Biracks and their applications I

Přemysl Jedlička ${ }^{1}$, Agata Pilitowska ${ }^{2}$, Anna Zamojska-Dzienio ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Engineering, Czech University of Life Sciences,
${ }^{2}$ Faculty of Mathematics and Information Science, Warsaw University of Technology

LOOPS23 Workshop

June 26, 2023
Będlewo

Introduction

- Quandles and racks
- Biracks and biquandles
- Solutions of the Yang-Baxter equation

(Mathematical) knots

(Mathematical) knots

- Abstractions of real world knots: embeddings of a circle in the Euclidean space \mathbb{R}^{3}.

(Mathematical) knots

- Abstractions of real world knots: embeddings of a circle in the Euclidean space \mathbb{R}^{3}.
- Knot $=$ a piece of string that has been tangled up and whose ends have been glued together; usually represented by a planar diagram: a projection of the knot onto a plane.

(Mathematical) knots

- Abstractions of real world knots: embeddings of a circle in the Euclidean space \mathbb{R}^{3}.
- Knot $=$ a piece of string that has been tangled up and whose ends have been glued together; usually represented by a planar diagram: a projection of the knot onto a plane.
- Planar diagram - we store the information about relative height of each strand by showing the lower strand interrupted.

(Mathematical) knots

- Abstractions of real world knots: embeddings of a circle in the Euclidean space \mathbb{R}^{3}.
- Knot $=$ a piece of string that has been tangled up and whose ends have been glued together; usually represented by a planar diagram: a projection of the knot onto a plane.
- Planar diagram - we store the information about relative height of each strand by showing the lower strand interrupted.
- Fundamental problem: when two diagrams represent the same knot $=$ when two knots are equivalent.

(Mathematical) knots

- Abstractions of real world knots: embeddings of a circle in the Euclidean space \mathbb{R}^{3}.
- Knot $=$ a piece of string that has been tangled up and whose ends have been glued together; usually represented by a planar diagram: a projection of the knot onto a plane.
- Planar diagram - we store the information about relative height of each strand by showing the lower strand interrupted.
- Fundamental problem: when two diagrams represent the same knot $=$ when two knots are equivalent.
- Various knot invariants = functions that have the same outcome for two equivalent knots.

Quandles

Quandles

D. Joyce 1982:

D. Joyce, Classifying invariant of knots, the knot quandle, J. Pure Applied Algebra, 23 (1982), 37-65.

Quandles

D. Joyce 1982:

- associates a quandle with every knot diagram - the knot quandle. This is a complete knot invariant: when two knots have isomorphic knot quandles, they can differ only in orientation.
D. Joyce, Classifying invariant of knots, the knot quandle, J. Pure Applied Algebra, 23 (1982), 37-65.

Quandles

D. Joyce 1982:

- associates a quandle with every knot diagram - the knot quandle. This is a complete knot invariant: when two knots have isomorphic knot quandles, they can differ only in orientation.
- Determining when two quandles are isomorphic is difficult.
D. Joyce, Classifying invariant of knots, the knot quandle, J. Pure Applied Algebra, 23 (1982), 37-65.

Quandles

D. Joyce 1982:

- associates a quandle with every knot diagram - the knot quandle. This is a complete knot invariant: when two knots have isomorphic knot quandles, they can differ only in orientation.
- Determining when two quandles are isomorphic is difficult.
D. Joyce, Classifying invariant of knots, the knot quandle, J. Pure Applied Algebra, 23 (1982), 37-65.
J.S. Carter et al. 2004: quandle cohomology.
J. S. Carter, M. Elhamdadi, M. Saito, Homology theory for the set-theoretic Yang-Baxter equation and knot invariants from generalizations of quandles, Fund. Math. 184 (2004), 31-54.

Quandles

An algebra $(Q, *, /)$, with two binary operations $*$ and $/$, is a quandle if for every $x, y, z \in Q$:
(1) $x * x=x$
(2) $(x * y) / y=x=(x / y) * y$
(3) $(y * z) * x=(y * x) *(z * x)$

Quandles

An algebra $(Q, *, /)$, with two binary operations $*$ and $/$, is a quandle if for every $x, y, z \in Q$:
(1) $x * x=x$ (idempotency)
(2) $(x * y) / y=x=(x / y) * y$
(3) $(y * z) * x=(y * x) *(z * x)$

Quandles

An algebra $(Q, *, /)$, with two binary operations $*$ and $/$, is a quandle if for every $x, y, z \in Q$:
(1) $x * x=x$ (idempotency)
(2) $(x * y) / y=x=(x / y) * y$ (right quasigroup)
(3) $(y * z) * x=(y * x) *(z * x)$

Quandles

An algebra $(Q, *, /)$, with two binary operations $*$ and $/$, is a quandle if for every $x, y, z \in Q$:
(1) $x * x=x$ (idempotency)
(2) $(x * y) / y=x=(x / y) * y$ (right quasigroup)
(3) $(y * z) * x=(y * x) *(z * x)$

Right quasigroup: the equation $u * x=y$ has a unique solution $u \in Q$ for every $x, y \in Q$.

