Relations on Nets and MOLS

Ian Wanless

Monash University, Australia
Includes joint work with Michael Gill

Latin squares

A Latin square of order n is a matrix in which each of n symbols occurs exactly once in each row and column.

Latin squares

A Latin square of order n is a matrix in which each of n symbols occurs exactly once in each row and column.
A pair of Latin squares is orthogonal if their superposition contains all n^{2} ordered pairs.

Latin squares

A Latin square of order n is a matrix in which each of n symbols occurs exactly once in each row and column.
A pair of Latin squares is orthogonal if their superposition contains all n^{2} ordered pairs.
Here's a pair of OLS(10).
$\left[\begin{array}{llllllllll}00 & 98 & 49 & 85 & 73 & 37 & 16 & 24 & 61 & 52 \\ 96 & 11 & 84 & 57 & 29 & 72 & 60 & 43 & 08 & 35 \\ 64 & 47 & 22 & 76 & 81 & 18 & 39 & 05 & 50 & 93 \\ 59 & 65 & 78 & 33 & 06 & 80 & 41 & 92 & 27 & 14 \\ 38 & 82 & 07 & 91 & 44 & 69 & 75 & 56 & 13 & 20 \\ 83 & 26 & 90 & 19 & 67 & 55 & 02 & 31 & 74 & 48 \\ 25 & 34 & 51 & 40 & 12 & 03 & 88 & 77 & 99 & 66 \\ 42 & 53 & 15 & 04 & 30 & 21 & 97 & 68 & 86 & 79 \\ 17 & 70 & 36 & 62 & 58 & 94 & 23 & 89 & 45 & 01 \\ 71 & 09 & 63 & 28 & 95 & 46 & 54 & 10 & 32 & 87\end{array}\right]$

Latin squares

A Latin square of order n is a matrix in which each of n symbols occurs exactly once in each row and column.
A pair of Latin squares is orthogonal if their superposition contains all n^{2} ordered pairs.
Here's a pair of OLS(10).
$\left[\begin{array}{llllllllll}00 & 98 & 49 & 85 & 73 & 37 & 16 & 24 & 61 & 52 \\ 96 & 11 & 84 & 57 & 29 & 72 & 60 & 43 & 08 & 35 \\ 64 & 47 & 22 & 76 & 81 & 18 & 39 & 05 & 50 & 93 \\ 59 & 65 & 78 & 33 & 06 & 80 & 41 & 92 & 27 & 14 \\ 38 & 82 & 07 & 91 & 44 & 69 & 75 & 56 & 13 & 20 \\ 83 & 26 & 90 & 19 & 67 & 55 & 02 & 31 & 74 & 48 \\ 25 & 34 & 51 & 40 & 12 & 03 & 88 & 77 & 99 & 66 \\ 42 & 53 & 15 & 04 & 30 & 21 & 97 & 68 & 86 & 79 \\ 17 & 70 & 36 & 62 & 58 & 94 & 23 & 89 & 45 & 01 \\ 71 & 09 & 63 & 28 & 95 & 46 & 54 & 10 & 32 & 87\end{array}\right]$

Euler famously conjectured these shouldn't exist!

Nets

Consider each cell to be a point.

Nets

Consider each cell to be a point. Form lines which consist of n points.

Nets

Consider each cell to be a point.
Form lines which consist of n points. Each row is a line.

Nets

Consider each cell to be a point.
Form lines which consist of n points. Each row is a line.
Each column is a line.

Nets

Consider each cell to be a point.
Form lines which consist of n points. Each row is a line.
Each column is a line.
Each symbol in each LS makes a line.

Nets

Consider each cell to be a point.
Form lines which consist of n points.
Each row is a line.
Each column is a line.
Each symbol in each LS makes a line.
A parallel class is a set of disjoint lines which cover all points.

Nets

Consider each cell to be a point.
Form lines which consist of n points.
Each row is a line.
Each column is a line.
Each symbol in each LS makes a line.
A parallel class is a set of disjoint lines which cover all points.
The rows form a parallel class.
The columns form a parallel class.

Nets

Consider each cell to be a point.
Form lines which consist of n points.
Each row is a line.
Each column is a line.
Each symbol in each LS makes a line.
A parallel class is a set of disjoint lines which cover all points.
The rows form a parallel class.
The columns form a parallel class.
For each LS the symbols produce a parallel class.

