# Moufang loops and non-commuting graphs

# Mark Greer (joint work J. Carr and A. Johnson)

University of North Alabama

Loops' 23 29 June 23

Mark Greer (UNA)

Moufang loops and non-commuting graphs

イロト 不得 トイヨト イヨト 二日

#### Background

#### Definition

A loop Q is a *Moufang loop* if for all  $x, y, z \in Q$ , one of the following equivalent identities hold:

z(x(zy)) = (zx)z)y, x(z(yz)) = ((xz)y)z, (zx)(yz) = (z(xy))z,(xz)(yz) = z((xy)z).

#### Background

#### Definition

A loop Q is a *Moufang loop* if for all  $x, y, z \in Q$ , one of the following equivalent identities hold:

z(x(zy)) = (zx)z)y,x(z(yz)) = ((xz)y)z,(zx)(yz) = (z(xy))z,(xz)(yz) = z((xy)z).

# Definition

A loop Q is a semiautomorphic inverse property loop if for all  $x, y, z \in Q$  one of the following equivalent identities hold:

 $(xy)(z \cdot xy) = (x \cdot yz)x \cdot y$  $(xy \cdot z)(xy) = x \cdot y(zx \cdot y).$ 

Mark Greer (UNA)

#### Background

#### Definition

A loop Q is a *Moufang loop* if for all  $x, y, z \in Q$ , one of the following equivalent identities hold:

z(x(zy)) = (zx)z)y, x(z(yz)) = ((xz)y)z, (zx)(yz) = (z(xy))z,(xz)(yz) = z((xy)z).

# Definition

A loop Q is a semiautomorphic inverse property loop if for all  $x, y, z \in Q$  one of the following equivalent identities hold:

 $(xy)(z \cdot xy) = (x \cdot yz)x \cdot y$  $(xy \cdot z)(xy) = x \cdot y(zx \cdot y).$ 

# Theorem (Bruck)

Moufang loops are semiautomorphic inverse property loops.

Mark Greer (UNA)

# Geometric Group Theory

Given a group  $G = \langle S | R \rangle$  with generators S and relations R, constuct an associated graph usually called its *Cayley Graph* where for all  $g \in G$  and  $s \in S$  there is a (directed) edge from g to gs. **Goal:** Study groups as geometric objects.

イロト 不得 トイラト イラト 一日

# Geometric Group Theory

Given a group  $G = \langle S | R \rangle$  with generators S and relations R, constuct an associated graph usually called its *Cayley Graph* where for all  $g \in G$  and  $s \in S$  there is a (directed) edge from g to gs. **Goal:** Study groups as geometric objects.

# Geometric Quasigroup/Loop Theory

Given a quasigroup/loop Q, construct an associated graph and study as geometric objects.

**Issue:** Generators and relations

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

#### Some quasigroup results

The Petersen graph is not a Cayley graph.

- Comparing lengths of cycles to the Petersen graph and generators of group "candidates".
- There has been work to show that the generalized Petersen graphs correspond to quasigroups (Mwambene).

< 日 > < 同 > < 三 > < 三 > <

#### Some quasigroup results

The Petersen graph is not a Cayley graph.

• Comparing lengths of cycles to the Petersen graph and generators of group "candidates".

Idea

• There has been work to show that the generalized Petersen graphs correspond to quasigroups (Mwambene).

# Question

Classify quasigroups whose Cayley graphs are Petersen type graphs.

イロト 不得 トイヨト イヨト

#### Some quasigroup results

The Petersen graph is not a Cayley graph.

- Comparing lengths of cycles to the Petersen graph and generators of group "candidates".
- There has been work to show that the generalized Petersen graphs correspond to quasigroups (Mwambene).

# Question

Classify quasigroups whose Cayley graphs are Petersen type graphs.

# Some loop results

For Moufang loops

- Vojtěchovský Moufang loop of order 12
- Stener Moufang loops of order 16

э

イロト イボト イヨト イヨト

# Definition (Darafsheh)

For a non-abelian group G the non-commuting graph of G  $\Gamma_G$  is a graph with Vertex set G/Z(G) where x, y are joined by an edge if and only if  $xy \neq yx$ .

イロト 不得 トイラト イラト 一日

# Definition (Darafsheh)

For a non-abelian group G the non-commuting graph of G  $\Gamma_G$  is a graph with Vertex set G/Z(G) where x, y are joined by an edge if and only if  $xy \neq yx$ .

#### Idea

Given a loop Q construct its non-commuting graph  $\Gamma_Q$ .

#### Problem:

For a loop Q, the commutator  $C(Q) = \{x \in Q | xy = yx \quad \forall y \in Q\}$ . It is well known that in general  $C(Q) \nleq Q$ .

イロト 不得下 イヨト イヨト 二日

# Theorem (Bruck)

# Let Q be a Moufang loop. Then $C(Q) \leq Q$ .

Mark Greer (UNA)

<ロ> <四> <四> <四> <四> <四</p>

# Theorem (Bruck)

Let Q be a Moufang loop. Then  $C(Q) \leq Q$ .

