Minimal associativity in quasigroups

Aleš Drápal

Charles University in Prague Czech Republic

June 26, 2023, Będlewo, Wielkopolska
Workshops Loops'23

Outline

(1) Quasigroups that are maximally nonassociative

- Definition and the known existence spectrum
- The nearfield construction
- Product constructions
(2) Quasigroups that are extremely nonassociative
- Elementary triples
- Improved Grošek—Horák inequality
- Existence of extremely nonassociative quasigroups
(3) Loops and quasigroups isotopic to groups
- Minimal associativity in loops
- Quasigroups isotopic to abelian groups
- Minimal associativity in group isotopes

44 Exhaustive search results and average associativity

Maximally nonassociative quasigroups

Associativity index

For a quasigroup Q denote by $a(Q)$ the number of associative triples, that is the number of $(x, y, z) \in Q^{3}$ such that $x \cdot y z=x y \cdot z$. Call $a(Q)$ the associativity index of Q.

Some associative triples

Denote by e_{x} and f_{x} the local units of Q. Thus $e_{x} x=x$ and $x f_{x}=x$. Then $e_{x} x \cdot f_{x}=x f_{x}=x=e_{x} x=e_{x} \cdot x f_{x}$. This means that $\left(e_{x}, x, f_{x}\right)$ is always an associative triple. Hence $a(Q) \geq|Q|$.

Problem: Kepka, 1981

Does there exist a finite nontrivial quasigroup Q such that $a(Q)=|Q|$?

Conjecture: Grošek and Horák, 2012

There is no finite nontrivial quasigroup with $a(Q)=|Q|$.

Maximally nonassociative quasigroups (mnqs)

When Q is a mnq-a definition and an easy fact

Def. of a mnq: $(x, y, z) \in Q^{3}$ is associative $\Longleftrightarrow x=y=z,|Q| \geq 2$. Lemma: $a(Q)=|Q|<\infty \Rightarrow Q$ idempotent (proof later). Thus a mnq.

Constructions of maximally nonassociative quasigroups

2017 Valent: Computer finds a mnq of order 9;
2018 Lisoněk: Many mnqs follow from nearfields;
2019 Wanless: To get primes use quadratic orthomorphisms; 2019 Drápal: Combine mnqs by a product construction.

Existence and nonexistence of a mnq of order n

- no mnq exists if $2 \leq n \leq 8$ or $n=10$;
- no mnq known if $n=2 p$ or $n=2 p_{1} p_{2}, p_{1} \leq p_{2}<2 p_{1}$;
- no mnq known if $n \in\{11,12,15,40,42,44,56,66,77,88,90,110\}$;
- for all other n there exists a mnq.

Road to the nearfield construction

What was found by computer

	1	2	3	4	5	6	7	8	9
1	1	4	7	3	8	5	2	9	6
2	8	2	5	6	1	9	4	3	7
3	6	9	3	7	4	2	8	5	1
4	5	3	9	4	7	1	6	2	8
5	7	6	1	2	5	8	9	4	3
6	2	8	4	9	3	6	1	7	5
7	9	5	2	8	6	3	7	1	4
8	3	7	6	1	9	4	5	8	2
9	4	1	8	5	2	7	3	6	9

Up to isomorphism the only quasigroup of order 9 that is maximally nonassociative.
It yields a Sudoku square.

Intepretative efforts

Drápal gave an interpretation via an affine plane. This resulted in computer experiments (Kozlik, Lisoněk) that led to the discovery of intepretation in the form $x * y=x+(y-x) \circ c$, where $(N,+, \circ, 0,1)$ is a nearfield and $c \in N, c \notin\{0,1\}$.

About nearfields

Definition of a (left) nearfield $(N,+, \circ, 0,1)$

(1) $(N,+, 0)$ is an Abelian group;
(2) $\left(N^{*}, \circ, 1\right)$ is a group, where $N^{*}=N \backslash\{0\}$;
(3) $x \circ 0=0=0 \circ x$ for all $x \in N$; and
(4) $x \circ(y+z)=x \circ y+x \circ z$ for all $x, y, z \in N$.

