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THESE ARE BEAUTIFUL – BUT MYSTERIOUS!
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Shaded tensor networks

A shaded tensor network is a planar string diagram, where some of the regions are shaded.

 

It is a string diagram for a subcategory of the 2Hilb, the 2-category of 2–Hilbert spaces.

To express the linear data of a shaded tensor network in ordinary circuit notation:

• Regions become wires • Vertices are controlled by the wires of adjacent regions
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In the world of shaded tensor networks, a map U can be vertically unitary:

U

U†

=
U†

U
=

If U is 4-valent, we can also ask if it is horizontally unitary:

U U∗ = λ U∗ U = λ

A 4-valent map is biunitary when it is vertically and horizontally unitary.

First introduced by Ocneanu in 1989, to study subfactors of von Neumann algebras.
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Quantum structures from biunitaries
We will consider biunitary vertices with different shading patterns.

H U L C

H U L C

Hadamard Unitary basis
Quantum Latin

square
Quantum cross

These shading patterns exactly recover our different quantum structures.

The Hadamard shading pattern was first discovered by Vaughan Jones in 1989.
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Diagonal Composition

Biunitarity is preserved by diagonal composition.

{

{

{

{
{

{ {

{

So if we compose biunitary vertices diagonally, we get a new biunitary.

But diagonal composition changes the shading pattern!
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Geometrical constructions

By composing our quantum structures diagonally, we can make new ones.
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a

b

e

f

c

d

H + H ′  L U + U ′  L H + L U H + C + H ′  L

La,b,c = Ha,c H ′
b,c La,b,cd =

∑
e Ua,d,e U ′

b,c,e Uab,c,d = Ha,c Lb,c,d Lab,cd,ef = Ha,e Cb,c,e,f H ′
d,f

The traditional formulas can be read off the pictures — now we see where they come from!

This shows the true geometrical nature of these constructions.
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Modelling quantum many-body systems

How should we model the dynamics of a 1d chain of interacting quantum systems?

Brickwork circuits give a minimal local dynamical model, built from 2-site unitary gates:

We want to analyze emergent properties of these circuits, and relate them to real systems.
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Correlations outside the light cone

Let’s verify this property: trivial correlations for measurements outside the light cone.

Tr(U†O1U O2) = O1

O2

This factorizes, so the
correlation is trivial.
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Correlation inside light cone

For measurements inside the light cone,
the correlations can take any value.

O1

O2

But now suppose the gates
are also horizontally unitarity:

= =

Then applying a space-time symmetry, the previous proof applies.

So correlations inside the light cone are now also trivial!
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Dual unitary brickwork circuits

A dual unitary is a 2-site gate which is unitary, and also horizontally unitary.

For these gates, the only nontrivial correlations
are therefore on the lightcone.

Information must travel “at light speed”.

O1

O2

As toy models of many-body quantum systems, they have many cool, unusual properties:

• Exact solvability. Single-site correlation functions can be efficiently computed.

• Maximal entanglement velocity. Entanglement spreads at fastest possible rate.

• Maximally chaotic. Ergodic behaviour with same statistics as random matrix models.
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Dual unitary clockwork circuits

Tomaz Prosen recently introduced a different model,
built from 1-site 2-controlled gates:

He calls them interaction round-a-face, but we call them clockwork circuits.

Prosen gives a new definition of dual unitarity for these circuits.

He then shows they share all the good properties of dual unitary brickwork circuits!

This is surprising — their structure is very different. How can we understand this?
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Homogeneous biunitary circuits
New let’s look at biunitary circuits with all shading the same.

In the unshaded case, these are just ordinary dual unitary brickwork circuits:

Let’s see what happens in the shaded case. We get Prosen’s circuits!

 

So brickwork and clockwork circuits have a unified description using the shaded calculus.

This also recovers Prosen’s definition of dual unitarity for clockwork circuits.
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Biunitary circuits — dynamical boundary

Our more general language lets us try new things. What happens if we drop homogeneity?

The simplest possible structure is a dynamical boundary :

 

This boundary moves left-to-right, separating clockwork and brickwork circuits.

At the boundary we require a new sort of vertex,
with two shaded and two unshaded regions.

We saw these before — they are quantum Latin squares!
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Biunitary circuits — boundary creation

We can create these boundaries dynamically:

 

Here a new clockwork region is created within an existing brickwork region.

At point P we encounter another new vertex
type, with one shaded region.

These are unitary error bases, orthogonal and complete families of unitary matrices.
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Biunitary circuits — boundary reflection

Boundaries can also reflect off each other:

 

Here a clockwork region contracts to zero width, then expands again.

The central point has a vertex with
two non-adjacent shaded regions.

Here we are using Hadamard matrices, unitary matrices where every coefficient has the
same absolute value.
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The geometry of quantum structures

Shaded planar algebra is a tool for exploring the geometry of quantum combinatorics.

Quantum Latin
Square

Hadamard Unitary
Basis

Quantum
Cross

It will be exciting to use these techniques to discover more about the relationship between
quantum physics, quantum combinatorics, and quantum information.
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