Relative multiplication groups and Moufang *p*-loops

Aleš Drápal

(Joint work with Petr Vojtěchovský)

Charles University in Prague Czech Republic

June 29, 2023, Będlewo, Wielkopolska Conference Loops'23

What will be the talk about

Definition of a relative multiplication loop

Q a loop, S a subloop, $\mathsf{Mlt}_Q(S) = \langle L_s, R_t; s, t \in S \rangle.$

A theorem that will be proved

Let Q be a finite Moufang loop and $S \leq Q$ a p-subloop. Then $Mlt_Q(S)$ is a p-group.

Applications of the theorem

(A) A new proof that a Moufang loop of order p^k is centrally nilpotent. (B) A characterization of $S \subseteq Q$, Q Moufang, such that mod S is an abelian congruence.

If time allows

Description of finite Moufang loops Q such that there exists $S \trianglelefteq Q$ abelian, Q/S cyclic, $3 \nmid |Q|$.

Aleš Drápal (UK Praha)

Ingredients of the proof that are of general form

Group theory - the Schur-Zassenhaus Theorem

Let G be a finite group with an abelian normal subgroup A. If A and G/A are of coprime orders, then A possesses a complement in G.

The notion of nucleus

Q a loop, $N_{\lambda}(Q) = \{a \in Q; a \cdot xy = ax \cdot y \text{ for all } x, y \in Q\}$ is the *left nucleus*. Shifting a yields the *middle nucleus* $N_{\mu}(Q)$ and the right nucleus $N_{\rho}(Q)$. In Moufang loops $Nuc(Q) = N_{\lambda}(Q) = N_{\mu}(Q) = N_{\rho}(Q)$.

Left companions and pseudoautomorphisms

Let φ permute loop Q. Call φ a *pseudoautomorphism* if $\exists c \in Q$, $\forall x, y \in Q \ c\varphi(xy) = c\varphi(x) \cdot \varphi(y)$. Pairs (c, φ) form a group LPs(Q) with operations $(c, \varphi)(d, \psi) = (c\varphi(d), \varphi\psi)$ and $(c, \varphi)^{-1} = (\varphi^{-1}(c^{-1}), \varphi^{-1})$. If $(c, \varphi) \in LPs(Q)$ and $d \in Q$, then $(d, \varphi) \in LPs(Q) \iff d = nc$ for some $n \in N_\lambda(Q)$.

Ideas and notions needed for the proof of theorem

Homomorphism $Mlt_Q(S) \rightarrow Mlt(S)$.

Assume $S \leq Q$. All $\psi \in Mlt_Q(S)$ act upon S. Hence $\psi \to \psi \upharpoonright S$ is a homomorphism $Mlt_Q(S) \to Mlt(S)$. Denote the kernel $Fix_Q(S) = \{\psi \in Mlt_Q(S); \psi(s) = s \text{ for each } s \in S\}$.

Standard generators of $Inn_Q(S)$

Inn(Q) = { $\varphi \in Mlt(Q)$; $\varphi(1) = 1$ }, the inner mapping group. Inn_Q(S) = Mlt_Q(S) \cap Inn(Q), the relative inner mapping group. Standard generators of Inn(Q) are $L_{xy}^{-1}L_xL_y$, $R_{yx}^{-1}R_xR_y$, $R_x^{-1}L_x$. Standard generators of Inn_Q(S) are $L_{st}^{-1}L_sL_t$, $R_{ts}^{-1}R_sR_t$, $R_s^{-1}L_s$.

Each element of $Inn_Q(S)$ has a companion in S

Let Q be Moufang. Then $L_x^{-1} = L_{x^{-1}}$, $R_x^{-1} = R_{x^{-1}}$, $L_{xy}^{-1}L_xL_y = [R_x^{-1}, L_y]$, $R_{yx}^{-1}R_xR_y = [L_x^{-1}, R_y]$ and (x^{-3}, T_x) , $([x^{-1}, y], [L_x, R_y]) \in LPs(Q)$. For each standard generator φ of $Inn_Q(S)$ there thus exists $c \in S$ such that $(c, \varphi) \in LPs(Q)$. If $c, d \in S$ and $\varphi \in Inn_Q(S)$, then $c\varphi(d) \in S$.

The main part of the proof

- The subloop S is assumed to be centrally nilpotent. Hence Mlt(S) is a p-group. (A classical result of Bruck.) Thus
 Mlt_Q(S) is a p-group ⇐⇒ Fix_Q(S) is a p-group.
- For a pseudoautomorphism φ denote by C(φ) the set of all c ∈ Q such that (c, φ) ∈ LPs(Q). We know that C(φ) is a coset of Nuc(Q) and that C(φ) ∩ S ≠ Ø if φ ∈ Inn_Q(S). Thus
 C(φ) ⊆ S Nuc(Q) for each φ ∈ Inn_Q(S).
- Assume $\varphi, \psi \in \operatorname{Fix}_Q(S)$, $C(\varphi) = c \operatorname{Nuc}(Q)$, $C(\psi) = d \operatorname{Nuc}(Q)$, where $c, d \in S$. Since $\varphi(d) = d$, $(c, \varphi)(d, \psi) = (cd, \varphi\psi)$. Hence $C(\varphi\psi) = C(\varphi)C(\psi)$ for all $\varphi, \psi \in \operatorname{Fix}_Q(S)$.
- The image of this homomorphism is a subloop (and a subgroup) of $S \operatorname{Nuc}(Q) / \operatorname{Nuc}(Q) \cong S/S \cap \operatorname{Nuc}(Q)$, which is necessarilly a *p*-group. The kernel is equal to $A = \operatorname{Fix}_Q(S) \cap \operatorname{Aut}(Q)$. Thus

 $Mlt_Q(S)$ is a *p*-group $\iff A$ is a *p*-group.