Quandles

An algebra $(Q, *, /)$, with two binary operations $*$ and $/$, is a quandle if for every $x, y, z \in Q$:
(1) $x * x=x$ (idempotency)
(2) $(x * y) / y=x=(x / y) * y$ (right quasigroup)
(3) $(y * z) * x=(y * x) *(z * x)$ (right distributivity)

Right quasigroup: the equation $u * x=y$ has a unique solution $u \in Q$ for every $x, y \in Q$.

Quandles

An algebra $(Q, *, /)$, with two binary operations $*$ and $/$, is a quandle if for every $x, y, z \in Q$:
(1) $x * x=x$ (idempotency)
(2) $(x * y) / y=x=(x / y) * y$ (right quasigroup)
(3) $(y * z) * x=(y * x) *(z * x)$ (right distributivity)

Right quasigroup: the equation $u * x=y$ has a unique solution $u \in Q$ for every $x, y \in Q$.

All right translations $R_{a}: Q \rightarrow Q ; \quad R_{a}(x)=x * a$ are automorphisms of Q.

Racks

2nd Reidemeister move

3rd Reidemeister move

Right distributive right quasigroup $=$ racks

Quandles

1st Reidemeister move

Idempotent racks $=$ quandles

Biracks

Quandles and racks (Joyce 1982, Matveev 1984) \leftrightarrow (classical) knot theory.

Biracks

Quandles and racks (Joyce 1982, Matveev 1984) \leftrightarrow (classical) knot theory. Biquandles and biracks (Fenn et al. 2004) \leftrightarrow virtual knot theory (Kauffman 1999).

- R. Fenn, M. Jordan-Santana, L. Kauffman, Biquandles and virtual links, Topology and its Appl. 145 (2004), 157-175.
- L. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), 663-690.

Biracks

Quandles and racks (Joyce 1982, Matveev 1984) \leftrightarrow (classical) knot theory. Biquandles and biracks (Fenn et al. 2004) \leftrightarrow virtual knot theory (Kauffman 1999).

Let $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ be a birack, where for every $x, y, \in X$:

$$
x \circ y=y
$$

Then $(X, \bullet, / \bullet)$ is a (right) rack.

- R. Fenn, M. Jordan-Santana, L. Kauffman, Biquandles and virtual links, Topology and its Appl. 145 (2004), 157-175.
- L. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), 663-690.

Equational characterization

Definition (Stanovský 2006)

A structure $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ with four binary operations is called a birack, if the following holds for any $x, y, z \in X$:

$$
\begin{array}{r}
x \circ(x \backslash y)=y=x \backslash(x \circ y), \\
(y / \bullet x) \bullet x=y=(y \bullet x) / \bullet x, \\
x \circ(y \circ z)=(x \circ y) \circ((x \bullet y) \circ z), \\
(x \circ y) \bullet((x \bullet y) \circ z)=(x \bullet(y \circ z)) \circ(y \bullet z), \\
(x \bullet y) \bullet z=(x \bullet(y \circ z)) \bullet(y \bullet z) .
\end{array}
$$

D. Stanovský, On axioms of biquandles, J. Knot Theory Ramifications 15 (2006), 931-933.

Involutive biracks

A birack is involutive if it satisfies for every $x, y \in X$:

$$
\begin{aligned}
& (x \circ y) \circ(x \bullet y)=x, \\
& (x \circ y) \bullet(x \bullet y)=y .
\end{aligned}
$$

Involutive biracks

A birack is involutive if it satisfies for every $x, y \in X$:

$$
\begin{aligned}
& (x \circ y) \circ(x \bullet y)=x, \\
& (x \circ y) \bullet(x \bullet y)=y .
\end{aligned}
$$

Then one has

$$
\begin{aligned}
& x \bullet y=(x \circ y) \backslash \circ x, \\
& x \circ y=y / \bullet(x \bullet y) .
\end{aligned}
$$

Multiplication groups

Multiplication groups

In a birack $\left(X, \circ, \ell_{\circ}, \bullet, / \bullet\right)$:
left translations: $L_{x}: X \rightarrow X$ by $x ; L_{x}(a)=x \circ a$ and right translations: $\mathbf{R}_{x}: X \rightarrow X$ by $x ; \mathbf{R}_{x}(a)=a \bullet x$ are bijections.

