Relative multiplication groups and Moufang p-loops

Aleš Drápal

(Joint work with Petr Vojtěchovský)

Charles University in Prague Czech Republic

June 29, 2023, Będlewo, Wielkopolska Conference Loops'23

What will be the talk about

Definition of a relative multiplication loop

Q a loop, S a subloop, $\operatorname{MIt}_{Q}(S)=\left\langle L_{s}, R_{t} ; s, t \in S\right\rangle$.

A theorem that will be proved

Let Q be a finite Moufang loop and $S \leq Q$ a p-subloop. Then $\mathrm{Mlt}_{Q}(S)$ is a p-group.

Applications of the theorem

(A) A new proof that a Moufang loop of order p^{k} is centrally nilpotent.
(B) A characterization of $S \unlhd Q, Q$ Moufang, such that $\bmod S$ is an abelian congruence.

If time allows

Description of finite Moufang loops Q such that there exists $S \unlhd Q$ abelian, Q / S cyclic, $3 \nmid|Q|$.

Ingredients of the proof that are of general form

Group theory - the Schur-Zassenhaus Theorem

Let G be a finite group with an abelian normal subgroup A. If A and G / A are of coprime orders, then A possesses a complement in G.

The notion of nucleus

Q a loop, $N_{\lambda}(Q)=\{a \in Q ; a \cdot x y=a x \cdot y$ for all $x, y \in Q\}$ is the left nucleus. Shifting a yields the middle nucleus $N_{\mu}(Q)$ and the right nucleus $N_{\rho}(Q)$. In Moufang loops $\operatorname{Nuc}(Q)=N_{\lambda}(Q)=N_{\mu}(Q)=N_{\rho}(Q)$.

Left companions and pseudoautomorphisms

Let φ permute loop Q. Call φ a pseudoautomorphism if $\exists c \in Q$, $\forall x, y \in Q c \varphi(x y)=c \varphi(x) \cdot \varphi(y)$. Pairs (c, φ) form a $\operatorname{group} \operatorname{LPs}(Q)$ with operations $(c, \varphi)(d, \psi)=(c \varphi(d), \varphi \psi)$ and $(c, \varphi)^{-1}=\left(\varphi^{-1}\left(c^{-1}\right), \varphi^{-1}\right)$. If $(c, \varphi) \in \operatorname{LPs}(Q)$ and $d \in Q$, then

$$
(d, \varphi) \in \operatorname{LPs}(Q) \Longleftrightarrow d=n c \text { for some } n \in N_{\lambda}(Q)
$$

Ideas and notions needed for the proof of theorem

Homomorphism $\mathrm{MIt}_{Q}(S) \rightarrow \operatorname{MIt}(S)$.

Assume $S \leq Q$. All $\psi \in \operatorname{Mlt}_{Q}(S)$ act upon S. Hence $\psi \rightarrow \psi \upharpoonright S$ is a homomorphism $\mathrm{Mlt}_{Q}(S) \rightarrow \operatorname{MIt}(S)$.
Denote the kernel $\operatorname{Fix}_{Q}(S)=\left\{\psi \in \operatorname{MIt}_{Q}(S) ; \psi(s)=s\right.$ for each $\left.s \in S\right\}$.

Standard generators of $\operatorname{lnn}_{Q}(S)$

$\operatorname{lnn}(Q)=\{\varphi \in \operatorname{MIt}(Q) ; \varphi(1)=1\}$, the inner mapping group. $\operatorname{lnn}_{Q}(S)=\operatorname{Mlt}_{Q}(S) \cap \operatorname{Inn}(Q)$, the relative inner mapping group.
Standard generators of $\operatorname{Inn}(Q)$ are $L_{x y}^{-1} L_{x} L_{y}, R_{y x}^{-1} R_{x} R_{y}, R_{x}^{-1} L_{x}$.
Standard generators of $\operatorname{Inn}_{Q}(S)$ are $L_{s t}^{-1} L_{s} L_{t}, R_{t s}^{-1} R_{s} R_{t}, R_{s}^{-1} L_{s}$.

