Biracks II

Agata Pilitowska

joint work with: Přemysl Jedlička and Anna Zamojska-Dzienio
LOOPS'23 Workshop
Będlewo, Poland
June 27th, 2023

I:aculty of Mathematics and Information Sicience

Outline

Multipermutation biracks of level 2

- 2-reductive
- distributive
- 2-permutational

Equational characterization of biracks

Definition [Stanovský 2006]

An algebraic structure $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ with four binary operations is called a birack, if the following holds for any $x, y, z \in X$:

- $x \circ(x \backslash \circ y)=y=x \backslash_{\circ}(x \circ y)$
- $(y / \bullet x) \bullet x=y=(y \bullet x) / \bullet x$
- $x \circ(y \circ z)=(x \circ y) \circ((x \bullet y) \circ z)$
- $(x \circ y) \bullet((x \bullet y) \circ z)=(x \bullet(y \circ z)) \circ(y \bullet z)$
- $(x \bullet y) \bullet z=(x \bullet(y \circ z)) \bullet(y \bullet z)$

Retraction relations of a birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$

$$
\begin{aligned}
& x \sim y \quad \Leftrightarrow \quad L_{x}=L_{y} \quad \Leftrightarrow \quad \forall a \in X \quad x \circ a=y \circ a \\
& x \backsim y \quad \Leftrightarrow \quad \mathbf{R}_{x}=\mathbf{R}_{y} \quad \Leftrightarrow \quad \forall a \in X \quad a \bullet x=a \bullet y \\
& x \approx y \quad \Leftrightarrow \quad L_{x}=L_{y} \quad \text { and } \quad \mathbf{R}_{x}=\mathbf{R}_{y}
\end{aligned}
$$

The quotient birack $\operatorname{Ret}(X)=\left(X / \approx, \circ, \backslash_{\circ}, \bullet, / \bullet\right)$ is called the retraction of $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$.
$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is of multipermutation level 2 if

$$
|\operatorname{Ret}(\operatorname{Ret}(X))|=1
$$

$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ - a birack

$|\operatorname{Ret}(\operatorname{Ret}(X))|=1$

For every $x, y, z, t \in X$:

$$
\begin{aligned}
& (z \circ x) \circ y=(t \circ x) \circ y \\
& (x \bullet z) \circ y=(x \bullet t) \circ y \\
& y \bullet(z \circ x)=y \bullet(t \circ x) \\
& y \bullet(x \bullet z)=y \bullet(x \bullet t)
\end{aligned}
$$

Condition ($* *$)

Proposition

Let $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ be a birack satisfying the following two properties:

$$
\begin{array}{ll}
\forall x \in X \exists y \in X & y \circ x=x \\
\forall x \in X \exists y \in X & x \bullet y=x
\end{array}
$$

Then $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is a multipermutation birack of level at most 2 if and only if it satisfies for $x, y, z \in X$:

$$
\begin{aligned}
& (x \circ y) \circ z=y \circ z \\
& z \bullet(y \bullet x)=z \bullet y \\
& (y \bullet x) \circ z=y \circ z \\
& z \bullet(x \circ y)=z \bullet y
\end{aligned}
$$

2-reductive biracks

Definition

A birack $\left(X, \circ, \backslash_{\circ}, \bullet, / \bullet\right)$ is called 2-reductive if it satisfies

$$
\begin{aligned}
& (x \circ y) \circ z=y \circ z \\
& z \bullet(y \bullet x)=z \bullet y \\
& (y \bullet x) \circ z=y \circ z \\
& z \bullet(x \circ y)=z \bullet y
\end{aligned}
$$

Proposition

If a birack $\left(X, \circ, \backslash_{\circ}, \bullet, / \bullet\right)$ is 2-reductive then the permutation group $\operatorname{Mlt}(X)$ is abelian.