Multiplication groups

In a birack $\left(X, \circ, \ell_{\circ}, \bullet, / \bullet\right)$:
left translations: $L_{x}: X \rightarrow X$ by $x ; L_{x}(a)=x \circ a$ and right translations: $\mathbf{R}_{X}: X \rightarrow X$ by $x ; \mathbf{R}_{x}(a)=a \bullet x$ are bijections.

Three types of multiplication groups:
$\operatorname{LMlt}(X)=\left\langle L_{x}: x \in X\right\rangle$
$\operatorname{RMlt}(X)=\left\langle\mathbf{R}_{x}: x \in X\right\rangle$
$\operatorname{Mlt}(X)=\left\langle L_{x}, \mathbf{R}_{x}: x \in X\right\rangle$

Multiplication groups

In a birack $\left(X, \circ, \ell_{\circ}, \bullet, / \bullet\right)$:
left translations: $L_{x}: X \rightarrow X$ by $x ; L_{x}(a)=x \circ a$ and right translations: $\mathbf{R}_{x}: X \rightarrow X$ by $x ; \mathbf{R}_{x}(a)=a \bullet x$ are bijections.

Three types of multiplication groups:
$\operatorname{LMlt}(X)=\left\langle L_{x}: x \in X\right\rangle$
$\operatorname{RMlt}(X)=\left\langle\mathbf{R}_{x}: x \in X\right\rangle$
$\operatorname{Mlt}(X)=\left\langle L_{x}, \mathbf{R}_{x}: x \in X\right\rangle$
For involutive biracks these groups are equal.

Distributive biracks

P. Jedlička, A. Pilitowska, A. Zamojska-Dzienio, Distributive biracks and solutions of the Yang-Baxter equation, Internat.J.Algebra Comput. 30 (2020), 667-683.

Distributive biracks

A birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is left distributive, if for every $x, y, z \in X$:

$$
x \circ(y \circ z)=(x \circ y) \circ(x \circ z),
$$

P. Jedlička, A. Pilitowska, A. Zamojska-Dzienio, Distributive biracks and solutions of the Yang-Baxter equation, Internat.J.Algebra Comput. 30 (2020), 667-683.

Distributive biracks

A birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is left distributive, if for every $x, y, z \in X$:

$$
x \circ(y \circ z)=(x \circ y) \circ(x \circ z),
$$

and it is right distributive, if for every $x, y, z \in X$:

$$
(y \bullet z) \bullet x=(y \bullet x) \bullet(z \bullet x)
$$

P. Jedlička, A. Pilitowska, A. Zamojska-Dzienio, Distributive biracks and solutions of the Yang-Baxter equation, Internat.J.Algebra Comput. 30 (2020), 667-683.

Distributive biracks

A birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is left distributive, if for every $x, y, z \in X$:

$$
x \circ(y \circ z)=(x \circ y) \circ(x \circ z),
$$

and it is right distributive, if for every $x, y, z \in X$:

$$
(y \bullet z) \bullet x=(y \bullet x) \bullet(z \bullet x)
$$

The birack is distributive if it is left and right distributive.
P. Jedlička, A. Pilitowska, A. Zamojska-Dzienio, Distributive biracks and solutions of the Yang-Baxter equation, Internat.J.Algebra Comput. 30 (2020), 667-683.

Distributive biracks

A birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is left distributive, if for every $x, y, z \in X$:

$$
x \circ(y \circ z)=(x \circ y) \circ(x \circ z),
$$

and it is right distributive, if for every $x, y, z \in X$:

$$
(y \bullet z) \bullet x=(y \bullet x) \bullet(z \bullet x)
$$

The birack is distributive if it is left and right distributive.
An involutive birack is left distributive iff it is right distributive.
P. Jedlička, A. Pilitowska, A. Zamojska-Dzienio, Distributive biracks and solutions of the Yang-Baxter equation, Internat.J.Algebra Comput. 30 (2020), 667-683.

Examples

Permutational birack (Lyubashenko (Drinfeld 1992)):
$X \neq \varnothing, f, g: X \rightarrow X$ bijections such that $f g=g f$.
Define operations:

$$
\begin{aligned}
& x \circ y=f(y), x \backslash \circ y=f^{-1}(y) \\
& x \bullet y=g(x), x / \bullet y=g^{-1}(x)
\end{aligned}
$$

Then $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is a permutational birack.
It is involutive iff $g=f^{-1}$ (\leftrightarrow permutation solution).
If $f=g=\mathrm{id}$, the birack is a projection one (\leftrightarrow trivial solution).

