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Introduction

Quandles and racks

Biracks and biquandles

Solutions of the Yang–Baxter equation
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(Mathematical) knots

Abstractions of real world knots: embeddings of a circle in the
Euclidean space R3.

Knot = a piece of string that has been tangled up and whose ends
have been glued together; usually represented by a planar diagram:
a projection of the knot onto a plane.

Planar diagram - we store the information about relative height of
each strand by showing the lower strand interrupted.

Fundamental problem: when two diagrams represent the same
knot = when two knots are equivalent.

Various knot invariants = functions that have the same outcome for
two equivalent knots.
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Quandles

D. Joyce 1982:

associates a quandle with every knot diagram - the knot quandle.
This is a complete knot invariant: when two knots have isomorphic
knot quandles, they can differ only in orientation.

Determining when two quandles are isomorphic is difficult.

D. Joyce, Classifying invariant of knots, the knot quandle, J. Pure Applied Algebra, 23

(1982), 37–65.

J.S. Carter et al. 2004: quandle cohomology.

J. S. Carter, M. Elhamdadi, M. Saito, Homology theory for the set-theoretic

Yang-Baxter equation and knot invariants from generalizations of quandles, Fund.

Math. 184 (2004), 31–54.
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Quandles

An algebra (Q, ∗, /), with two binary operations ∗ and /, is a quandle if
for every x , y , z ∈ Q:

1 x ∗ x = x

(idempotency)

2 (x ∗ y)/y = x = (x/y) ∗ y

(right quasigroup)

3 (y ∗ z) ∗ x = (y ∗ x) ∗ (z ∗ x)

(right distributivity)

Right quasigroup: the equation u ∗ x = y has a unique solution u ∈ Q
for every x , y ∈ Q.

All right translations Ra : Q → Q; Ra(x) = x ∗ a are automorphisms of
Q.
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Racks

2nd Reidemeister move

3rd Reidemeister move

Right distributive right quasigroup = racks
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Quandles

1st Reidemeister move

Idempotent racks = quandles
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Biracks

Quandles and racks (Joyce 1982, Matveev 1984) ↔ (classical) knot theory.

Biquandles and biracks (Fenn et al. 2004) ↔ virtual knot theory
(Kauffman 1999).

Let (X , ◦, \◦, •, /•) be a birack, where for every x , y ,∈ X :

x ◦ y = y .

Then (X , •, /•) is a (right) rack.

R. Fenn, M. Jordan-Santana, L. Kauffman, Biquandles and virtual links, Topology
and its Appl. 145 (2004), 157–175.

L. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), 663–690.
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Equational characterization

Definition (Stanovský 2006)

A structure (X , ◦, \◦, •, /•) with four binary operations is called a birack,
if the following holds for any x , y , z ∈ X :

x ◦ (x\◦y) = y = x\◦(x ◦ y),
(y/•x) • x = y = (y • x)/•x ,

x ◦ (y ◦ z) = (x ◦ y) ◦ ((x • y) ◦ z),
(x ◦ y) • ((x • y) ◦ z) = (x • (y ◦ z)) ◦ (y • z),

(x • y) • z = (x • (y ◦ z)) • (y • z).

D. Stanovský, On axioms of biquandles, J. Knot Theory Ramifications 15 (2006),
931–933.

LOOPS23 Workshop Biracks I 9 / 33



Involutive biracks

A birack is involutive if it satisfies for every x , y ∈ X :

(x ◦ y) ◦ (x • y) = x ,

(x ◦ y) • (x • y) = y .

Then one has

x • y = (x ◦ y)\◦x ,
x ◦ y = y/•(x • y).

LOOPS23 Workshop Biracks I 10 / 33



Involutive biracks

A birack is involutive if it satisfies for every x , y ∈ X :

(x ◦ y) ◦ (x • y) = x ,

(x ◦ y) • (x • y) = y .

Then one has

x • y = (x ◦ y)\◦x ,
x ◦ y = y/•(x • y).

LOOPS23 Workshop Biracks I 10 / 33



Multiplication groups

In a birack (X , ◦, \◦, •, /•):
left translations: Lx : X → X by x ; Lx(a) = x ◦ a and

right translations: Rx : X → X by x ; Rx(a) = a • x
are bijections.