Each element of $\operatorname{Inn}_{Q}(S)$ has a companion in S

Let Q be Moufang. Then $L_{x}^{-1}=L_{x^{-1}}, R_{x}^{-1}=R_{x}-1, L_{x y}^{-1} L_{x} L_{y}=\left[R_{x}^{-1}, L_{y}\right]$,
$R_{y x}^{-1} R_{x} R_{y}=\left[L_{x}^{-1}, R_{y}\right]$ and $\left(x^{-3}, T_{x}\right),\left(\left[x^{-1}, y\right],\left[L_{x}, R_{y}\right]\right) \in \operatorname{LPs}(Q)$.
For each standard generator φ of $\operatorname{lnn}_{Q}(S)$ there thus exists $c \in S$ such that $(c, \varphi) \in \operatorname{LPs}(Q)$. If $c, d \in S$ and $\varphi \in \operatorname{Inn}_{Q}(S)$, then $c \varphi(d) \in S$.

The main part of the proof

- The subloop S is assumed to be centrally nilpotent. Hence $\operatorname{MIt}(S)$ is a p-group. (A classical result of Bruck.) Thus
$\mathrm{MIt}_{Q}(S)$ is a p-group $\Longleftrightarrow \operatorname{Fix}_{Q}(S)$ is a p-group.
- For a pseudoautomorphism φ denote by $C(\varphi)$ the set of all $c \in Q$ such that $(c, \varphi) \in \operatorname{LPs}(Q)$. We know that $C(\varphi)$ is a coset of $\operatorname{Nuc}(Q)$ and that $C(\varphi) \cap S \neq \emptyset$ if $\varphi \in \operatorname{Inn}_{Q}(S)$. Thus

$$
C(\varphi) \subseteq S \operatorname{Nuc}(Q) \text { for each } \varphi \in \operatorname{Inn}_{Q}(S)
$$

- Assume $\varphi, \psi \in \operatorname{Fix}_{Q}(S), C(\varphi)=c \operatorname{Nuc}(Q), C(\psi)=d \operatorname{Nuc}(Q)$, where $c, d \in S$. Since $\varphi(d)=d,(c, \varphi)(d, \psi)=(c d, \varphi \psi)$. Hence

$$
C(\varphi \psi)=C(\varphi) C(\psi) \text { for all } \varphi, \psi \in \operatorname{Fix}_{Q}(S)
$$

- The image of this homomorphism is a subloop (and a subgroup) of $S \operatorname{Nuc}(Q) / \operatorname{Nuc}(Q) \cong S / S \cap \operatorname{Nuc}(Q)$, which is necesarilly a p-group. The kernel is equal to $A=\operatorname{Fix}_{Q}(S) \cap \operatorname{Aut}(Q)$. Thus

$$
\mathrm{MIt}_{Q}(S) \text { is a } p \text {-group } \Longleftrightarrow A \text { is a } p \text {-group. }
$$

- If $\alpha \in A$ and $s \in S$, then $\alpha L_{s} \alpha^{-1}=L_{\alpha(s)}=L_{s}$ since $\alpha \in \operatorname{Fix}_{Q}(S)$. Similarly $\alpha R_{s} \alpha^{-1}=R_{s}$. Hence $A \leq Z\left(\operatorname{Mlt}_{Q}(S)\right)$.

Final steps of the proof

- Express A as $B \times D$, where B is p-group and $p \nmid|D|$. This is possible since A is abelian.
- Since $D \leq Z\left(\operatorname{Mlt}_{Q}(S)\right), D \unlhd \mathrm{Mlt}_{Q}(S)$. Since $\mathrm{Mlt}_{Q}(S) / A$ is a p-group, $\mathrm{Mlt}_{Q}(S) / D$ is also a p-group.
- By Schur-Zassenhaus theorem there exists $C \leq \mathrm{Mlt}_{Q}(S)$ such that $\mathrm{Mlt}_{Q}(S)=C D, C \cap D=1$ and C is a p-group.
- Since $D \leq Z\left(\operatorname{Mlt}_{Q}(S)\right)$, the subgroup C is normal in $\mathrm{Mlt}_{Q}(S)$.
- Both C and D are normal in $\operatorname{Mlt}_{Q}(S)$. Hence $\mathrm{Mlt}_{Q}(S)=C \times D$.
- C contains all elements of order p^{k} since $p \nmid|D|$.
- C contains all L_{s} and R_{t}, where $s, t \in S$. These are the generators of $\mathrm{Mlt}_{Q}(S)$. Hence $C=\mathrm{Mlt}_{Q}(S)$ and $\mathrm{Mlt}_{Q}(S)$ is a p-group.