Examples

Derived biracks

($X, \circ, _{\circ}$) left rack.
Define operations $\bullet, / \bullet: X \times X \rightarrow X$ as $x \bullet y=x=x / \bullet y$. Then the structure $\mathbf{B}_{L}\left(X, \circ, _{\circ}\right)=\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is a left derived birack.

Examples

Derived biracks

($X, \circ, _{\circ}$) left rack.
Define operations $\bullet, / \bullet: X \times X \rightarrow X$ as $x \bullet y=x=x / \bullet y$. Then the structure $\mathbf{B}_{L}\left(X, \circ, _{\circ}\right)=\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is a left derived birack. Symmetrically, $\mathbf{B}_{R}(Y, \bullet, / \bullet)$ is a right derived birack.

Examples

Derived biracks

($X, \circ, _{\circ}$) left rack.
Define operations $\bullet, / \bullet: X \times X \rightarrow X$ as $x \bullet y=x=x / \bullet y$. Then the structure $\mathbf{B}_{L}\left(X, \circ, _{\circ}\right)=\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is a left derived birack. Symmetrically, $\mathbf{B}_{R}(Y, \bullet, / \bullet)$ is a right derived birack.

They are involutive only if they are projection ones.

Examples

Derived biracks

($X, \circ, _{\circ}$) left rack.
Define operations $\bullet, / \bullet: X \times X \rightarrow X$ as $x \bullet y=x=x / \bullet y$. Then the structure $\mathbf{B}_{L}\left(X, \circ, _{\circ}\right)=\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is a left derived birack. Symmetrically, $\mathbf{B}_{R}(Y, \bullet, / \bullet)$ is a right derived birack.

They are involutive only if they are projection ones.
For a left rack $\left(X, *, _{*}\right)$ and a right $\operatorname{rack}(Y, \triangle, / \Delta)$, the product

$$
\mathbf{B}_{L}\left(X, *, _{*}\right) \times \mathbf{B}_{R}(Y, \triangle, / \triangle)
$$

is a distributive birack with $\operatorname{Mlt}(X \times Y) \cong \operatorname{LMlt}(X) \times \operatorname{RMlt}(Y)$.

Biquandles

Biquandles

A biquandle $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)=$ a birack satisfying the identity:

$$
\left(x \backslash_{\circ} x\right) / \bullet\left(x \backslash_{\circ} x\right)=x
$$

Biquandles

A biquandle $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)=$ a birack satisfying the identity:

$$
\left(x \backslash_{\circ} x\right) / \bullet\left(x \backslash_{\circ} x\right)=x
$$

Or equivalently $(x / \bullet x) \backslash \circ(x / \bullet x)=x$ (Stanovský 2006)

Biquandles

A biquandle $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)=$ a birack satisfying the identity:

$$
(x \backslash \circ x) / \bullet(x \backslash \circ x)=x
$$

Or equivalently $(x / \bullet x) \backslash \circ(x / \bullet x)=x$ (Stanovský 2006)
W. Rump, Generalized radical rings, unknotted biquandles, and quantum groups, Colloq. Math. 109 (2007) 85-100.

Biquandles

A biquandle $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)=$ a birack satisfying the identity:

$$
(x \backslash \circ x) / \bullet(x \backslash \circ x)=x
$$

Or equivalently $(x / \bullet x) \backslash \circ(x / \bullet x)=x$ (Stanovský 2006)
W. Rump, Generalized radical rings, unknotted biquandles, and quantum groups, Colloq. Math. 109 (2007) 85-100.

Each involutive birack is a biquandle.
Direct calculations: P. Jedlička, A. Pilitowska, A. Zamojska-Dzienio, The retraction relation for biracks, J. Pure Appl. Algebra 223 (2019), 3594-3610.

Examples

Wada switch

(G, \cdot, e) a group. Define operations:

$$
\begin{aligned}
& x \circ y=x y^{-1} x^{-1}, x \backslash \circ y=x^{-1} y^{-1} x \\
& x \bullet y=x y^{2}, x / \bullet y=x y^{-2}
\end{aligned}
$$

The birack ($G, \circ, _{\circ}, \bullet, / \bullet$) known as the Wada switch or Wada biquandle (Fenn et al.).