Classification and Dickson's nearfields

Finite nearfields are completely classified (Zassenhaus). Dickson's nearfields are defined on $\mathbb{F}_{q^{2}}, q$ power of an odd prime so that $x \circ y=x y$ if x a square, $x \circ y=x y^{q}$ if x a nonsquare.

Quasigroups derived from a nearfield (Stein)

If $c \neq 0,1$, then $x *_{c} y=x+(y-x) \circ c$ is a quasigroup. The mappings $x \mapsto \lambda \circ x$ and $x \mapsto x+u$ are automorphisms of $\left(N, *_{c}\right)$ for all $\lambda \in N^{*}$ and $u \in N$. All quasigrps Q with $\operatorname{Aut}(Q)$ sharply 2-transitive are of this form.

Under which conditions gives a nearfield a mnq?

A useful lemma

Q idempotent quasigroup. If (x, x, y) or (y, x, x) ass., then $x=y$.

A consequence for quasigroups with $\operatorname{Aut}(Q)$ 2-transitive

Let $0,1 \in Q$. Then Q is a $\mathrm{mnq} \Leftrightarrow(0,1, z)$ associative for no $z \in Q$.
What does this mean for quasigroups over nearfields?
$0 *_{c} z=0+(z-0) \circ c=z \circ c$. Thus $0 *(1 * z)=(1 * z) \circ c$ gives $(1+(z-1) \circ c) \circ c$, while $(0 * 1) * z=c * z=c+(z-c) \circ c$.

Multiply to simplify: $x \circ(z-1)=1$

$$
\begin{aligned}
& z-c=1+(z-1)-c, x \circ(c+(z-c) \circ c)=x \circ c+(x+1-x \circ c) \circ c \\
& \text { and } x \circ(1+(z-1) \circ c) \circ c=(x+c) \circ c .
\end{aligned}
$$

When Dickson's nearfield gives a mnq?

$x \circ c+(x+1-x \circ c) \circ c=(x+c) \circ c$
should never hold. Set $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}$ to zero if $x, x+1-x \circ c, x+c$ a square. Otherwise $\varepsilon_{i}=1$. Interpret the equation for each choice $\varepsilon=\left(\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}\right)$.

$$
\begin{aligned}
& \varepsilon=(0,0,0) \text { and } \varepsilon=(0,0,1) \\
& x c+(x+1-x c) c=(x+c) c \Leftrightarrow c(x+1)(c-1)=0 \\
& x c+(x+1-x c) c=(x+c) c^{q} \Leftrightarrow c\left(x\left(c^{q-1}+c-2\right)+c^{q}-1\right)=0
\end{aligned}
$$

What does it say?

$\varepsilon=(0,0,0)$: one of $-1, c$ and $-1+c$ has to be a nonsquare.
$\varepsilon=(0,0,1)$: not mnq if $x\left(c^{q-1}+c-2\right)=(1-c)^{q}, x$ a square, and \ldots If so, $x^{-1}=\left(\left(c^{q-1}+c-2\right) /(1-c)^{q}=\left((1-c)^{2-q}-1\right) c^{-1}\right.$ is a square, and thus $\left((1-c)^{2-q}-1\right) c$ is a square. Employing values ε_{1} and ε_{2} shows that $\left(\mathbb{F}_{q^{2}}, *_{c}\right)$ not mnq if $c^{q-1}\left(c^{2}-c+1\right)-1$ a nonsquare.

Squares, nonsquares and Weil's bound

Six other terms that should avoid zero

$$
\begin{aligned}
& c^{2}\left(x c^{q-2}(c-1)-c^{q-2}-1\right), c(c-1)\left(x(c-1)^{q-1}+c^{q-1}\right), c(c-1)\left(x c^{q-1}+1\right), \\
& c(c-1)^{q}(x+1), c\left(x\left(2 c^{q-1}-c^{2 q-1}-1\right)+c^{q}-1-c\right), c^{q}(c-1)\left(x(c-1)^{q-1}+1\right) .
\end{aligned}
$$