Three types of multiplication groups:

LMlt(X ) = ⟨Lx : x ∈ X ⟩
RMlt(X ) = ⟨Rx : x ∈ X ⟩
Mlt(X ) = ⟨Lx , Rx : x ∈ X ⟩

For involutive biracks these groups are equal.
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Distributive biracks

A birack (X , ◦, \◦, •, /•) is left distributive, if for every x , y , z ∈ X :

x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z),

and it is right distributive, if for every x , y , z ∈ X :

(y • z) • x = (y • x) • (z • x).

The birack is distributive if it is left and right distributive.

An involutive birack is left distributive iff it is right distributive.

P. Jedlička, A. Pilitowska, A. Zamojska-Dzienio, Distributive biracks and solutions of the

Yang-Baxter equation, Internat.J.Algebra Comput. 30 (2020), 667–683.
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Examples

Permutational birack (Lyubashenko (Drinfeld 1992)):

X ̸= ∅, f , g : X → X bijections such that fg = gf .

Define operations:

x ◦ y = f (y), x\◦y = f −1(y),

x • y = g(x), x/•y = g−1(x).

Then (X , ◦, \◦, •, /•) is a permutational birack.

It is involutive iff g = f −1 (↔ permutation solution).

If f = g = id, the birack is a projection one (↔ trivial solution).

LOOPS23 Workshop Biracks I 13 / 33



Examples

Derived biracks

(X , ◦, \◦) left rack.
Define operations •, /• : X × X → X as x • y = x = x/•y . Then the
structure BL(X , ◦, \◦) = (X , ◦, \◦, •, /•) is a left derived birack.

Symmetrically, BR(Y , •, /•) is a right derived birack.

They are involutive only if they are projection ones.

For a left rack (X , ∗, \∗) and a right rack (Y ,△, /△), the product

BL(X , ∗, \∗)× BR(Y ,△, /△)

is a distributive birack with Mlt(X × Y ) ∼= LMlt(X )× RMlt(Y ).
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Biquandles

A biquandle (X , ◦, \◦, •, /•) = a birack satisfying the identity:

(x\◦x)/•(x\◦x) = x .

Or equivalently (x/•x)\◦(x/•x) = x (Stanovský 2006)

W. Rump, Generalized radical rings, unknotted biquandles, and quantum groups, Colloq.

Math. 109 (2007) 85–100.

Each involutive birack is a biquandle.

Direct calculations: P. Jedlička, A. Pilitowska, A. Zamojska-Dzienio, The

retraction relation for biracks, J. Pure Appl. Algebra 223 (2019), 3594–3610.

LOOPS23 Workshop Biracks I 15 / 33



Biquandles

A biquandle (X , ◦, \◦, •, /•) = a birack satisfying the identity:

(x\◦x)/•(x\◦x) = x .

Or equivalently (x/•x)\◦(x/•x) = x (Stanovský 2006)
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W. Rump, Generalized radical rings, unknotted biquandles, and quantum groups, Colloq.

Math. 109 (2007) 85–100.

Each involutive birack is a biquandle.
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(x\◦x)/•(x\◦x) = x .

Or equivalently (x/•x)\◦(x/•x) = x (Stanovský 2006)

W. Rump, Generalized radical rings, unknotted biquandles, and quantum groups, Colloq.

Math. 109 (2007) 85–100.
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Examples

Wada switch

(G , ·, e) a group. Define operations:

x ◦ y = xy−1x−1, x\◦y = x−1y−1x ,

x • y = xy2, x/•y = xy−2.

The birack (G , ◦, \◦, •, /•) known as the Wada switch or Wada
biquandle (Fenn et al.).

(G , ◦, \◦, •, /•) is left distributive iff y2 ∈ Z (G ), for all y ∈ G , and is right
distributive iff x4 = e and x2 ∈ Z (G ), for all x ∈ G .