Examples

Wada switch

(G, \cdot, e) a group. Define operations:

$$
\begin{aligned}
& x \circ y=x y^{-1} x^{-1}, x \backslash \circ y=x^{-1} y^{-1} x \\
& x \bullet y=x y^{2}, x / \bullet y=x y^{-2}
\end{aligned}
$$

The birack ($G, \circ, _{\circ}, \bullet, / \bullet$) known as the Wada switch or Wada biquandle (Fenn et al.).
$\left(G, \circ, _{\circ}, \bullet, / \bullet\right)$ is left distributive iff $y^{2} \in Z(G)$, for all $y \in G$, and is right distributive iff $x^{4}=e$ and $x^{2} \in Z(G)$, for all $x \in G$.

Examples

Wada switch

(G, \cdot, e) a group. Define operations:

$$
\begin{aligned}
& x \circ y=x y^{-1} x^{-1}, x \backslash \circ y=x^{-1} y^{-1} x \\
& x \bullet y=x y^{2}, x / \bullet y=x y^{-2}
\end{aligned}
$$

The birack ($G, \circ, _{\circ}, \bullet, / \bullet$) known as the Wada switch or Wada biquandle (Fenn et al.).
$\left(G, \circ, _{\circ}, \bullet, / \bullet\right)$ is left distributive iff $y^{2} \in Z(G)$, for all $y \in G$, and is right distributive iff $x^{4}=e$ and $x^{2} \in Z(G)$, for all $x \in G$.
It is involutive iff (G, \cdot, e) is an elementary abelian 2-group.

Distributivity - alternative characterization

Proposition (P. Jedlička et al. 2020)

Let $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ be a structure with four binary operations. Then $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is a distributive birack if and only if the following conditions are satisfied
(i) $\left(X, \circ, _{\circ}\right)$ is a left rack and $(X, \bullet, / \bullet)$ is a right rack,
(ii) for all $x, y, z \in X$

$$
\begin{aligned}
& (x \bullet y) \circ z=x \circ z, \\
& x \bullet(y \circ z)=x \bullet z, \\
& x \circ(y \bullet z)=(x \circ y) \bullet z .
\end{aligned}
$$

P. Jedlička, A. Pilitowska, A. Zamojska-Dzienio, Distributive biracks and solutions of the Yang-Baxter equation, Internat.J.Algebra Comput. 30 (2020), 667-683.

Multiplication groups for distributivity

Multiplication groups for distributivity

Proposition (P. Jedlička et al. 2020)
Let $\left(X, \circ, _{\circ}, \bullet / \bullet\right)$ be a distributive birack. Then, for each $x \in X$, the bijections L_{x} and \mathbf{R}_{x} are automorphisms of $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$.

Groups $\operatorname{LMlt}(X), \operatorname{RMlt}(X), \operatorname{Mlt}(X)$ are normal subgroups of the automorphism group of a distributive birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$.

Yang-Baxter equation

Yang-Baxter equation

Let V be a vector space. A solution of the Yang-Baxter equation is a linear mapping $r: V \otimes V \rightarrow V \otimes V$ such that

$$
(i d \otimes r)(r \otimes i d)(i d \otimes r)=(r \otimes i d)(i d \otimes r)(r \otimes i d)
$$

First introduced in the field of statistical mechanics: C. N. Yang 1968, and R. J. Baxter 1971.

Yang-Baxter equation

Let V be a vector space. A solution of the Yang-Baxter equation is a linear mapping $r: V \otimes V \rightarrow V \otimes V$ such that

$$
(i d \otimes r)(r \otimes i d)(i d \otimes r)=(r \otimes i d)(i d \otimes r)(r \otimes i d)
$$

First introduced in the field of statistical mechanics: C. N. Yang 1968, and R. J. Baxter 1971.

Profound implications for many areas of mathematics and physics:
(1) how waves behave in shallow water,
(2) the interaction of subatomic particles,
(3) the mathematical theory of knots,
(c) string theory, ...

Simplifications

Simplifications

Drinfeld 1992: set-theoretical solution of the Yang-Baxter equation (X, σ, τ).
V.G. Drinfeld, On some unsolved problems in quantum group theory, In: P.P. Kulish (ed.) Quantum groups, in: Lecture Notes in Math., vol. 1510, Springer-Verlag, Berlin, 1992, pp. 1-8.

Simplifications

Drinfeld 1992: set-theoretical solution of the Yang-Baxter equation (X, σ, τ).

- Let X be a basis of the space V and let $\sigma: X^{2} \rightarrow X$ and $\tau: X^{2} \rightarrow X$ be two mappings such that the mapping $x \otimes y \mapsto \sigma(x, y) \otimes \tau(x, y)$ extends to a solution of the Yang-Baxter equation.
V.G. Drinfeld, On some unsolved problems in quantum group theory, In: P.P. Kulish (ed.) Quantum groups, in: Lecture Notes in Math., vol. 1510, Springer-Verlag, Berlin, 1992, pp. 1-8.