Nets

Consider each cell to be a point.
Form lines which consist of n points.
Each row is a line.
Each column is a line.
Each symbol in each LS makes a line.
A parallel class is a set of disjoint lines which cover all points.
The rows form a parallel class.
The columns form a parallel class.
For each LS the symbols produce a parallel class.
Parallel classes are orthogonal if any pair of lines from different parallel classes meet in exactly one point.

Nets

Consider each cell to be a point.
Form lines which consist of n points.
Each row is a line.
Each column is a line.
Each symbol in each LS makes a line.
A parallel class is a set of disjoint lines which cover all points.
The rows form a parallel class.
The columns form a parallel class.
For each LS the symbols produce a parallel class.
Parallel classes are orthogonal if any pair of lines from different parallel classes meet in exactly one point.

A k-net has k orthogonal parallel classes (corresponds to $(k-2)$ MOLS).

Relations

A relation is a set of lines from a net such that each point is on an even number of the lines.

Relations

A relation is a set of lines from a net such that each point is on an even number of the lines.

A relation can also be viewed as a \mathbb{Z}_{2}-null vector of the point-line incidence matrix of a net.

Relations

A relation is a set of lines from a net such that each point is on an even number of the lines.

A relation can also be viewed as a \mathbb{Z}_{2}-null vector of the point-line incidence matrix of a net.

The union of an even number of parallel classes is a trivial relation.

Relations

A relation is a set of lines from a net such that each point is on an even number of the lines.

A relation can also be viewed as a \mathbb{Z}_{2}-null vector of the point-line incidence matrix of a net.

The union of an even number of parallel classes is a trivial relation.
Any other relation is non-trivial.

A non-trivial relation

$$
\begin{aligned}
& \{0,1,2,3\} \mapsto 1 \\
& \{4, \ldots, 9\} \mapsto 0
\end{aligned}
$$

$\left[\begin{array}{llllllllll}11 & 00 & 00 & 00 & 01 & 10 & 10 & 10 & 01 & 01 \\ 00 & 11 & 00 & 00 & 10 & 01 & 01 & 01 & 10 & 10 \\ 00 & 00 & 11 & 00 & 01 & 10 & 10 & 10 & 01 & 01 \\ 00 & 00 & 00 & 11 & 10 & 01 & 01 & 01 & 10 & 10 \\ 10 & 01 & 10 & 01 & 00 & 00 & 00 & 00 & 11 & 11 \\ 01 & 10 & 01 & 10 & 00 & 00 & 11 & 11 & 00 & 00 \\ 10 & 10 & 01 & 01 & 11 & 11 & 00 & 00 & 00 & 00 \\ 01 & 01 & 10 & 10 & 11 & 11 & 00 & 00 & 00 & 00 \\ 10 & 01 & 10 & 01 & 00 & 00 & 11 & 00 & 00 & 11 \\ 01 & 10 & 01 & 10 & 00 & 00 & 00 & 11 & 11 & 00\end{array}\right]$

A non-trivial relation

$\begin{aligned}\{0,1,2,3\} & \mapsto 1 \\ \{4, \ldots, 9\} & \mapsto 0\end{aligned}$
$\left[\begin{array}{llllllllll}11 & 00 & 00 & 00 & 01 & 10 & 10 & 10 & 01 & 01 \\ 00 & 11 & 00 & 00 & 10 & 01 & 01 & 01 & 10 & 10 \\ 00 & 00 & 11 & 00 & 01 & 10 & 10 & 10 & 01 & 01 \\ 00 & 00 & 00 & 11 & 10 & 01 & 01 & 01 & 10 & 10 \\ 10 & 01 & 10 & 01 & 00 & 00 & 00 & 00 & 11 & 11 \\ 01 & 10 & 01 & 10 & 00 & 00 & 11 & 11 & 00 & 00 \\ 10 & 10 & 01 & 01 & 11 & 11 & 00 & 00 & 00 & 00 \\ 01 & 01 & 10 & 10 & 11 & 11 & 00 & 00 & 00 & 00 \\ 10 & 01 & 10 & 01 & 00 & 00 & 11 & 00 & 00 & 11 \\ 01 & 10 & 01 & 10 & 00 & 00 & 00 & 11 & 11 & 00\end{array}\right]$

The type of a relation lists the number of relational lines from each parallel class.
The above relation has type 4444 (also written 4^{4}).