It is involutive iff (G , ·, e) is an elementary abelian 2-group.
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Distributivity - alternative characterization

Proposition (P. Jedlička et al. 2020)

Let (X , ◦, \◦, •, /•) be a structure with four binary operations. Then
(X , ◦, \◦, •, /•) is a distributive birack if and only if the following
conditions are satisfied

(i) (X , ◦, \◦) is a left rack and (X , •, /•) is a right rack,

(ii) for all x , y , z ∈ X

(x • y) ◦ z = x ◦ z ,
x • (y ◦ z) = x • z ,
x ◦ (y • z) = (x ◦ y) • z .

P. Jedlička, A. Pilitowska, A. Zamojska-Dzienio, Distributive biracks and solutions of the

Yang-Baxter equation, Internat.J.Algebra Comput. 30 (2020), 667–683.
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Multiplication groups for distributivity

Proposition (P. Jedlička et al. 2020)

Let (X , ◦, \◦, •, /•) be a distributive birack. Then, for each x ∈ X , the
bijections Lx and Rx are automorphisms of (X , ◦, \◦, •, /•).

Groups LMlt(X ), RMlt(X ), Mlt(X ) are normal subgroups of the
automorphism group of a distributive birack (X , ◦, \◦, •, /•).
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Yang-Baxter equation

Let V be a vector space. A solution of the Yang–Baxter equation is a
linear mapping r : V ⊗ V → V ⊗ V such that

(id ⊗ r)(r ⊗ id)(id ⊗ r) = (r ⊗ id)(id ⊗ r)(r ⊗ id).

First introduced in the field of statistical mechanics: C. N. Yang 1968,
and R. J. Baxter 1971.

Profound implications for many areas of mathematics and physics:

1 how waves behave in shallow water,

2 the interaction of subatomic particles,

3 the mathematical theory of knots,

4 string theory, ...
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Simplifications

Drinfeld 1992: set-theoretical solution of the Yang–Baxter equation
(X , σ, τ).

Let X be a basis of the space V and let σ : X 2 → X and τ : X 2 → X
be two mappings such that the mapping x ⊗ y 7→ σ(x , y)⊗ τ(x , y)
extends to a solution of the Yang–Baxter equation.

V.G. Drinfeld, On some unsolved problems in quantum group theory, In: P.P. Kulish
(ed.) Quantum groups, in: Lecture Notes in Math., vol. 1510, Springer-Verlag, Berlin,
1992, pp. 1–8.
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(Set-theoretical) solutions of YBE

It means that r : X 2 → X 2, where r = (σ, τ) satisfies the braid relation:

(id × r)(r × id)(id × r) = (r × id)(id × r)(r × id).

(id × r)(x , y , z) = (x , r(y , z)) = (x , σ(y , z), τ(y , z))

A solution is:

non-degenerate if the mappings σ(x , ) = σx : X → X and
τ( , y) = τy : X → X are bijections, for all x , y ∈ X ;

involutive if r2 = idX 2 ;

square-free if r(x , x) = (x , x), for every x ∈ X .

P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum
Yang-Baxter equation, Duke Math. J. 100 (1999), 169–209.
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Solutions vs. biracks

Fenn et al. 2004: There is a one-to-one correspondence between
non-degenerate solutions of the Yang-Baxter equation (X , σ, τ) and
biracks (X , ◦, \◦, •, /•):

r(x , y) = (σ(x , y), τ(x , y)) = (x ◦ y , x • y) = (Lx(y),Ry (x)).

R. Fenn, M. Jordan-Santana, L. Kauffman, Biquandles and virtual links, Topology
and its Appl. 145 (2004), 157–175.

P. Dehornoy, Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and
Garside germs, Adv. Math. 282 (2015), 93–127.
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Involutive solutions/biracks

(X , r) involutive solution, i.e. r2 = idX 2

Rump 2005: the operation τ can be expressed by means of the operation
σ.

W. Rump, A decomposition theorem for square-free unitary solutions of the quantum

Yang-Baxter equation, Adv. Math. 193 (2005), 40–55.

In an involutive birack (X , ◦, \◦, •, /•):

x • y = (x ◦ y)\◦x ,
x ◦ y = y/•(x • y).
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Cycle-sets

Rump 2005: involutive solutions of the Yang-Baxter equation ↔
non-degenerate cycle sets.