(Set-theoretical) solutions of YBE

P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999), 169-209.

(Set-theoretical) solutions of YBE

It means that $r: X^{2} \rightarrow X^{2}$, where $r=(\sigma, \tau)$ satisfies the braid relation:

$$
(i d \times r)(r \times i d)(i d \times r)=(r \times i d)(i d \times r)(r \times i d)
$$

P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999), 169-209.

(Set-theoretical) solutions of YBE

It means that $r: X^{2} \rightarrow X^{2}$, where $r=(\sigma, \tau)$ satisfies the braid relation:

$$
(i d \times r)(r \times i d)(i d \times r)=(r \times i d)(i d \times r)(r \times i d)
$$

$$
(i d \times r)(x, y, z)=(x, r(y, z))=(x, \sigma(y, z), \tau(y, z))
$$

P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999), 169-209.

(Set-theoretical) solutions of YBE

It means that $r: X^{2} \rightarrow X^{2}$, where $r=(\sigma, \tau)$ satisfies the braid relation:

$$
(i d \times r)(r \times i d)(i d \times r)=(r \times i d)(i d \times r)(r \times i d) .
$$

$(i d \times r)(x, y, z)=(x, r(y, z))=(x, \sigma(y, z), \tau(y, z))$
A solution is:

- non-degenerate if the mappings $\sigma\left(x,{ }_{-}\right)=\sigma_{x}: X \rightarrow X$ and $\tau(-, y)=\tau_{y}: X \rightarrow X$ are bijections, for all $x, y \in X$;
- involutive if $r^{2}=\mathrm{id}_{X^{2}}$;
- square-free if $r(x, x)=(x, x)$, for every $x \in X$.
P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999), 169-209.

Solutions vs. biracks

Fenn et al. 2004: There is a one-to-one correspondence between non-degenerate solutions of the Yang-Baxter equation (X, σ, τ) and biracks ($X, \circ, _{\circ}, \bullet, / \bullet$):

$$
r(x, y)=(\sigma(x, y), \tau(x, y))=(x \circ y, x \bullet y)=\left(L_{x}(y), \mathbf{R}_{y}(x)\right)
$$

- R. Fenn, M. Jordan-Santana, L. Kauffman, Biquandles and virtual links, Topology and its Appl. 145 (2004), 157-175.

Solutions vs. biracks

Fenn et al. 2004: There is a one-to-one correspondence between non-degenerate solutions of the Yang-Baxter equation (X, σ, τ) and biracks ($X, \circ, _{\circ}, \bullet, / \bullet$):

$$
r(x, y)=(\sigma(x, y), \tau(x, y))=(x \circ y, x \bullet y)=\left(L_{x}(y), \mathbf{R}_{y}(x)\right)
$$

- R. Fenn, M. Jordan-Santana, L. Kauffman, Biquandles and virtual links, Topology and its Appl. 145 (2004), 157-175.
- P. Dehornoy, Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs, Adv. Math. 282 (2015), 93-127.

Involutive solutions/biracks

Involutive solutions/biracks

(X, r) involutive solution, i.e. $r^{2}=\operatorname{id}_{X^{2}}$

Involutive solutions/biracks

(X, r) involutive solution, i.e. $r^{2}=\mathrm{id}_{X^{2}}$
Rump 2005: the operation τ can be expressed by means of the operation σ.
W. Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math. 193 (2005), 40-55.

Involutive solutions/biracks

(X, r) involutive solution, i.e. $r^{2}=\mathrm{id}_{X^{2}}$
Rump 2005: the operation τ can be expressed by means of the operation σ.
W. Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math. 193 (2005), 40-55.

In an involutive birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$:

$$
\begin{aligned}
& x \bullet y=(x \circ y) \backslash \circ x, \\
& x \circ y=y / \bullet(x \bullet y) .
\end{aligned}
$$

Cycle-sets

Rump 2005: involutive solutions of the Yang-Baxter equation \leftrightarrow non-degenerate cycle sets.

Cycle-sets

Rump 2005: involutive solutions of the Yang-Baxter equation \leftrightarrow non-degenerate cycle sets.

Cycle set $=$ a left quasigroup $(X, \odot, \backslash \odot)$ which satisfies

$$
(x \odot y) \odot(x \odot z)=(y \odot x) \odot(y \odot z)
$$

Cycle-sets

Rump 2005: involutive solutions of the Yang-Baxter equation \leftrightarrow non-degenerate cycle sets.

Cycle set $=$ a left quasigroup $\left(X, \odot, \backslash_{\odot}\right)$ which satisfies

$$
(x \odot y) \odot(x \odot z)=(y \odot x) \odot(y \odot z)
$$

Non-degenerate if
the mapping $\quad T: X \rightarrow X ; \quad x \mapsto x \odot x \quad$ is a bijection.