A birack:

- $x \circ(y \circ z)=(x \circ y) \circ((x \bullet y) \circ z)$
- $(x \circ y) \bullet((x \bullet y) \circ z)=(x \bullet(y \circ z)) \circ(y \bullet z)$
- $(x \bullet y) \bullet z=(x \bullet(y \circ z)) \bullet(y \bullet z)$

2-reductive biracks - construction

Theorem

I - a non-empty set
$\left(A_{i}\right)_{i \in I}$ - a family of abelian groups over I
$\bigcup_{i \in I} A_{i}$ - the disjoint union of the sets A_{i}
$c_{i, j}, d_{i, j} \in A_{j}$, for $i, j \in I$, - some constants
Then $\left(\bigcup_{i \in I} A_{i}, \circ, _{\circ}, \bullet, / \bullet\right)$, where for $x \in A_{i}, y \in A_{j}$,

$$
\begin{array}{ll}
x \circ y=y+c_{i, j} & x \backslash_{\circ} y=y-c_{i, j} \\
x \bullet y=x+d_{j, i} & x / \bullet y=x-d_{j, i}
\end{array}
$$

is a 2-reductive birack.

The disjoint union of abelian groups

Remark

The birack $\left(\bigcup_{i \in I} A_{i}, \circ, _{\circ}, \bullet, / \bullet\right)$ satisfying

$$
A_{j}=\left\langle\left\{c_{i, j}, d_{i, j} \mid i \in I\right\}\right\rangle, \text { for every } j \in I,
$$

has orbits of the action of $\operatorname{Mlt}(X)$ equal to $A_{j}, j \in I$ and each orbit is a permutational birack.

We call it the disjoint union, over a set I, of abelian groups and denote by:

$$
\mathcal{A}=\left(\left(A_{i}\right)_{i \in I},\left(c_{i, j}\right)_{i, j \in I},\left(d_{i, j}\right)_{i, j \in I}\right) .
$$

Theorem

A birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is 2-reductive if and only if it is a disjoint union, over a set I, of abelian groups.

The orbits of the action of $\operatorname{Mlt}(X)$ coincide with the groups.

Isomorphism theorem

Theorem

$$
\begin{aligned}
& \mathcal{A}=\left(\left(A_{i}\right)_{i \in I},\left(c_{i, j}\right)_{i, j \in I},\left(d_{i, j}\right)_{i, j \in I}\right) \text { and } \\
& \mathcal{A}^{\prime}=\left(\left(A_{i}^{\prime}\right)_{i \in I},\left(c_{i, j}^{\prime}\right)_{i, j \in I},\left(d_{i, j}^{\prime}\right)_{i, j \in I}\right)
\end{aligned}
$$

are isomorphic 2-reductive biracks if and only if there is a bijection π of the set I and group isomorphisms $\psi_{i}: A_{i} \rightarrow A_{\pi(i)}^{\prime}$ such that

$$
\psi_{j}\left(c_{i, j}\right)=c_{\pi(i), \pi(j)}^{\prime} \quad \text { and } \quad \psi_{j}\left(d_{i, j}\right)=d_{\pi(i), \pi(j)}^{\prime}
$$

for every $i, j \in I$.

How to construct all biracks of multipermutation level 2 of

 size n
Algorithm

(1) For all partitionings $n=n_{1}+n_{2}+\cdots+n_{k} d o$ (2)-(4).
(2) For all abelian groups A_{1}, \ldots, A_{k} of size $\left|A_{i}\right|=n_{i}$ do (3)-(4).
(3) For all constants $c_{i, j}, d_{i, j} \in A_{j}$, for all $1 \leq i, j \leq k$ do (4).
(- If, for all $1 \leq i, j \leq k$, we have $A_{j}=\left\langle\left\{c_{i, j}, d_{i, j} \mid i \in I\right\}\right\rangle$ then construct a birack $\left(\bigcup A_{i},\left(c_{i, j}\right),\left(d_{i, j}\right)\right)$:

$$
\begin{array}{ll}
x \circ y=y+c_{i, j} & x _{\circ} y=y-c_{i, j} \\
x \bullet y=x+d_{j, i} & x / \bullet y=x-d_{j, i}
\end{array}
$$

where $x \in A_{i}$ and $y \in A_{j}$.