Another relation of type 4444 on the same net

$$
\begin{aligned}
& \{2,3,4,5\} \mapsto 1 \\
& \{0,1,6,7,8,9\} \mapsto 0
\end{aligned}
$$

$\left[\begin{array}{llllllllll}00 & 00 & 10 & 01 & 01 & 10 & 00 & 11 & 00 & 11 \\ 00 & 00 & 01 & 10 & 10 & 01 & 00 & 11 & 00 & 11 \\ 01 & 10 & 11 & 00 & 00 & 00 & 10 & 01 & 10 & 01 \\ 10 & 01 & 00 & 11 & 00 & 00 & 10 & 01 & 10 & 01 \\ 10 & 01 & 00 & 00 & 11 & 00 & 01 & 10 & 01 & 10 \\ 01 & 10 & 00 & 00 & 00 & 11 & 01 & 10 & 01 & 10 \\ 11 & 11 & 10 & 10 & 01 & 01 & 00 & 00 & 00 & 00 \\ 11 & 11 & 01 & 01 & 10 & 10 & 00 & 00 & 00 & 00 \\ 00 & 00 & 10 & 01 & 10 & 01 & 11 & 00 & 11 & 00 \\ 00 & 00 & 01 & 10 & 01 & 10 & 11 & 00 & 11 & 00\end{array}\right]$

Dukes and Howard

Theorem: [Dukes/Howard'14] Any 6-net of order 10 satisfies at least two non-trivial relations.

Dukes and Howard

Theorem: [Dukes/Howard'14] Any 6-net of order 10 satisfies at least two non-trivial relations.

WLOG the relations have types $4^{4}, 2^{3} 46,2^{2} 4^{3}, 24^{3} 6,4^{5}, 2^{6}, 2^{4} 4^{2}$, $2^{3} 4^{2} 6,2^{2} 4^{4}, 24^{4} 6$, or 4^{6}.

Dukes and Howard

Theorem: [Dukes/Howard'14] Any 6-net of order 10 satisfies at least two non-trivial relations.

WLOG the relations have types $4^{4}, 2^{3} 46,2^{2} 4^{3}, 24^{3} 6,4^{5}, 2^{6}, 2^{4} 4^{2}$, $2^{3} 4^{2} 6,2^{2} 4^{4}, 24^{4} 6$, or 4^{6}.

Theorem: [Gill/W.'22] There are 18526320 pairs of MOLS(10) satisfying at least one non-trivial relation.

Dukes and Howard

Theorem: [Dukes/Howard'14] Any 6-net of order 10 satisfies at least two non-trivial relations.

WLOG the relations have types $4^{4}, 2^{3} 46,2^{2} 4^{3}, 24^{3} 6,4^{5}, 2^{6}, 2^{4} 4^{2}$, $2^{3} 4^{2} 6,2^{2} 4^{4}, 24^{4} 6$, or 4^{6}.

Theorem: [Gill/W.'22] There are 18526320 pairs of MOLS(10) satisfying at least one non-trivial relation. None extend to a triple.

Dukes and Howard

Theorem: [Dukes/Howard'14] Any 6-net of order 10 satisfies at least two non-trivial relations.

WLOG the relations have types $4^{4}, 2^{3} 46,2^{2} 4^{3}, 24^{3} 6,4^{5}, 2^{6}, 2^{4} 4^{2}$, $2^{3} 4^{2} 6,2^{2} 4^{4}, 24^{4} 6$, or 4^{6}.

Theorem: [Gill/W.'22] There are 18526320 pairs of MOLS(10) satisfying at least one non-trivial relation. None extend to a triple. No triple of MOLS(10) satisfies a relation of type $2^{3} 46$.

Dukes and Howard

Theorem: [Dukes/Howard'14] Any 6-net of order 10 satisfies at least two non-trivial relations.

WLOG the relations have types $4^{4}, 2^{3} 46,2^{2} 4^{3}, 24^{3} 6,4^{5}, 2^{6}, 2^{4} 4^{2}$, $2^{3} 4^{2} 6,2^{2} 4^{4}, 24^{4} 6$, or 4^{6}.

Theorem: [Gill/W.'22] There are 18526320 pairs of MOLS(10) satisfying at least one non-trivial relation. None extend to a triple. No triple of MOLS(10) satisfies a relation of type $2^{3} 46$.

Dimension	Species
34	6
35	85
36	18526229
37	$\sim 10^{15}$

Table: The pairs of MOLS classified by dimension.