# Theorem (M.G.)

Let Q be a semiautomorphic inverse property loop. Then  $C(Q) \leq Q$ .

Mark Greer (UNA)

Moufang loops and non-commuting graphs

イロト 不得 トイラト イラト 一日

# Theorem (Bruck)

Let Q be a Moufang loop. Then  $C(Q) \leq Q$ .

# Theorem (M.G.)

Let Q be a semiautomorphic inverse property loop. Then  $C(Q) \leq Q$ .

# Normality?

Let Q be a Moufang/semiautomorphic inverse property loop. Then C(Q) may not be a normal subloop.

Mark Greer (UNA)

・ロト ・ 同ト ・ ヨト ・ ヨト

# Theorem (Chein)

Let G be a group,  $g_0 \in Z(G)$ , and \* an involutory antiautomorphism of G such that  $g_0^* = g_0$  and  $gg^* \in Z(G)$  for all  $g \in G$ . For an indeterminate t define multiplication  $\circ$  on  $G \cup Gt$  by

 $g \circ h = gh,$   $g \circ ht = (hg)t,$   $gt \circ h = (gh^*)t,$   $gt \circ ht = g_0h^*g,$ 

where  $g, h \in G$ . Then  $(G \cup Gt, \circ)$  is a Moufang loop. Moreover,  $(G \cup Gt, \circ)$  is nonassocitive if and only if G is nonabelian.

#### Theorem (de Barros and Juriaans)

Let G be a group,  $g_0 \in Z(G)$ , and \* an involutory antiautomorphism of G such that  $g_0^* = g_0$  and  $gg^* \in Z(G)$  for all  $g \in G$ . For an indeterminate t define multiplication  $\circ$  on  $G \cup Gt$  by

$$g \circ h = gh, \qquad g \circ ht = (gh)t, \qquad gt \circ h = (h^*g)t, \qquad gt \circ ht = g_0gh^*,$$

where  $g, h \in G$ . Then  $(G \cup Gt, \circ)$  is a semiautomorphic inverse property loop. Moreover,  $(G \cup Gt, \circ)$  is nonassocitive if and only if G is nonabelian.

# Theorem

# Let G be a group, $Q = (G \cup Gt, \circ)$ with $\circ$ defined in either construction. Then $C(Q) \trianglelefteq Q$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Theorem

Let G be a group,  $Q = (G \cup Gt, \circ)$  with  $\circ$  defined in either construction. Then  $C(Q) \trianglelefteq Q$ .

# proof idea

- Show that if  $a \in C(Q)$  then  $a \in G$  and  $a^* = a$ .
- Show that  $C(Q) \leq Z(Q)$ .
- Verify eight cases for each construction

Mark Greer (UNA)

イロト 不得 トイヨト イヨト 二日

#### Example

Let  $G = D_{10}$ ,  $Q = (G \cup Gt, \circ)$  with Chein's  $\circ$ , and  $\Gamma_Q$  its non-commuting graph.



Moufang loops and non-commuting graphs

#### Example

Let  $G = D_{10}$ ,  $Q = (G \cup Gt, \circ)$  with de Barros and Juriaans'  $\circ$ , and  $\Gamma_Q$  its non-commuting graph.



Mark Greer (UNA)

Moufang loops and non-commuting graphs

# Theorem (CGJ)

Let G be a group,  $Q_1$  be  $(G \cup Gt, \circ_1)$  with  $\circ_1$  being Chein's, and  $Q_2$  be  $(G \cup Gt, \circ_2)$  with  $\circ_2$  being de Barros and Juriaans'. Then  $\Gamma_{Q_1} \cong \Gamma_{Q_2}$ .

3

イロト 不得 トイヨト イヨト

# Theorem (CGJ)

Let G be a group,  $Q_1$  be  $(G \cup Gt, \circ_1)$  with  $\circ_1$  being Chein's, and  $Q_2$  be  $(G \cup Gt, \circ_2)$  with  $\circ_2$  being de Barros and Juriaans'. Then  $\Gamma_{Q_1} \cong \Gamma_{Q_2}$ .

#### proof idea

$$egin{aligned} g\circ h = gh, & g\circ ht = (hg)t, & gt\circ h = (gh^*)t, & gt\circ ht = g_0h^*g, \ g\circ h = gh, & g\circ ht = (gh)t, & gt\circ h = (h^*g)t, & gt\circ ht = g_0gh^*, \end{aligned}$$

イロト イヨト イヨト イヨト 二日

# Lemma (CGJ)

Let  $G = D_{2n}$ ,  $Q = (G \cup Gt, \circ)$ , and  $\Gamma_Q$  its non-commuting graph. If *n* is odd then  $\Gamma_Q \cong \overline{K}_{n-1} \nabla 3K_n$  and if *n* is even then  $\Gamma_Q \cong \overline{K}_{n-2} \nabla (3K_n - F)$  where *F* is a 1-factor.