The result of processing the conditions

A mnq $\left(\mathbb{F}_{q^{2}}, *_{c}\right)$ exists iff $\cup K_{i}$ a proper subset of $\mathbb{F}_{q^{2}}$. K_{i} are sets of $c \in \mathbb{F}_{q^{2}}, c \notin\{0,1\}$, where K_{0} : c and $c-1$ are squares,
$K_{1}: c-1$ and $c^{q-1}\left(c^{2}-c+1\right)-1$ are nonsquares, $c\left((c-1)^{2-q}+1\right)$ is a square,
$K_{2}: c,(c+1)-(c-1)^{q-1}$ and $c^{-1}-\left(c^{-1}-1\right)^{q-1}$ are nonsquares,
$K_{3}:\left(c^{-1}-1\right)^{q-1}+(c-1)$ and $c\left(c^{-1}-1\right)^{q-1}-1$ nonsquares,
$K_{4}:\left(c^{2 q}-2 c^{q}+c\right)\left(c^{q}-c^{2}\right)$ and $c^{q}\left(c^{q+1}-2 c+1\right)\left(c^{q}-c^{2}\right)$ are nonsquares, while
$(c-1)\left(c^{q+1}+c^{q}-c\right)\left(c^{q}-c^{2}\right)$ is a square.

Weil's bound: r polynomial $\mathrm{sq} / \mathrm{nsq}$ conditions $\approx|\mathbb{F}| / 2^{r}$ solutions

This is approximative, size of error depends on polynomial degrees. To get upper estimates of $\left|K_{i}\right|$ the polynomials are thus turned into polynomials of small degree in two variables over \mathbb{F}_{q}.

Final slide on quasigroups from nearfields

Results

Applying Weil's bound to the list of polynomials: For $q>14400$ there are not enough c that fulfil at least one ε condition. Hence for $q>14400$ there exists c for which $\left(\mathbb{F}_{q^{2}}, *_{c}\right)$ is maximally nonassociative.
Computer: Such a c exists for each $q<14400$ too.
Computations suggest that $\left(\mathbb{F}_{q^{2}}, *_{c}\right)$ is a mnq with limit probability 0.289. In every proper nearfield $N,|N|<10000$, there $\exists c \in N$ such that ($N, *_{c}$) is a mnq.

Source

Drápal \& Lisoněk, Maximal nonassociativity via nearfields, Finite Fields and Their Applications 62 (2020).

Product constructions

Direct product

Q_{1} and Q_{2} quasigroups: $a\left(Q_{1} \times Q_{2}\right)=a\left(Q_{1}\right) a\left(Q_{2}\right)$. Hence Q_{1} and Q_{2} mnqs $\Rightarrow Q_{1} \times Q_{2}$ is a mnq as well.

Product construction using idempotent quasigroups

Result: Let (Q, \cdot) and $(U, *)$ be finite quasigroups, $|Q| \geq|U|$ and U idempotent. Then there exists a quasigroup on $Q \times U$, the associativity index of which is equal to $a(Q) \cdot|U|$.
We need $j: U \rightarrow Q$ injective mapping and $(Q,+)$ abelian group. Let

$$
(x, u)(y, v)= \begin{cases}(x \cdot y, u) & \text { if } u=v, \text { and } \\ (x+y+j(u), u * v) & \text { if } u \neq v\end{cases}
$$

A consequence for maximally nonassociative quasigroups
If $n \geq m>2$ and \exists a mnq of order n, then \exists a mnq of order $m n$.
This is because an idempotent quasigroup \exists for each $m \geq 3$.

Elementary associative triples

Triples $\left(e_{y}, y, z\right),\left(x, y, f_{y}\right)$ and $\left(x, f_{x}=e_{z}, z\right)$.