Dukes and Howard

Theorem: [Dukes/Howard'14] Any 6-net of order 10 satisfies at least two non-trivial relations.

WLOG the relations have types $4^{4}, 2^{3} 46,2^{2} 4^{3}, 24^{3} 6,4^{5}, 2^{6}, 2^{4} 4^{2}$, $2^{3} 4^{2} 6,2^{2} 4^{4}, 24^{4} 6$, or 4^{6}.

Theorem: [Gill/W.'22] There are 18526320 pairs of MOLS(10) satisfying at least one non-trivial relation. None extend to a triple. No triple of MOLS(10) satisfies a relation of type $2^{3} 46$.

Dimension	Species	
34	6	\leftarrow Contradicts Moorhouse Conj
35	85	
36	18526229	
37	$\sim 10^{15}$	

Table: The pairs of MOLS classified by dimension.

Dukes and Howard

Theorem: [Dukes/Howard'14] Any 6-net of order 10 satisfies at least two non-trivial relations.

WLOG the relations have types $4^{4}, 2^{3} 46,2^{2} 4^{3}, 24^{3} 6,4^{5}, 2^{6}, 2^{4} 4^{2}$, $2^{3} 4^{2} 6,2^{2} 4^{4}, 24^{4} 6$, or 4^{6}.

Theorem: [Gill/W.'22] There are 18526320 pairs of MOLS(10) satisfying at least one non-trivial relation. None extend to a triple. No triple of MOLS(10) satisfies a relation of type $2^{3} 46$.

Dimension	Species	
34	6	\leftarrow Contradicts Moorhouse Conj
35	85	
36	18526229	
37	$\sim 10^{15}$	

Table: The pairs of MOLS classified by dimension.

Moorhouse's conjecture

Conjecture: [Moorhouse'91] If N_{k-1} is a $(k-1)$-net inside a k-net N_{k} of order n then $\operatorname{rank}_{p}\left(N_{k}\right)-\operatorname{rank}_{p}\left(N_{k-1}\right) \geqslant n-k+1$ for any prime p dividing n only once.

Moorhouse's conjecture

Conjecture: [Moorhouse'91] If N_{k-1} is a $(k-1)$-net inside a k-net N_{k} of order n then $\operatorname{rank}_{p}\left(N_{k}\right)-\operatorname{rank}_{p}\left(N_{k-1}\right) \geqslant n-k+1$ for any prime p dividing n only once.

Moorhouse showed this conjecture is true for $k=3$ and that equality holds for Desarguesian nets. He also showed that if the conjecture is true then there are no nondesarguesian projective planes of square-free order, or of order $2 \bmod 4$.

Moorhouse's conjecture

Conjecture: [Moorhouse'91] If N_{k-1} is a $(k-1)$-net inside a k-net N_{k} of order n then $\operatorname{rank}_{p}\left(N_{k}\right)-\operatorname{rank}_{p}\left(N_{k-1}\right) \geqslant n-k+1$ for any prime p dividing n only once.

Moorhouse showed this conjecture is true for $k=3$ and that equality holds for Desarguesian nets. He also showed that if the conjecture is true then there are no nondesarguesian projective planes of square-free order, or of order $2 \bmod 4$.

After Howard and Myrvold published a counterexample to Moorhouse's conjecture, he modified it so that it only applies to completable nets. This is much harder to refute.

Moorhouse's conjecture

Conjecture: [Moorhouse'91] If N_{k-1} is a $(k-1)$-net inside a k-net N_{k} of order n then $\operatorname{rank}_{p}\left(N_{k}\right)-\operatorname{rank}_{p}\left(N_{k-1}\right) \geqslant n-k+1$ for any prime p dividing n only once.

Moorhouse showed this conjecture is true for $k=3$ and that equality holds for Desarguesian nets. He also showed that if the conjecture is true then there are no nondesarguesian projective planes of square-free order, or of order $2 \bmod 4$.

After Howard and Myrvold published a counterexample to Moorhouse's conjecture, he modified it so that it only applies to completable nets. This is much harder to refute.

A more natural alternative(?) might be to suggest that

$$
\operatorname{rank}_{p}\left(N_{k}\right) \geqslant k n-\binom{k+1}{2}
$$

Theory of relations on a k-net (n)

We refer to the number of relational lines in a parallel class as its weight.