The disjoint union of abelian groups

Remark

$\mathcal{A}=\left(\left(A_{i}\right)_{i \in I},\left(c_{i, j}\right)_{i, j \in I},\left(d_{i, j}\right)_{i, j \in I}\right):$

- is idempotent if and only if $c_{i, i}=d_{i, i}=0$, for each $i \in I$
- is involutive if and only if $d_{i, j}=-c_{i, j}$, for each $i, j \in I$
- satisfies Condition $(* *)$ if and only if

$$
\forall j \in I \quad \exists i, i^{\prime} \in I, \quad \text { such that } \quad c_{i, j}=d_{i^{\prime}, j}=0
$$

- Idempotent birack: $x \circ x=x$ and $x \bullet x=x$
- Involutive birack: $x \bullet y=(x \circ y) \backslash \circ x$
- Condition (**): $\forall x \in \exists y \in X \quad y \circ x=x$ and $\forall x \in X \exists y \in X \quad x \bullet y=x$

The retraction relations

Proposition

For 2-reductive birack $\left(X, \circ, \backslash_{\circ}, \bullet, / \bullet\right)$, the retraction relations:

$$
\begin{array}{lllll}
x \sim y & \Leftrightarrow & L_{x}=L_{y} & \Leftrightarrow & \forall a \in X \quad x \circ a=y \circ a \\
x \sim y & \Leftrightarrow & \mathbf{R}_{x}=\mathbf{R}_{y} \quad \Leftrightarrow \quad \forall a \in X \quad a \bullet x=a \bullet y \\
x \approx y & \Leftrightarrow & L_{x}=L_{y} \quad \text { and } \quad \mathbf{R}_{x}=\mathbf{R}_{y}
\end{array}
$$

are congruences.
The quotient biracks: $\operatorname{Ret}(X), \operatorname{LRet}(X)$ and $\operatorname{Ret}(X)$ are projection ones.

Retraction relations for 2-reductive biracks

$$
\left(X, \circ, _{\circ}, \bullet, / \bullet\right)=\left(\left(A_{i}\right)_{i \in I},\left(c_{i, j}\right)_{i, j \in I},\left(d_{i, j}\right)_{i, j \in I}\right)
$$

Lemma

For $x \in A_{i}$ and $y \in A_{j}$

$$
x \sim y \quad \Leftrightarrow \quad \forall(k \in I) c_{i, k}=c_{j, k}
$$

and

$$
x \backsim y \quad \Leftrightarrow \quad \forall(k \in I) d_{i, k}=d_{j, k}
$$

Distributive biracks $\left(X, \circ, _{\odot}, \bullet, / \bullet\right)$

- left distributive if $\left(X, \circ, _{\circ}\right)$ is a left rack
- right distributive if $(X, \bullet, \backslash \bullet)$ is a right rack
- distributive if it is left and right distributive

Example

$n \in \mathbb{N}$ - an odd natural number
The birack $\left(\mathbb{Z}_{n}, \circ, _{\circ}, \bullet, / \bullet\right)$, with

$$
\begin{array}{rr}
x \circ y=(-1)^{x} y & \bmod 2 n \\
x \bullet y=(-1)^{y+1} x+x+y & \bmod 2 n
\end{array}
$$

is left distributive but not right distributive.

2-reductivity \Longrightarrow distributivity

Definition

A birack $\left(X, \circ, \backslash_{\circ}, \bullet, / \bullet\right)$ is 2-reductive if it satisfies for $x, y, z \in X$:

$$
\begin{aligned}
& (x \circ y) \circ z=y \circ z \\
& z \bullet(y \bullet x)=z \bullet y \\
& (y \bullet x) \circ z=y \circ z \\
& z \bullet(x \circ y)=z \bullet y
\end{aligned}
$$

Corollary

Each 2-reductive birack is distributive.