Q a quasigroup with local units e_{x} and f_{x}.

$$
\begin{aligned}
& e_{y}=e_{y z} \Rightarrow e_{y} \cdot y z=y z=e_{y} y \cdot z ; \\
& f_{y}=f_{x y} \Rightarrow x y \cdot f_{y}=x y=x \cdot y f_{y} ; \\
& y=f_{x}=e_{z} \Rightarrow x y \cdot z=x z=x \cdot y z .
\end{aligned}
$$

These associative triples are called elementary. Criterion:
An associative triple (x, y, z) is elementary $\Longleftrightarrow x y z \in\{x y, x z, y z\}$.
Grošek—Horák inequality
$a(Q) \geq 2|Q|-|I(Q)|$, where $I(Q)$ is the set of idempotents of Q.
A consequence of the inequality

$$
a(Q)=|Q| \Rightarrow I(Q)=Q .
$$

Finite maximally nonassociative quasigroups are idempotent.

Extremely nonassociative quasigroups (enqs)

Definition of a finite exnq

Q is extremely nonassociative $\Longleftrightarrow a(Q)=2|Q|-|1(Q)|,|Q| \geq 2$.

Improved Grošek—Horák inequality

$a(Q) \geq 2|Q|-|I(Q)|+\delta(Q)$, where $\delta(Q)$ is the number of fixed point free left translations L_{x} plus the number of fixed point free right translations R_{x}. (The proof is quite long, cf. D \& Valent, JCD 2018.)

Consequences for a finite exnq Q

- Mappings e: $x \mapsto e_{x}$ and $f: x \mapsto f_{x}$ permute Q; and
- The only associative triples of Q are $(e(x), x, f(x))$ and $\left(e^{-1}(x), x, f^{-1}(x)\right), x \in Q$.
This can be used as a definition of an exnq that covers infinite Q too.

Existence of extremely nonassociative quasigroups

Orders 8 and 9

Up to $\cong 6$ exnqs of order 8 , forming 3 pairs of opposite quasigroups and belong to two main classes. Associativity index $=16$ (no idempotents). Up to $\cong 3$ exnqs of order 9 . One is the mnq. The other two mirror each other and have 17 associative triples (one idempotent).

Extremely nonassociative quasigroup of order eight

	1	2	3	4	5	6	7	8
1	3	8	2	4	6	1	5	7
2	1	4	5	3	8	7	2	6
3	4	2	1	6	7	5	8	3
4	7	1	3	2	4	8	6	5
5	5	7	6	1	3	2	4	8
6	2	6	8	7	5	4	3	1
7	8	3	7	5	2	6	1	4
8	6	5	4	8	1	3	7	2

$$
\begin{aligned}
& e=(1234)(5678), \\
& f=(16273845) .
\end{aligned}
$$

To get orders >8 direct product not applicable. The other product construction yields exnqs of orders $2^{k} m$, where $m<2^{k}$ is odd and $k \geq 3, k \neq 4$

For which orders does there exist an idempotent-free exnq?

Minimal nonassociativity for loops

An open problem

Let Q be a loop of order n. There are $3 n^{2}-3 n+1$ triples (x, y, z) such that $1 \in\{x, y, z\}$. Each of them is associative. Does there exist a loop of order $n>1$ with exactly $3 n^{2}-3 n+1$ associative triples?

A related problem for involutory loops

A loop Q is involutory if $x^{2}=1$ for all $x \in Q$. Involutory loops may be obtained by a prolongation of idempotent quasigroups. In an involutory loop $x^{2} \cdot x=1 \cdot x=x \cdot 1=x \cdot x^{2}$. The number of associative triples is at least $3 n^{2}-3 n+1+(n-1)=3 n^{2}-2 n$. Does there exist a involutory loop of order $n>1$ with exactly $3 n^{2}-2 n$ associative triples?

A partial answer relating to involutory loops

No such loop for orders $n \leq 9$.
\exists if $n-1=p \geq 13, p$ a prime, or $n-1=q^{2}, q$ odd and prime power.

Minimal associativity in abelian groups 1

Defining a parameter $u(G),(G,+)$ an abelian group

$u(G)$ is the minimum size of $\left\{(x, y, z) \in G^{3} ; \lambda(x)+\rho(y)+\mu(z)=0\right\}$, which is counted over all transformation λ, ρ and μ that have the property that $\lambda(x)+\rho(x)+\mu(x)=0$ for all $x \in G$.