Cycle-sets

Rump 2005: involutive solutions of the Yang-Baxter equation \leftrightarrow non-degenerate cycle sets.

Cycle set $=$ a left quasigroup $\left(X, \odot, \backslash_{\odot}\right)$ which satisfies

$$
(x \odot y) \odot(x \odot z)=(y \odot x) \odot(y \odot z)
$$

Non-degenerate if
the mapping $\quad T: X \rightarrow X ; \quad x \mapsto x \odot x \quad$ is a bijection.

Biquandles...

Non-deg. cycle-sets vs. inv. biracks

If a birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is involutive, then $\left(X, _{\circ}, \circ\right)$ is a non-degenerate cycle-set.

Non-deg. cycle-sets vs. inv. biracks

If a birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is involutive, then $\left(X, _{\circ}, \circ\right)$ is a non-degenerate cycle-set.

Theorem (Rump 2005, Dehornoy 2015)
Let $(X, \backslash, *)$ be a non-degenerate cycle-set. Then defining $x \circ y=x * y$, $x \backslash \circ y=x \backslash y, x \bullet y=(x * y) \backslash x$, and $x / \bullet y=z$, where z is the unique one such that $z \backslash z=y *(x \backslash x)$, the algebra $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is an involutive birack.

Congruence on a birack

Definition

An equivalence relation θ on the set X of elements of a birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ is a congruence on $\left(X, \circ, _{\circ}, \bullet / / \bullet\right)$ if it is compatible with all four operations of the birack X, i.e. if $x \theta y$ and $z \theta t$ then also

$$
\begin{aligned}
& (x \circ z) \theta(y \circ t) \\
& (x \backslash \circ z) \theta(y \backslash \circ t) \\
& (x \bullet z) \theta(y \bullet t) \\
& (x / \circ z) \theta(y / \bullet t) .
\end{aligned}
$$

Quotient birack

If θ is a congruence on a birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$, then the quotient set $X^{\theta}=\left\{x^{\theta}: x \in X\right\}$ of the equivalence classes under θ, is again a birack, called the quotient birack, under operations defined by

$$
\begin{aligned}
x^{\theta} \circ z^{\theta} & =(x \circ z)^{\theta} \\
x^{\theta} \backslash \circ z^{\theta} & =(x \backslash \circ z)^{\theta} \\
x^{\theta} \bullet z^{\theta} & =(x \bullet z)^{\theta} \\
x^{\theta} / \bullet z^{\theta} & =(x / \bullet z)^{\theta} .
\end{aligned}
$$

Generalized retraction congruence

Definition

Let $\left(X, 0, _{0}, \bullet, / \bullet\right)$ be a birack. The equivalence relation \approx defined on X in the following way

$$
x \approx y \Leftrightarrow L_{x}=L_{y} \text { and } \mathbf{R}_{x}=\mathbf{R}_{y}
$$

is called the generalized retraction.

Generalized retraction congruence

Definition

Let $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ be a birack. The equivalence relation \approx defined on X in the following way

$$
x \approx y \Leftrightarrow L_{x}=L_{y} \text { and } \mathbf{R}_{x}=\mathbf{R}_{y}
$$

is called the generalized retraction.

Theorem (P. Jedlička et al. 2019)
The generalized retraction is a congruence of a birack $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$.
P. Jedlička, A. Pilitowska, A. Zamojska-Dzienio, The retraction relation for biracks, J. Pure Appl. Algebra 223 (2019), 3594-3610.

Retraction relations

$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ a birack.
Three retraction relations:

$$
\begin{array}{llll}
a \sim b & \Leftrightarrow & L_{a}=L_{b} \quad \Leftrightarrow & \forall x \in X \quad a \circ x=b \circ x, \\
a \sim b & \Leftrightarrow & \mathbf{R}_{a}=\mathbf{R}_{b} \quad \Leftrightarrow \quad \forall x \in X \quad x \bullet a=x \bullet b, \\
a \approx b & \Leftrightarrow & a \sim b \wedge a \sim b \quad \Leftrightarrow \quad L_{a}=L_{b} \wedge \mathbf{R}_{a}=\mathbf{R}_{b} .
\end{array}
$$

Retraction relations

$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ a birack.
Three retraction relations:

$$
\begin{aligned}
& a \sim b \quad \Leftrightarrow \quad L_{a}=L_{b} \Leftrightarrow \quad \forall x \in X \quad a \circ x=b \circ x, \\
& a \sim b \quad \Leftrightarrow \quad \mathbf{R}_{a}=\mathbf{R}_{b} \quad \Leftrightarrow \quad \forall x \in X \quad x \bullet a=x \bullet b, \\
& a \approx b \quad \Leftrightarrow \quad a \sim b \wedge a \backsim b \quad \Leftrightarrow \quad L_{a}=L_{b} \wedge \mathbf{R}_{a}=\mathbf{R}_{b} .
\end{aligned}
$$

They are congruences (and they are equal) for an involutive birack.

