

Institute of Mathematics, University of Gdańsk

LOOPS'23

Minimal non-solvable Bieberbach groups

Math databases matter

with Andrzej Szczepański

Question (Hillman 2022)

What is a minimal Hirsch length $h(\Gamma)$ of a torsion-free virtually polycyclic non-solvable group Γ ?

Theorem (Hillman 2023)

 Γ – virtually solvable (general case):

$$h(\Gamma) \geq 10.$$

Theorem (Lutowski, Szczepański 2023)

 $\ \ \ \ \ \ \Gamma$ – virtually abelian of minimal Hirsch length:

$$h(\Gamma) = 15.$$

Torsion-free virtually abelian (of finite rank) groups

Biebierbach groups

$$\Gamma = \left\{ \begin{bmatrix} g & s(g) + z \\ 0 & 1 \end{bmatrix} : g \in G, z \in L \right\}$$

Digression 1: YBE

- $ightharpoonup X = \{1, \ldots, n\}$ for some $n \in \mathbb{N}$
- $r(x,y) = (\sigma_x(y), \tau_y(x))$
- \triangleright (X,r) involutive non-degenerate set-theoretic solution
- Structure group of the solution:

$$G(X,r) := \langle X \mid xy = uv \text{ if } r(x,y) = (u,v) \rangle$$

Theorem (Gateva-Ivanova, Van den Bergh 1998)

G(X,r) is a Bieberbach group.

Theorem (Etingof, Schedler, Soloviev 1999; Acri, Lutowski, Vendramin 2020)

There exists an injective group homomorphism $G(X,r) \to \operatorname{GL}_{n+1}(\mathbb{Z})$ given by

$$x \mapsto \begin{bmatrix} \sigma_x & t_x \\ 0 & 1 \end{bmatrix}$$
.

Digression 2: left brace structure

Define $\pi\colon\Gamma\to\mathbb{O}^n$ by

$$\pi\left(\begin{bmatrix} A & a \\ 0 & 1 \end{bmatrix}\right) = a.$$

For $\Gamma = G(X, r)$, π is injective and $\pi(\Gamma)$ is a group:

 $(\Gamma, \cdot, +)$ – left brace with '.' – the group action and

$$\begin{bmatrix} A & a \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} B & b \\ 0 & 1 \end{bmatrix} := \pi^{-1}(a+b)$$

Remark

- For Bieberbach groups c is always injective.
- In general $\pi(\Gamma)$ is not a group, but it is enough to check if $\pi(\Gamma)/L$ is one.

Example: Promislow group

$$x = \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} \\ 0 & -1 & 0 & \frac{1}{2} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, y = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & -1 & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad z = \begin{bmatrix} 1 & 0 & 0 & \frac{1}{8} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Gamma = \langle x, y \rangle$$
 – Promislow group and $L = \mathbb{Z}^n$.

Corollary

 Γ is a left brace, while Γ^z is not.

Minimal non-solvable Bieberbach groups

Datum of a Bieberbach group

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \Gamma \longrightarrow G \longrightarrow 1$$

- $G \subset \mathrm{GL}(n,\mathbb{Z})$ finite.
- $\alpha = [\overline{s}] \in H^1(G, \mathbb{Q}^n/\mathbb{Z}^n)$ a special cohomology class, where

$$\overline{s}(g) = s(q) + \mathbb{Z}^n.$$

Solvability of Γ is built into G:

 Γ is solvable $\Leftrightarrow G$ is solvable

Minimal non-solvable Bieberbach groups

Definition

Let Γ be a Bieberbach group as above. We will call Γ minimal non-solvable (MNS), if every subgroup Γ' of Γ such that

- $ightharpoonup \Gamma'$ is of smaller dimension than Γ or
- ho $\Gamma' = \pi^{-1}(H)$ for some proper subgroup H of G is solvable.

Theorem (Hiller-Marciniak-Sah-Szczepański 1987, Plesken 1989)

There exists a non-solvable Bieberbach group of dimension 15.

Proposition

If Γ is a MNS Bieberbach group, then $h(\Gamma) \geq 15$.

Holonomy of MNS Bieberbach groups

Proposition

If $G \subset \mathrm{GL}(n,\mathbb{Z})$ is a holonomy group of a MNS Bieberbach group, then

- \blacksquare G is perfect.
- \square All maximal subgroups of G are solvable (G is MNS in the usual sense).
- The action of G on \mathbb{Z}^n (\mathbb{Q}^n , \mathbb{C}^n) has certain properties (black box for this talk).

How to find MNS 2 subgroups of $GL(n, \mathbb{Z})$, for $n \leq 14$?

All: by 3 check for them in the GAP library of finite irreducible subgroups of $\mathrm{GL}(n,\mathbb{Z})$ for $4 \leq n \leq 10$.

> 10^6 : by 1 check in the GAP library of finite prefect groups of order $\leq 10^6$ and then do check as above with lower bound 10^6 for the order of the group.

Maximal orders finite irreducible subgroups of $GL(n, \mathbb{Z})$

dimension	4	5	6	7	8	9	10
max order	$1.1 \cdot 10^3$	$3.8 \cdot 10^{3}$	$0.1 \cdot 10^{6}$	$2.9 \cdot 10^{6}$	$0.7 \cdot 10^9$	$0.2 \cdot 10^9$	$3.7 \cdot 10^9$

Few details

- Hardware: Intel Core i7-10700 + 32GB RAM
- 2 Software: Ubuntu 22.04 + GAP 4.12.2 (compiled from sources)
- The subgroups were calculated up to conjugacy in the whole group:

```
# Approach "All" and [Approach ">10^6"]:
MaximalNonsolvableSubgroups := function(grp[, min])
    return Filtered(
        MaximalSubgroupClassReps(grp),
        x -> [Size(x)>=min and] not IsSolvableGroup(x) );
end:
```

Thanks to the library, we didn't have to work with matrix groups, e.g.

```
qap> G := Image( IsomorphismPermGroup( ImfMatrixGroup(10,1,1) ) );
```

All images lie in S_n for $n \le 270$ (median for n is 42, average ≈ 63).

*ran out of memory

Count of maximal subgroups calculation

*ran out of memory

Runtime (in seconds)

Time measured with GAP profiler. Included:

- calculation of maximal subgroups
- comparison of subgroups up to conjugacy

> 10

- Calculation of perfect groups of order $< 10^6$ which do not have proper non-solvable subgroups took about 1077 seconds.
- On a computer with Intel Core i7-4820K+64GB RAM the "slower" approach resulted with out of memory after about 290h of calculations.

Conclusion of calculations

Every subgroup of a finite irreducible subgroup of $GL(n,\mathbb{Z})$ and of order $> 10^6$ has a non-solvable subgroup, for $4 \le n \le 10$.

Thank you!