Connecting $u(G)$ to the associativity index
Claim: If Q is an isotope of G, then $a(Q) \geq u(G)$.
Source: D \& Valent: Designs, Codes and Cryptography 86 (2018).

Expressing $u(G)$ as $\min v\left(\left(q_{i j}\right)\right)$.

Here $S=\left(q_{i j}\right)$ is a square matrix of non-negative integers indexed by elements of $G, \sum q_{i j}=|G|, v(S)=\sum_{\substack{i, j, k \in G \\ i+j+k=0}} a_{i} b_{j} c_{k}$, where

$$
a_{i}=\sum_{i \in G} q_{i j}, \quad b_{j}=\sum_{j \in G} q_{i j} \text { and } c_{k}=\sum_{\substack{k \in G \\ i+j+k=0}} q_{i j}
$$

Minimal associativity in abelian groups 2

Conjecture for finite quasigroups Q isotopic to abelian groups

There exists $\lambda>0$ such that $a(Q)>\lambda|Q|^{2}$.
A stronger but perhaps more accessible is this problem:
Does there exist $\lambda>0$ such that $u(G)>\lambda|G|^{2}$ for every finite abelian group G?

A much weaker result

For each $\varepsilon>0$ there exists $n_{0}>0$ such that for G a finite abelian group $|G|>n_{0} \Rightarrow u(G)>(3-\varepsilon)|G|$. Possible choices: $\varepsilon=1 / 2$ and $n_{0}=30$.

Notation and a consequence

For Q a quasigroup and for α, β permutations of Q denote by $Q_{\alpha, \beta}$ the principal isotope with operation $x * y=\alpha(x) \beta(y)$.
We have: If G is abelian group, then $a\left(G_{\alpha, \beta)}\right) \geq(3-\varepsilon)|G|$. An isotope of G is thus never an exnq. This is also true if G is a noncommutative group. However, that case is even less understood.

Associative triples in groups 1

Associative index in a principal isotope $Q_{\alpha, \beta}$.
$a\left(Q_{\alpha, \beta}\right)=\left|\left\{(x, y, z) \in Q^{3} ; x \beta(\alpha(y) z)=\alpha(x \beta(y)) z\right\}\right|$.

Associative index in a principal isotope $G_{\alpha, \beta}$.

$a\left(G_{\alpha, \beta}\right)=\left|\left\{(x, y, z) \in G^{3} ; \rho(z) \alpha(y)=\beta(y) \lambda(x)\right\}\right|$, where $\lambda(x)=x^{-1} \alpha(x)$ and $\rho(z)=\beta(z) z^{-1}$.
Proof: $\beta(\alpha(y) z) z^{-1}(\alpha(y))^{-1} \alpha(y)=\beta(y)(x \beta(y))^{-1} \alpha(x \beta(y))$ is the equality above. It may be written as $\rho(\alpha(y) z) \alpha(y)=\beta(y) \lambda(x \beta(y))$. (x, y, z) runs through $Q^{3} \Longleftrightarrow(x \beta(y), y, \alpha(y)(z))$ runs through Q^{3}.

Consequence for α left orthomorphism or β right orthomorphism
λ or ρ a permutation $\Rightarrow a\left(G_{\alpha, \beta}\right)=|G|^{2}$. Proof: Let λ permute G. For any choice of y and z there $\exists!x \in G$ such that $\rho(z) \alpha(y)=\beta(y) \lambda(x)$.

Associative triples in groups 2

The number of fixed point free translations

Easy to verify: Let $|G|=n$. $\ln G_{\alpha, \beta}$ there are $n-|\operatorname{lm}(\rho)|$ fixed point free left translations, and $n-|\operatorname{Im}(\lambda)|$ fixed point free right translations. (Here, $\lambda(x)=x^{-1} \alpha(x)$ and $\rho(x)=\beta(x) x^{-1}$.)
In other words $\delta\left(G_{\alpha, \beta}\right)=2 n-|\operatorname{Im}(\rho)|-|\operatorname{Im}(\lambda)|$.
If $G_{\alpha, \beta}$ is extremely nonassociative, then ρ and λ are permutations, since $a(Q) \geq 2|Q|-|I(Q)|+\delta(Q)$, for any quasigroup Q. However, if λ or ρ is a permutation, then $a\left(G_{\alpha, \beta}\right)=n^{2}$. Hence: A quasigroup isotopic to a group is never extremely nonassociative.