Theory of relations on a k-net (n)

We refer to the number of relational lines in a parallel class as its weight.

There are no nontrivial relations for odd orders, so we'll assume n is even.

Theory of relations on a k-net (n)

We refer to the number of relational lines in a parallel class as its weight.

There are no nontrivial relations for odd orders, so we'll assume n is even.

Theorem: The weights all have the same parity. If k is even they must be even.

Theory of relations on a k-net (n)

We refer to the number of relational lines in a parallel class as its weight.

There are no nontrivial relations for odd orders, so we'll assume n is even.
Theorem: The weights all have the same parity. If k is even they must be even.

Theorem: If a net has a relation with odd weights, it is maximal.

Theory of relations on a k-net (n)

We refer to the number of relational lines in a parallel class as its weight.

There are no nontrivial relations for odd orders, so we'll assume n is even.
Theorem: The weights all have the same parity. If k is even they must be even.

Theorem: If a net has a relation with odd weights, it is maximal.
Theorem: Odd weight relations are only possible if $n+k \equiv 3 \bmod 4$.

Theory of relations on a k-net (n)

We refer to the number of relational lines in a parallel class as its weight.

There are no nontrivial relations for odd orders, so we'll assume n is even.
Theorem: The weights all have the same parity. If k is even they must be even.

Theorem: If a net has a relation with odd weights, it is maximal.
Theorem: Odd weight relations are only possible if $n+k \equiv 3 \bmod 4$.
Theorem: If $n \equiv 2 \bmod 4$ then the total weight of an even relation is $0 \bmod 4$ and the total weight of an odd relation is $(3-n-k) / 2 \bmod 4$.

Theory of relations on a k-net (n)

We refer to the number of relational lines in a parallel class as its weight.

There are no nontrivial relations for odd orders, so we'll assume n is even.
Theorem: The weights all have the same parity. If k is even they must be even.

Theorem: If a net has a relation with odd weights, it is maximal.
Theorem: Odd weight relations are only possible if $n+k \equiv 3 \bmod 4$.
Theorem: If $n \equiv 2 \bmod 4$ then the total weight of an even relation is $0 \bmod 4$ and the total weight of an odd relation is $(3-n-k) / 2 \bmod 4$.

Theorem: Affine planes must satisfy an odd relation.

A computational challenge

Can we enumerate triples of $\operatorname{MOLS}(10)$ satisfying two non-trivial relations?

A computational challenge

Can we enumerate triples of $\operatorname{MOLS}(10)$ satisfying two non-trivial relations?

Each relation is equivalent to one of these types: $2^{2} 4^{3}, 24^{3} 6,4^{5}$.

A computational challenge

Can we enumerate triples of $\operatorname{MOLS}(10)$ satisfying two non-trivial relations?

Each relation is equivalent to one of these types: $2^{2} 4^{3}, 24^{3} 6,4^{5}$.
They can overlap in 120 different ways.

A computational challenge

Can we enumerate triples of $\operatorname{MOLS}(10)$ satisfying two non-trivial relations?

Each relation is equivalent to one of these types: $2^{2} 4^{3}, 24^{3} 6,4^{5}$.
They can overlap in 120 different ways.
For each one we know, in each parallel class, how many lines are in the first relation, in the second relation, in neither or in both.

A computational challenge

Can we enumerate triples of $\operatorname{MOLS}(10)$ satisfying two non-trivial relations?

Each relation is equivalent to one of these types: $2^{2} 4^{3}, 24^{3} 6,4^{5}$.
They can overlap in 120 different ways.
For each one we know, in each parallel class, how many lines are in the first relation, in the second relation, in neither or in both.

You can then write down a set of equations involving point types.
A point type is a binary 10 -vector specifying 2 bits for each parallel class saying whether the point is or is not on a relational line for each relation.

Open questions

- For 96 of the 120 cases the point type equations have no integer solutions. Why?

Open questions

- For 96 of the 120 cases the point type equations have no integer solutions. Why?
- For 11 of the remaining 24 cases, I have been able to generate all integer solutions and eliminate them. How to deal with the other 13 cases?

Open questions

- For 96 of the 120 cases the point type equations have no integer solutions. Why?
- For 11 of the remaining 24 cases, I have been able to generate all integer solutions and eliminate them. How to deal with the other 13 cases?
- [Pipe dream] Develop the theory to the point that you can rule out some projective planes.