Retraction relations of a birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$

Theorem (P. Jedlička, A.P., A. Zamojska-Dzienio)

$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ - a distributive birack

- $\left(X / \sim, \circ, \backslash_{\circ}, \bullet / \bullet\right)=\mathbf{B}_{L}\left(X / \sim, \circ, \backslash_{\circ}\right)$
- $\left(X / \sim, \circ, _{\circ}, \bullet, / \bullet\right)=\mathbf{B}_{R}(X / \sim, \bullet, / \bullet)$
- $\left(X / \approx, \circ, _{\circ}, \bullet, / \bullet\right)$ is idempotent

$$
\begin{aligned}
& x \sim y \quad \Leftrightarrow \quad L_{x}=L_{y} \quad \Leftrightarrow \quad \forall a \in X \quad x \circ a=y \circ a \\
& x \sim y \quad \Leftrightarrow \quad \mathbf{R}_{x}=\mathbf{R}_{y} \quad \Leftrightarrow \quad \forall a \in X \quad a \bullet x=b \bullet y \\
& x \approx y \quad \Leftrightarrow \quad L_{x}=L_{y} \quad \text { and } \quad \mathbf{R}_{x}=\mathbf{R}_{y}
\end{aligned}
$$

Distributive biracks

Theorem (P. Jedlička, A.P., A. Zamojska-Dzienio)
$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ - a distributive birack

- $[\operatorname{LMIt}(X), \operatorname{RMlt}(X)]=\{\operatorname{id}\}$
- The $\operatorname{group} \operatorname{Mlt}(X)$ is abelian $\Leftrightarrow\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is 2-reductive.

Definition

A birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is k-reductive if it is

left k-reductive

$$
\left(\ldots\left(\left(x_{0} \circ x_{1}\right) \circ x_{2}\right) \ldots\right) \circ x_{k}=\left(\ldots\left(\left(x_{1} \circ x_{2}\right) \circ x_{3}\right) \ldots\right) \circ x_{k},
$$

and right k-reductive

$$
\left.x_{0} \bullet\left(\ldots\left(x_{k-2} \bullet\left(x_{k-1} \bullet x_{k}\right)\right) \ldots\right)=x_{0} \bullet\left(\ldots\left(x_{k-2} \bullet x_{k-1}\right)\right) \ldots\right)
$$

Theorem (P. Jedlička, A.P., A. Zamojska-Dzienio)
$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is k-reductive \Leftrightarrow
the group $\operatorname{Mlt}(X)$ is nilpotent of class at most $k-1$.

k-reductive biracks

Theorem (P. Jedlička, A.P., A. Zamojska-Dzienio)
$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ - a distributive birack and $k \geq 2$
The following conditions are equivalent:

- $\left|\operatorname{Ret}^{k}(X)\right|=1$,
- $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is k-reductive,
- $\operatorname{Mlt}(X)$ is nilpotent of class at most $k-1$.

Remark

The Theorem cannot be generalized for non-distributive biracks.

- There exist biracks that are reductive but their multiplication groups are not nilpotent (A. Smoktunowicz)
- There exist biracks that are not reductive but their multipication groups are nilpotent (A. Smoktunowicz)

Distributive biracks $\neq 2$-reductive

Example

$\left(\{1,2,3,4,5,6\}, \circ, _{\circ}, \bullet, / \bullet\right)$ - a distributive birack such that:

$$
\begin{aligned}
L_{1}= & (3546) \\
L_{3}=L_{4}= & =(6453)(56) \\
L_{5}=L_{6} & =(12)(34) \\
\mathbf{R}_{1}=\mathbf{R}_{2}= & \text { id } \quad \mathbf{R}_{3}=\mathbf{R}_{4}=\mathbf{R}_{5}=\mathbf{R}_{6}=(34)(56) \\
& \\
& 5=5 \circ 5=(1 \circ 3) \circ 5 \neq 3 \circ 5
\end{aligned}
$$

Distributive involutive biracks

Theorem

($X, \circ, _{\circ}, \bullet, / \bullet$) - involutive birack
The following conditions are equivalent:
(1) $\left(X, \circ, \backslash_{\circ}, \bullet, / \bullet\right)$ is distributive
(2) $\left(X, \circ, \backslash_{\circ}, \bullet, / \bullet\right)$ is 2-reductive