Cycle set = a left quasigroup (X ,⊙, \⊙) which satisfies

(x ⊙ y)⊙ (x ⊙ z) = (y ⊙ x)⊙ (y ⊙ z).

Non-degenerate if

the mapping T : X → X ; x 7→ x ⊙ x is a bijection.

Biquandles...
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Non-deg. cycle-sets vs. inv. biracks

If a birack (X , ◦, \◦, •, /•) is involutive, then (X , \◦, ◦) is a non-degenerate
cycle-set.

Theorem (Rump 2005, Dehornoy 2015)

Let (X , \, ∗) be a non-degenerate cycle-set. Then defining x ◦ y = x ∗ y ,
x\◦y = x\y , x • y = (x ∗ y)\x , and x/•y = z , where z is the unique one
such that z\z = y ∗ (x\x), the algebra (X , ◦, \◦, •, /•) is an involutive
birack.
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Congruence on a birack

Definition

An equivalence relation θ on the set X of elements of a birack
(X , ◦, \◦, •, /•) is a congruence on (X , ◦, \◦, •, /•) if it is compatible with
all four operations of the birack X , i.e. if x θ y and z θ t then also

(x ◦ z) θ (y ◦ t)
(x\◦z) θ (y\◦t)
(x • z) θ (y • t)
(x/•z) θ (y/•t).
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Quotient birack

If θ is a congruence on a birack (X , ◦, \◦, •, /•), then the quotient set
X θ = {xθ : x ∈ X} of the equivalence classes under θ, is again a birack,
called the quotient birack, under operations defined by

xθ ◦ zθ = (x ◦ z)θ

xθ\◦zθ = (x\◦z)θ

xθ • zθ = (x • z)θ

xθ/•z
θ = (x/•z)

θ.

LOOPS23 Workshop Biracks I 27 / 33



Generalized retraction congruence

Definition

Let (X , ◦, \◦, •, /•) be a birack. The equivalence relation ≈ defined on X
in the following way

x ≈ y ⇔ Lx = Ly and Rx = Ry

is called the generalized retraction.

Theorem (P. Jedlička et al. 2019)

The generalized retraction is a congruence of a birack (X , ◦, \◦, •, /•).

P. Jedlička, A. Pilitowska, A. Zamojska-Dzienio, The retraction relation for biracks, J.
Pure Appl. Algebra 223 (2019), 3594–3610.
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Retraction relations

(X , ◦, \◦, •, /•) a birack.

Three retraction relations:

a ∼ b ⇔ La = Lb ⇔ ∀x ∈ X a ◦ x = b ◦ x ,
a ∽ b ⇔ Ra = Rb ⇔ ∀x ∈ X x • a = x • b,
a ≈ b ⇔ a ∼ b ∧ a ∽ b ⇔ La = Lb ∧ Ra = Rb.

They are congruences (and they are equal) for an involutive birack.

They are congruences for a distributive birack.
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Retracts

(X , ◦, \◦, •, /•) a birack.

retract of X : Ret(X ) = (X/≈, ◦, \◦, •, /•).

iterated retraction: Ret0(X ) = (X , ◦, \◦, •, /•) and
Retk(X ) = Ret(Retk−1(X )), for any natural number k > 1.

A birack is of multipermutation level k , if |Retk(X )| = 1 and
|Retk−1(X )| > 1.
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Retraction and distributivity

Theorem (P. Jedlička et al. 2020)

Let (X , ◦, \◦, •, /•) be a distributive birack and let k ≥ 2. Then the
following conditions are equivalent:

(i) |Retk(X )| = 1,

(ii) Mlt(X ) is nilpotent of class at most k − 1.
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Retraction relation

Etingof et al. 1999:

for non-degenerate involutive (X , σ, τ) the equivalence relation ∼ on
the set X : for each x , y ∈ X

x ∼ y ⇔ τ( , x) = τ( , y).

they showed that the quotient set X/∼ can be again endowed with a
structure of a solution. This new solution is the retraction of the
solution X : Ret(X ).

a multipermutation solution of level k , if k is the smallest integer
such that |Retk(X )| = 1.

P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum
Yang-Baxter equation, Duke Math. J. 100 (1999), 169–209.
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