- If *n* is odd, then  $\Gamma_Q$  is a graph with 3n vertices each having degree n-1, n-2 neighbors, and each non-adjacent pair of vertices has 0 common neighbors.
- If *n* is even, then  $\Gamma_Q$  is a graph with *n* vertices each having degree n-2, n-4 neighbors, and each non-adjacent pair of vertices has n-2 common neighbors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

# proof idea

Partition the vertices into four sets:

$$\begin{aligned} &v_1 = \{a, a^2, \dots, a^{n-1}\}, & v_2 = \{b, ab, \dots, a^{n-1}b\}, \\ &v_3 = \{t, at, \dots, a^{n-1}t\}, & v_4 = \{bt, (ab)t, \dots, (a^{n-1}b)t\}. \end{aligned}$$

Consider the relations such as

• 
$$a^i \circ a^j = a^j \circ a^i$$
,  $a^i \circ (a^j b) \neq (a^j b) \circ a^j$ ,  $a^i \circ (a^j t) = (a^j t) \circ a^i$ ,  
 $a^i \circ (a^j b)t \neq (a^j b)t \circ a^i$ 

• 
$$(a^i b) \circ (a^j b) \neq (a^j b) \circ (a^i b), \ldots$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

# Lemma (CGJ)

Let  $G = D_{2n}$ ,  $Q = (G \cup Gt, \circ)$ , and  $\Gamma_Q$  its non-commuting graph. If *n* is odd

- $\omega(\Gamma_Q) = n + 1$  (maximum size of a clique)
- $\chi(\Gamma_Q) = n + 1$  (vertex chromatic number)
- $\alpha(\Gamma_Q) = n 1$  (maximum size of independent set)
- $\beta(\Gamma_Q) = 3n$  (minimum size of vertex covering)
- $\gamma(\Gamma_Q) = 2$ . (minimum size of dominating set)

# Lemma (CGJ)

Let  $G = D_{2n}$ ,  $Q = (G \cup Gt, \circ)$ , and  $\Gamma_Q$  its non-commuting graph. If *n* is odd

- $\omega(\Gamma_Q) = \frac{n}{2} + 1$
- $\chi(\Gamma_Q) = \frac{n}{2} + 1$
- $\alpha(\Gamma_Q) = 6$  (for n = 6) and n 2 else
- $\beta(\Gamma_Q) = 16$  (for n = 6) and 3n else

• 
$$\gamma(\Gamma_Q) = 2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ○○

#### Example

Let  $G = Q_8$ ,  $Q = (G \cup Gt, \circ) \circ$ , and  $\Gamma_Q$  its non-commuting graph.



Mark Greer (UNA)

Moufang loops and non-commuting graphs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

# Lemma (CGJ)

Let  $G = Q_{4n}$  be the generalize quaternion group,  $Q = (G \cup Gt, \circ)$ , and  $\Gamma_Q$  its non-commuting graph. Then  $\Gamma_Q \cong K_{2n-2,3n\times 2}$ . That is,  $\Gamma_Q$  consists of one independent sets of vertices of size 2n - 2 and 3n independent sets of vertices of size two.

# Lemma (CGJ)

Let  $G = Q_{4n}$ ,  $Q = (G \cup Gt, \circ)$ , and  $\Gamma_Q$  its non-commuting graph. Then

- $\omega(\Gamma_Q) = 3n + 1$
- $\chi(\Gamma_Q) = 3n + 1$
- $\alpha(\Gamma_Q) = 2n 2$
- $\beta(\Gamma_Q) = 6n$
- $\gamma(\Gamma_Q) = 2.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

| Isomorphism Classes |    |    |     |   |       |     |    |    |    |    |    |    |    |    |
|---------------------|----|----|-----|---|-------|-----|----|----|----|----|----|----|----|----|
| order               | 12 | 16 | 20  | 2 | 4   2 | 28  | 32 | 36 | 40 | 42 | 44 | 48 | 52 | 54 |
| loops               | 1  | 5  | 1   | Ę | 5     | 1   | 71 | 4  | 5  | 1  | 1  | 51 | 1  | 2  |
| graphs              | 1  | 2  | 1   | 3 | 3     | 1   | 10 | 3  | 3  | 1  | 1  | 15 | 1  | 1  |
| order               | 56 | 60 | 64  |   | 81    | 243 |    |    |    |    |    |    |    |    |
| loops               | 4  | 5  | 426 | 2 | 5     | 7   | 72 |    |    |    |    |    |    |    |
| graphs              | 2  | 5  | ??? | > | 2     |     | 5  |    |    |    |    |    |    |    |

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

# Questions/TODO

- Continue to classify  $\Gamma_Q$  for  $Q = (G \cup Gt, \circ)$  with other non-abelian groups G.
- Classify  $\Gamma_Q$  for Moufang loops in general.
- Consider Q/Z(Q) and corresponding  $\Gamma_Q$ 
  - Classify  $\Gamma_Q$  for other "well-behaved" loops Q.

イロト 不得 トイヨト イヨト 二日

# THANKS!

Mark Greer (UNA)

э

・ロト ・四ト ・ヨト ・ヨト