Retraction relations

$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ a birack.
Three retraction relations:

$$
\begin{array}{llll}
a \sim b & \Leftrightarrow & L_{a}=L_{b} \quad \Leftrightarrow & \forall x \in X \quad a \circ x=b \circ x, \\
a \sim b & \Leftrightarrow & \mathbf{R}_{a}=\mathbf{R}_{b} \quad \Leftrightarrow \quad \forall x \in X \quad x \bullet a=x \bullet b, \\
a \approx b & \Leftrightarrow & a \sim b \wedge a \sim b \quad \Leftrightarrow \quad L_{a}=L_{b} \wedge \mathbf{R}_{a}=\mathbf{R}_{b} .
\end{array}
$$

They are congruences (and they are equal) for an involutive birack.
They are congruences for a distributive birack.

Retracts

$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ a birack.

Retracts

$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ a birack. retract of $X: \operatorname{Ret}(X)=\left(X / \approx, \circ, _{\circ}, \bullet, / \bullet\right)$.

Retracts

$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ a birack.
retract of $X: \operatorname{Ret}(X)=\left(X / \approx, 0, _{0}, \bullet, / \cdot\right)$.
iterated retraction: $\operatorname{Ret}^{0}(X)=\left(X, \circ, _{0}, \bullet, / \bullet\right)$ and $\operatorname{Ret}^{k}(X)=\operatorname{Ret}\left(\operatorname{Ret}^{k-1}(X)\right)$, for any natural number $k>1$.

Retracts

$\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ a birack.
retract of $X: \operatorname{Ret}(X)=\left(X / \approx, 0, _{0}, \bullet, / \cdot\right)$.
iterated retraction: $\operatorname{Ret}^{0}(X)=\left(X, \circ, _{0}, \bullet, / \bullet\right)$ and $\operatorname{Ret}^{k}(X)=\operatorname{Ret}\left(\operatorname{Ret}^{k-1}(X)\right)$, for any natural number $k>1$.

A birack is of multipermutation level k, if $\left|\operatorname{Ret}^{k}(X)\right|=1$ and $\left|\operatorname{Ret}^{k-1}(X)\right|>1$.

Retraction and distributivity

Theorem (P. Jedlička et al. 2020)
Let $\left(X, \circ, _{\circ}, \bullet, / \bullet\right)$ be a distributive birack and let $k \geq 2$. Then the following conditions are equivalent:
(i) $\left|\operatorname{Ret}^{k}(X)\right|=1$,
(ii) $\operatorname{Mlt}(X)$ is nilpotent of class at most $k-1$.

Retraction relation

Etingof et al. 1999:
P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999), 169-209.

Retraction relation

Etingof et al. 1999:

- for non-degenerate involutive (X, σ, τ) the equivalence relation \sim on the set X : for each $x, y \in X$

$$
x \sim y \quad \Leftrightarrow \quad \tau(-, x)=\tau(-, y)
$$

P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum

Yang-Baxter equation, Duke Math. J. 100 (1999), 169-209.

Retraction relation

Etingof et al. 1999:

- for non-degenerate involutive (X, σ, τ) the equivalence relation \sim on the set X : for each $x, y \in X$

$$
x \sim y \quad \Leftrightarrow \quad \tau(-, x)=\tau(-, y)
$$

- they showed that the quotient set X / \sim can be again endowed with a structure of a solution. This new solution is the retraction of the solution $X: \operatorname{Ret}(X)$.
P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999), 169-209.

Retraction relation

Etingof et al. 1999:

- for non-degenerate involutive (X, σ, τ) the equivalence relation \sim on the set X : for each $x, y \in X$

$$
x \sim y \quad \Leftrightarrow \quad \tau(-, x)=\tau(-, y)
$$

- they showed that the quotient set X / \sim can be again endowed with a structure of a solution. This new solution is the retraction of the solution X : $\operatorname{Ret}(X)$.
- a multipermutation solution of level k, if k is the smallest integer such that $\left|\operatorname{Ret}^{k}(X)\right|=1$.
P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum

Yang-Baxter equation, Duke Math. J. 100 (1999), 169-209.

THANK YOU!