Simplification for abelian groups

Write $\rho(z)+\alpha(y)=\beta(y)+\lambda(x)$ as $\rho(z)+\alpha(y)=\lambda(x)+\beta(y)$ and subtract y. We obtain $\rho(z)+\lambda(y)=\lambda(x)+\rho(y)$. Minimum $a\left(G_{\alpha, \beta}\right)$ is equal to the minimum of solutions (x, y, z) when λ and ρ run through transformations that may be expressed as $\sigma-\mathrm{id}_{G}$.

Computational results

The least associative index for small values

n	2	3	4	5	6	7	8	9	10
$a(n)$	8	9	16	15	16	17	16	9	≥ 11

Surpluses for loops and involutory loops
Call $a(Q)-\left(3 n^{2}-3 n+1\right)$ the surplus for loops, $|Q|=n$, and $a(Q)-\left(3 n^{2}-2 n\right)$ an (involutory) surplus if Q is an involutory loop.

n	2	3	4	5	6	7	8	9	10
general	1	8	27	13	13	20	17	16	≤ 11
involutory	-	-	24	24	20	21	25	28	0

Minimal associativity index $m(G)$ for isotopes of a group G

G	\mathbb{Z}_{5}	\mathbb{Z}_{6}	S_{3}	\mathbb{Z}_{7}	\mathbb{Z}_{8}	$\mathbb{Z}_{4} \times \mathbb{Z}_{2}$	D_{8}	Q_{8}	E_{8}
$m(G)$	20	26	28	40	48	48	48	48	64

Results on the average value of associativity index

Ingredients upon which the results are based

$a(Q)=\sum_{x, y \in Q}\left|\operatorname{Fix}\left(\left[L_{x}, R_{y}\right]\right)\right|$ - points fixed by translation commutators; and $\sum_{\varphi, \psi \in S_{n}}|\operatorname{Fix}([\varphi, \psi])|=n^{3}(n-1)!(n-2)!$. - an easy result based on Burnside's Lemma.

Average associativity index over all principal isotopes

$\frac{1}{(n!)^{2}} \sum_{\alpha, \beta \in \operatorname{Sym}(Q)} a\left(Q_{\alpha, \beta}\right)=n^{2}\left(1+\frac{1}{n-1}\right)$, whenever $|Q|=n$.
Hence: Average value of $a(Q),|Q|=n$, is $n^{2}\left(1+(n-1)^{-1}\right)$.

Average associativity index over one sided principal isotopes

Q a quasigroup of order $n, \alpha \in \operatorname{Sym}(Q)$ fixed, $f_{x}=\left|\operatorname{Fix}\left(R_{x} \alpha\right)\right|, \forall x \in Q$. $\frac{1}{n!} \sum_{\varphi \in \operatorname{Sym}(Q)} a\left(Q_{\alpha, \varphi}\right)=\frac{n}{n-1} \sum_{x \in Q}\left(f_{x}^{2}-2 f_{x}+n\right) \geq n^{2}$.
Equality to $n^{2} \Longleftrightarrow \alpha^{-1}$ a (left) orthomorphism of $Q(\alpha(x) \backslash x$ permutes $Q)$.