A birack is involutive if for every $x, y \in X$:

$$
\begin{aligned}
& (x \circ y) \circ(x \bullet y)=x, \\
& (x \circ y) \bullet(x \bullet y)=y
\end{aligned}
$$

equivalently: $x \bullet y=L_{x \circ y}^{-1}(x)=(x \circ y) \backslash \circ x \quad$ and $\quad x \circ y=\boldsymbol{R}_{x \bullet y}^{-1}(y)=y / \bullet(x \bullet y)$ Distributivity:

$$
\begin{aligned}
& (x \circ y) \circ z=y \circ z \\
& z \bullet(y \bullet x)=z \bullet y \\
& (y \bullet x) \circ z=y \circ z \\
& z \bullet(x \circ y)=z \bullet y
\end{aligned}
$$

The Structure Theorem

Theorem (P. Jedlička, A.P., A. Zamojska-Dzienio, 2020)

Each involutive distributive birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is a disjoint union of abelian groups $\left(\left(A_{i}\right)_{i \in I} ;\left(c_{i, j}\right)_{i, j \in I}\right)$, with operations for $x \in A_{i}$ and $y \in A_{j}$:

$$
x \circ y=y+c_{i, j} \quad \text { and } \quad x \bullet y=x-c_{j, i},
$$

where $A_{j}=\left\langle\left\{c_{i, j} \mid i \in I\right\}\right\rangle$, for every $j \in I$.
W. Rump, 2022: The Transvection torsor

Involutive 2-reductive biracks of size 3

Example

- One orbit: $\left(\left(\mathbb{Z}_{3}\right),(1)\right)$.
- Two orbits: $\left(\left(\mathbb{Z}_{2}, \mathbb{Z}_{1}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right),\left(\left(\mathbb{Z}_{2}, \mathbb{Z}_{1}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$, $\left(\left(\mathbb{Z}_{2}, \mathbb{Z}_{1}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\right)$.
- Three orbits: $\left(\left(\mathbb{Z}_{1}, \mathbb{Z}_{1}, \mathbb{Z}_{1}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right)$.

(Non-involutive) 2-reductive biracks of size 3

Example

- One orbit: $\left(\mathbb{Z}_{3},(1),(1)\right),\left(\mathbb{Z}_{3},(0),(1)\right),\left(\mathbb{Z}_{3},(1),(0)\right)$.
- Two orbits: $\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right),\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$, $\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\right)\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\right)$, $\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right),\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$,
$\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\right),\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\right)$,
$\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right),\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$, $\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\right),\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\right)$,
$\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{cc}1 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right),\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$,
$\left(\mathbb{Z}_{2} \cup \mathbb{Z}_{1},\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\right)$.
- Three orbits: $\left(\mathbb{Z}_{1} \cup \mathbb{Z}_{1} \cup \mathbb{Z}_{1},\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right)$.

2-permutational biracks

Definition

A birack $\left(X, \circ, \backslash_{\circ}, \bullet, / \bullet\right)$ is 2-permutational if for every $x, y, z, t \in X$:

$$
\begin{array}{rll}
(z \circ x) \circ y=(t \circ x) \circ y & \Leftrightarrow & L_{L_{z}(x)}=L_{L_{t}(x)} \\
(x \bullet z) \circ y=(x \bullet t) \circ y & \Leftrightarrow & L_{\boldsymbol{R}_{z}(x)}=L_{\boldsymbol{R}_{t}(x)} \\
y \bullet(z \circ x)=y \bullet(t \circ x) & \Leftrightarrow & \boldsymbol{R}_{L_{z}(x)}=\boldsymbol{R}_{L_{t}(x)} \\
y \bullet(x \bullet z)=y \bullet(x \bullet t) & \Leftrightarrow & \boldsymbol{R}_{\boldsymbol{R}_{z}(x)}=\boldsymbol{R}_{\boldsymbol{R}_{t}(x)}
\end{array}
$$

2-reductive $\neq 2$-permutational

2-reductive $\neq 2$-permutational

Example

$\left(X=\{0,1,2,3\}, \circ, \backslash_{\circ}, \bullet, / \bullet\right)$ - 2-permutational involutive birack:

\bigcirc	0	1	2	3	\bullet	0	1	2	3
0	1	0	3	2	0	3	1	3	1
1	3	2	1	0	1	2	0	2	0
2	1	0	3	2	2	1	3	1	3
3	3	2	1	0	3	0	2	0	2