• If $\alpha \in A$ and $s \in S$, then $\alpha L_s \alpha^{-1} = L_{\alpha(s)} = L_s$ since $\alpha \in Fix_Q(S)$. Similarly $\alpha R_s \alpha^{-1} = R_s$. Hence $A \leq Z(Mlt_Q(S))$.

- Express A as B × D, where B is p-group and p ∤ |D|. This is possible since A is abelian.
- Since $D \leq Z(Mlt_Q(S))$, $D \leq Mlt_Q(S)$. Since $Mlt_Q(S)/A$ is a *p*-group, $Mlt_Q(S)/D$ is also a *p*-group.
- By Schur-Zassenhaus theorem there exists $C \leq Mlt_Q(S)$ such that $Mlt_Q(S) = CD$, $C \cap D = 1$ and C is a *p*-group.
- Since $D \leq Z(Mlt_Q(S))$, the subgroup C is normal in $Mlt_Q(S)$.
- Both C and D are normal in $Mlt_Q(S)$. Hence $Mlt_Q(S) = C \times D$.
- C contains all elements of order p^k since $p \nmid |D|$.
- C contains all L_s and R_t, where s, t ∈ S. These are the generators of Mlt_Q(S). Hence C = Mlt_Q(S) and Mlt_Q(S) is a p-group.

The existing proof comes in two parts

Standard sources for the fact that finite Moufang loops of order p^k are centrally nilpotent are:

[GII] G. Glauberman: *On loops of odd order. II.* J. Algebra **8** (1968), 393–414.

[GW] G. Glauberman and C. R. B. Wright: *Nilpotence of finite Moufang* 2-loops J. Algebra **8** (1968), 415–417.

The existing proof depends on many previous results

To extract the proof of central nilpotency from [GII] requires to go through most of the material on *B*-loops in [GI] G. Glauberman: *On loops of odd order*, J. Algebra 1 (1964), 374–396. The proof in [GW] depends upon a less well known part of group theory (Engel elements).

Teaching aspects

It is quite annoying that a basic result on Moufang loops is not easily accessible.

Alternative approach

J. I. Hall in *Central automorphisms*, Z^{*}-theorems, and loop structure, Quasigroups Related Systems **19** (2011), 69–108, gives a proof based on Fisher's \mathbb{Z}^* -theorem.

In a personal communication Hall recently expressed an opinion that the dependence on Fisher's \mathbb{Z}^* -theorem may be removed from his proof.

Outline of the proof

- |Q| = p^k the least counterexample, S the largest subloop of order p^ℓ that is centrally nilpotent. Thus ℓ < k. Mlt_Q(S) is a p-group.
- Extend Mlt_Q(S) to the largest P such that P ≤ Mlt(Q), P is a p-group and P acts upon S.
- Since P cannot be a Sylow subgroup, $\exists \ \widehat{P} \leq \mathsf{Mlt}(Q)$ such that $P \lhd \widehat{P}$ and $|\widehat{P}/P| = p$.
- Denote by \widehat{S} the orbit of \widehat{P} containing S. A structural proof of one page shows that \widehat{S} is a subloop, $S \trianglelefteq \widehat{S}$ and $|\widehat{S}/S| = p$.
- Thus $Q = \widehat{S}$ and \widehat{P} is a Sylow subgroup.
- We have S ≤ Q and Q/S is of order p. This might seem easy to handle. Nevertheless, I was able to finish the proof only by using computational arguments involving pseudoautomorphisms. The extent is a page and half.
- The arguments give [L_x, R_y] ∈ P for all x, y ∈ Q. That suffices to conclude.

What does it mean that mod X is abelian if $X \leq Q$ and Q is a Moufang loop

Equivalent conditions—a theorem of D & Vojěchovský

• X is a normal abelian subgroup of a Moufang loop Q.

•
$$xu \cdot y = x \cdot uy$$
 whenever $x, y \in X$ and $u \in Q$.

• If
$$\varphi \in \operatorname{Inn}(Q)$$
, then $\varphi \upharpoonright X \in \operatorname{Aut}(X)$.

Moral of the story

The congruence theory is not needed to express the notion of $X \leq Q$ yielding an abelian congruence. This fact may be expressed in classical terms too. Perhaps a name for this situation that does not refer to congruences might be found. What about *innerly abelian*?

Structure of finite Moufang loops Q such that $3 \nmid |Q|$, $X \leq Q$ is abelian, and Q/X is cyclic

The formula on $C \times X$. Applicable when $X \cap C = 1$, C cyclic

$$(b^i,x)\cdot(b^j,y)=\left(b^{i+j},g^j(x)+y+\sum_{k\in I(i+j,-j)}g^k(\beta(x,y))\right)$$

The meaning of inputs

$$I(i,j) = \begin{cases} \emptyset, & \text{if } i = j, \\ \{i, i+1, \dots, j-1\}, & \text{if } i < j, \\ \{j, j+1, \dots, i-1\}, & \text{if } j < i. \end{cases}$$

$$g = f^{-3}, \text{ where } \beta(x, y) = f^{-1}(f(x) + f(y)) - x - y \text{ is biadditive}$$

$$X \times X \to X. \text{ Furthermore, } \beta \text{ is alternating, symmetric (thus } \beta(2x, y) = 0)$$

and fulfils $\beta(\beta(x, y), z) = 0$ and $\beta(f(x), f(y)) = f(\beta(f^3(x), y)).$

The general case $(X \cap C \neq 1)$

The same formula, but writing $b^i x$ in place (b^i, x) . This is because such a situation is always a homomorphic image of a semidirect product.

Aleš Drápal (UK Praha)

Relative mult. groups