Papers that contain the reported results

圊 A．Drápal and V．Valent：Few associative triples，isotopisms and groups，Des．Codes Cryptogr． 86 （2018），555－568．

目 A．Drápal and V．Valent：High nonassociativity in order 8 and an associative index estimate，J．Combin．Des． 27 （2019），205－228．

目 A．Drápal and V．Valent：Extreme nonassociativity in order nine and beyond，J．Combin．Des． 28 （2020），33－48．

目 A．Drápal and P．Lisoněk：Maximal nonassociativity via nearfields， Finite Fields Appl． 62 （2020）101610，

囯 A．Drápal and I．M．Wanless：Maximally nonassociative quasigroups via quadratic orthomorphisms，Alg．Comb． 4 （2021），501－515．

A．Drápal and J．Hora：Nonassociative triples in involutory loops and in loops of small order，Comment．Math．Univ．Carolin． 61 （2020）， 459－479．

What made a complete search feasible

Estimate for the \# of elementary associative triples

$|I(Q)|-|Q|+S$, where for $Q=\left\{x_{1}, \ldots, x_{n}\right\}, a_{i}=\left|e^{-1}\left(x_{i}\right)\right|$ and
$b_{i}=\left|f^{-1}\left(x_{i}\right)\right|, S=\sum_{i=1}^{n}\left(a_{i}^{2}+b_{i}^{2}+a_{i} b_{i}\right)-\sum_{i=1}^{k}\left(a_{i}+b_{i}\right)$.
$|I(Q)|-|Q|+S \geq 2|Q|-|I(Q)|+\delta_{L}(Q)+\delta_{R}(Q)$,
$\delta_{L}(Q)=\left|\left\{i ; a_{i}=0\right\}\right|=\left|\left\{x \in Q ; \operatorname{Fix}\left(L_{x}\right)=\emptyset\right\}\right|$ and $\delta_{R}(Q)=\left|\left\{i ; b_{i}=0\right\}\right|$.
The search may be parallelized by prefilling e and f. A partially filled Latin square is being completed bottom down (row by row) and left to right (cell by cell) until a nonelementary ass. triple is found. Such triples are diagonal (x, x, x) and nondiagonal. Search can be speeded by this fact:

At the time of a nonelemenatry nondiagonal associative triple only 1 constituent is missing.
The time of ass. triple (x, y, z) is the pair (a, b) such that with $a b$ both $x(y z)$ and $(x y) z$ can be computed (by using only that part of the latin square that precedes $(a, b))$. Constituents: $x y, x y \cdot z, x \cdot y z, y z$.

The situation with two operations

$x *(y \circ z)=(x * y) \circ z$
Let $*$ and \circ be two quasigroup operations upon a set Q. Define $a_{2}(*, \circ)$ to be the number of all $(x, y, z) \in Q^{3}$ such that $x *(y \circ z)=(x * y) \circ z$.

Expressing by translations

Denote by L and R the translations of $(Q, *)$, and by λ and ρ the translations of $(Q, *)$. Then $a_{2}(*, \circ)=\sum_{x, z}\left|\operatorname{Fix}\left(\left[L_{x}, \rho_{z}\right]\right)\right|$. The right translations of $*$ and left translations of \circ are not involved.

Average values

Denote by $*_{\alpha, \beta}$ the operation of the principal isotope. Thus $x *_{\alpha, \beta} y=\alpha(x) * \beta(y) . \frac{1}{(n!)^{4}} \sum_{\alpha, \beta, \gamma, \delta} a_{2}\left(*_{\alpha, \beta}, \circ_{\gamma, \delta}\right)=n^{2}\left(1+\frac{1}{n-1}\right)$.
The same average value as in one-operation case. In fact, $a_{2}\left(*_{\alpha, \beta}, \circ_{\gamma, \delta}\right)=a_{2}\left(*_{\sigma, \beta}, \circ_{\gamma, \tau}\right)$, so for the computation only β and γ are relevant.

Minimum associative triples in two operations

$a_{2}(n)=$ minimum $a_{2}(*, o)$ for order n

Presently $a_{2}(n)$ known only up to $n=5$. Comparison:

n	2	3	4	5
$a(n)$	8	9	16	15
$a_{2}(n)$	8	9	8	9

Spectrum in order 5
2 op: $9,11, \ldots, 63,65,67,68,69,71,74,76,77,79,80,89,125$
1 op: $15, \ldots, 57,59,62,63,74,79,80,89,125$

A problem

Do there exist quasigroups $(Q, *)$ and (Q, \circ) of order $n>1$ such that both are isotopic to a group and $a_{2}(*, \circ)=n$?