$\left(X, *, _{*}, \diamond, / \odot\right): \sigma$-isotope of a birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$

$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ - a 2-reductive involutive birack
σ - a bijection on the set X such that

$$
\begin{gathered}
\forall x, y \in X \quad L_{\sigma(y)} \sigma L_{x}=L_{\sigma(x)} \sigma L_{y} \\
x * y=L_{x} \sigma(y) \quad \text { and } \quad x \diamond y=(x * y) \backslash_{*} x
\end{gathered}
$$

Theorem (P. Jedlička, A.P., A. Zamojska-Dzienio)

The σ-isotope $\left(X, *, _{*}\right)$ of $\left(X, \circ, _{\circ}\right)$ is such that:

- right cyclic left quasigroup
- non-degenerate
- $(z * x) * y=(t * x) * y$

Then $\left(X, *, \backslash_{*}, \diamond, / \diamond\right)$ is a 2-permutational involutive birack.
[W.Rump] An algebra $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is an involutive birack if and only if $\left(X, \circ, _{\circ}\right)$ is a non-degenerate right cyclic left quasigroup.

Example

Involutive 2-reductive

\circ	0	1	2	3
0	0	1	2	3
1	2	3	0	1
2	0	1	2	3
3	2	3	0	1

$\sigma=(01)(23)$ satisfies the condition: $L_{\sigma(y)} \sigma L_{x}=L_{\sigma(x)} \sigma L_{y}$ σ-isotope $=2$-permutational involutive

\circ	0	1	2	3
0	1	0	3	2
1	3	2	1	0
2	1	0	3	2
3	3	2	1	0

2-permutational involutive biracks

Lemma

$\left(X, \circ, _{\circ} \bullet, / \bullet\right)$ - a 2-permutational involutive birack
$e \in X, L_{e}^{-1} \neq \mathrm{id}$
The L_{e}^{-1}-isotope of $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is an involutive 2-reductive birack.

Example

Involutive 2-permutational non-distributive

\circ	0	1	2	3
0	1	0	3	2
1	3	2	1	0
2	1	0	3	2
3	3	2	1	0

L_{0}^{-1}-isotope $=$ involutive 2-reductive

\circ	0	1	2	3
0	0	1	2	3
1	2	3	0	1
2	0	1	2	3
3	2	3	0	1

Example

2-permutational involutive

\circ	0	1	2	3	4
0	0	2	1	4	3
1	3	2	1	0	4
2	4	2	1	3	0
3	0	2	1	4	3
4	0	2	1	4	3

L_{0}^{-1} and L_{1}^{-1} - isotopes $=2$-reductive, involutive

2-permutational involutive biracks

Theorem (P. Jedlička, A.P., A. Zamojska-Dzienio)

Each 2-permutational involutive birack is a π-isotope of a 2-reductive one, for some bijection π.

Proof - Main idea

($X, \circ, \backslash_{\circ}, \bullet, / \bullet$) - a 2-permutational involutive birack, $e \in X$
L_{e}^{-1}-isotope $=\left(X, *, \backslash_{*}, \diamond, / \diamond\right)=2$-reductive involutive birack

$$
x * y=L_{x} L_{e}^{-1}
$$

L_{e} satisfies the condition: $L_{\sigma(y)}^{*} \sigma L_{x}^{*}=L_{\sigma(x)}^{*} \sigma L_{y}^{*}$ for $\left.(X, *,\rangle_{*}, \diamond, / \diamond\right)$
Construct L_{e}-isotope of $\left(X, *, _{*}, \diamond, / \diamond\right)=\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$

Enumeration

n	1	2	3	4	5	6	7	8
involutive biracks	1	2	5	23	88	595	3456	34528
2-permutational inv. biracks	1	2	5	19	70	359	2095	16332
2-reductive inv. biracks	1	2	5	17	65	323	1960	15421
2-permutational, not 2-reductive	0	0	0	2	5	36	135	911

Table: The number of involutive biracks of size n, up to isomorphism.

THANK YOU VERY MUCH FOR YOUR ATTENTION!

