edge-colorings which can
easily be modified to yield other values in the spectrum.
To do this, we use the following two theorems, which give us
ways to respectively increase or decrease the number of values
in the known color-trade-spectrum.
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Theorem 2.3
Let C1 and C2 be two mate k-edge-colorings of a graph G. For
each j in 1 ≤ j ≤ k, let Hj be the spanning subgraph of G
consisting of the edges colored cj in either C1 or C2. Then the
components of Hj are even cycles. Let αj be the number of these

cycles and α =
k∑

j=1
αj . Then CTS(G) contains all integers in the

interval [k, α].
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Theorem 2.4
Let C1 and C2 be two mate k-edge-colorings of a graph G. Denote
by G ′ the graph whose vertices represent the k colors used in both
C1 and C2, where vertices are adjacent if and only if the respective
colors are adjacent in G under C1 and C2. Then CTS(G) contains
all integers in the interval [χ(G ′), k].
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Theorem 2.5
Suppose 2G has a k-edge-coloring where each color class is a
union of pairwise vertex disjoint cycles of length greater than two.
The coloring arises from a pair of mate-colorings if and only if
M(G , k) is bipartite.
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Trivial Cases
2 ≤ m ≤ n where m is even
3 ≤ m ≤ n where m is odd

2 ≤ m ≤ n where m is even

For the following theorems, we consider Km,n with a
proper-edge-coloring C1 along with the corresponding n × m
Latin rectangle L∆.

Given vertices in different parts, say aj and bi , the entry of cell
(i , j) of L∆ corresponds to the color assigned to biaj under C1.
Finding a mate-coloring for C1 is equivalent to finding a
permutation π of the entries of L with the following
properties:

1 π has no fixed points.
2 Every color appearing in a row or column of L still appears

after applying π to L.
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Trivial Cases
2 ≤ m ≤ n where m is even
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2 ≤ m ≤ n where m is even

Theorem 4.1
CTS(Km,n) = {n, n + 1, ..., mn

2 } where 2 ≤ m ≤ n and m and is
even.
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Trivial Cases
2 ≤ m ≤ n where m is even
3 ≤ m ≤ n where m is odd

The construction for L∆ is given below. We find a mate-coloring
by constructing π(L∆), which is given in the next slide.

L∆
1 2 3 4 · · · m − 3 m − 2 m − 1 m
2 3 4 5 · · · m − 2 m − 1 m m + 1
3 4 5 6 · · · m − 1 m m + 1 m + 2
4 5 6 7 · · · m m + 1 m + 2 m + 3
...

...
...

...
...

...
...

...
...

n − 3 n − 2 n − 1 n · · · m − 7 m − 6 m − 5 m − 4
n − 2 n − 1 n 1 · · · m − 6 m − 5 m − 4 m − 3
n − 1 n 1 2 · · · m − 5 m − 4 m − 3 m − 2

n 1 2 3 · · · m − 4 m − 3 m − 2 m − 1
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Trivial Cases
2 ≤ m ≤ n where m is even
3 ≤ m ≤ n where m is odd

π(L∆)
2 1 4 3 · · · m − 2 m − 3 m m − 1
3 2 5 4 · · · m − 1 m − 2 m + 1 m
4 3 6 5 · · · m m − 1 m + 2 m + 1
5 4 7 6 · · · m + 1 m m + 3 m + 2
...

...
...

...
...

...
...

...
...

n − 2 n − 3 n n − 1 · · · m − 6 m − 7 m − 4 m − 5
n − 1 n − 2 1 n · · · m − 5 m − 6 m − 3 m − 4

n n − 1 2 1 · · · m − 4 m − 5 m − 2 m − 3
1 n 3 2 · · · m − 3 m − 4 m − 1 m − 2
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Trivial Cases
2 ≤ m ≤ n where m is even
3 ≤ m ≤ n where m is odd

Theorem 4.2
Let 5 ≤ m ≤ n be integers where m is odd. Then
CTS(Km,n) = {n, n + 1, ..., mn

2 } if n is even and
CTS(Km,n) = {n, n + 1, .., mn−1

2 } if n is odd.
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Trades and Isotopies

As shown, we have determined CTS(Kn,n). In this case, the
Latin rectangle is a Latin square.

It is well known there is a one-to-one correspondence between
Latin squares and quasigroups. Therefore, it is natural to
consider studying color-trades in terms of quasigroups.
Many permutations of Latin squares can be described by
isotopies, which are generalizations of isomorphisms.
α(x)β(y) = γ(xy)
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The construction used to determine CTS(Kn,n) uses Zn as an
initial square. The given mate for the construction can be

found by the isotopy α = γ = id and β =
n
2∏

i=1
(2i − 1, 2i).

Using a computer search, 29 different order 4 quasigroups
were found which form color-trades with Z4.
In this list, 14 out of the 35 isomorphism classes appear, and
both isotopy classes appear.
For Z5, 335 out of the 1,411 isomorphism classes appear, and
both isotopy classes appear.
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Theorem (Carr-Greer)
If Q1 and Q2 are isotopic quasigroups of order n where one of α, β,
or γ is a derangement and the others identity maps, then the
edge-colorings for Kn,n associated with Q1 and Q2 form a
color-trade.
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Q1
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

Q3
2 1 4 5 3
1 4 5 3 2
4 5 3 2 1
5 3 2 1 4
3 2 1 4 5

α = β = id, γ = (12)(354)
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Q12
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Future Work

How does a different initial square affect the color-trade list?

How can we determine when two isotopies are equivalent?
When can an isotopy be rewritten where one map is a
derangement and the others are identities?
Which color-trades can be described via isotopies?
Can color-trades be described in “partial” isotopies?
While color-trades are not transitive, can we describe the ones
that are purely in terms of isotopies?
Can these techniques be applied to Km,n? Other graphs?
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