Why a new proof of central nilpotency is needed

The existing proof comes in two parts

Standard sources for the fact that finite Moufang loops of order p^{k} are centrally nilpotent are:
[GII] G. Glauberman: On loops of odd order. II. J. Algebra 8 (1968), 393-414.
[GW] G. Glauberman and C. R. B. Wright: Nilpotence of finite Moufang 2-loops J. Algebra 8 (1968), 415-417.

The existing proof depends on many previous results
To extract the proof of central nilpotency from [GII] requires to go through most of the material on B-loops in
[GI] G. Glauberman: On loops of odd order, J. Algebra 1 (1964), 374-396. The proof in [GW] depends upon a less well known part of group theory (Engel elements).

Further comments

Teaching aspects

It is quite annoying that a basic result on Moufang loops is not easily accessible.

Alternative approach

J. I. Hall in Central automorphisms, Z*-theorems, and loop structure, Quasigroups Related Systems 19 (2011), 69-108, gives a proof based on Fisher's \mathbb{Z}^{*}-theorem.
In a personal communication Hall recently expressed an opinion that the dependence on Fisher's \mathbb{Z}^{*}-theorem may be removed from his proof.

Outline of the proof

- $|Q|=p^{k}$ the least counterexample, S the largest subloop of order p^{ℓ} that is centrally nilpotent. Thus $\ell<k$. $\mathrm{Mlt}_{Q}(S)$ is a p-group.
- Extend $\operatorname{Mlt}_{Q}(S)$ to the largest P such that $P \leq \operatorname{Mlt}(Q), P$ is a p-group and P acts upon S.
- Since P cannot be a Sylow subgroup, $\exists \widehat{P} \leq \operatorname{MIt}(Q)$ such that $P \triangleleft \widehat{P}$ and $|\widehat{P} / P|=p$.
- Denote by \widehat{S} the orbit of \widehat{P} containing S. A structural proof of one page shows that \widehat{S} is a subloop, $S \unlhd \widehat{S}$ and $|\widehat{S} / S|=p$.
- Thus $Q=\widehat{S}$ and \widehat{P} is a Sylow subgroup.
- We have $S \unlhd Q$ and Q / S is of order p. This might seem easy to handle. Nevertheless, I was able to finish the proof only by using computational arguments involving pseudoautomorphisms. The extent is a page and half.
- The arguments give $\left[L_{x}, R_{y}\right] \in P$ for all $x, y \in Q$. That suffices to conclude. is a Moufang loop

Equivalent conditions-a theorem of D \& Vojěchovský

- X is a normal abelian subgroup of a Moufang loop Q.
- $x u \cdot y=x \cdot u y$ whenever $x, y \in X$ and $u \in Q$.
- If $\varphi \in \operatorname{Inn}(Q)$, then $\varphi \upharpoonright X \in \operatorname{Aut}(X)$.

Moral of the story

The congruence theory is not needed to express the notion of $X \unlhd Q$ yielding an abelian congruence. This fact may be expressed in classical terms too. Perhaps a name for this situation that does not refer to congruences might be found. What about innerly abelian?

Structure of finite Moufang loops Q such that $3 \nmid|Q|$, $X \unlhd Q$ is abelian, and Q / X is cyclic

The formula on $C \times X$. Applicable when $X \cap C=1, C$ cyclic

$$
\left(b^{i}, x\right) \cdot\left(b^{j}, y\right)=\left(b^{i+j}, g^{j}(x)+y+\sum_{k \in l(i+j,-j)} g^{k}(\beta(x, y))\right)
$$

The meaning of inputs
$I(i, j)= \begin{cases}\emptyset, & \text { if } i=j, \\ \{i, i+1, \ldots, j-1\}, & \text { if } i<j, \\ \{j, j+1, \ldots, i-1\}, & \text { if } j<i .\end{cases}$
$g=f^{-3}$, where $\beta(x, y)=f^{-1}(f(x)+f(y))-x-y$ is biadditive
$X \times X \rightarrow X$. Furthermore, β is alternating, symmetric (thus $\beta(2 x, y)=0$) and fulfils $\beta(\beta(x, y), z)=0$ and $\beta(f(x), f(y))=f\left(\beta\left(f^{3}(x), y\right)\right)$.
The general case $(X \cap C \neq 1)$
The same formula, but writing $b^{i} x$ in place $\left(b^{i}, x\right)$. This is because such a situation is always a homomorphic image of a semidirect product.

