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Maximally nonassociative quasigroups

Associativity index
For a quasigroup Q denote by a(Q) the number of associative triples, that
is the number of (x , y , z) ∈ Q3 such that x · yz = xy · z . Call a(Q) the
associativity index of Q.

Some associative triples
Denote by ex and fx the local units of Q. Thus exx = x and xfx = x .
Then exx · fx = xfx = x = exx = ex · xfx . This means that (ex , x , fx) is
always an associative triple. Hence a(Q) ≥ |Q|.

Problem: Kepka, 1981
Does there exist a finite nontrivial quasigroup Q such that a(Q) = |Q|?

Conjecture: Grošek and Horák, 2012
There is no finite nontrivial quasigroup with a(Q) = |Q|.
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Maximally nonassociative quasigroups (mnqs)

When Q is a mnq—a definition and an easy fact
Def. of a mnq: (x , y , z) ∈ Q3 is associative ⇐⇒ x = y = z , |Q| ≥ 2.
Lemma: a(Q) = |Q| <∞ ⇒ Q idempotent (proof later). Thus a mnq.

Constructions of maximally nonassociative quasigroups
2017 Valent: Computer finds a mnq of order 9;
2018 Lisoněk: Many mnqs follow from nearfields;
2019 Wanless: To get primes use quadratic orthomorphisms;
2019 Drápal: Combine mnqs by a product construction.

Existence and nonexistence of a mnq of order n
no mnq exists if 2 ≤ n ≤ 8 or n = 10;
no mnq known if n = 2p or n = 2p1p2, p1 ≤ p2 < 2p1;
no mnq known if n ∈ {11, 12, 15, 40, 42, 44, 56, 66, 77, 88, 90, 110};
for all other n there exists a mnq.
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Road to the nearfield construction

What was found by computer
1 2 3 4 5 6 7 8 9

1 1 4 7 3 8 5 2 9 6
2 8 2 5 6 1 9 4 3 7
3 6 9 3 7 4 2 8 5 1

4 5 3 9 4 7 1 6 2 8
5 7 6 1 2 5 8 9 4 3
6 2 8 4 9 3 6 1 7 5

7 9 5 2 8 6 3 7 1 4
8 3 7 6 1 9 4 5 8 2
9 4 1 8 5 2 7 3 6 9

Up to isomorphism the only
quasigroup of order 9 that is
maximally nonassociative.
It yields a Sudoku square.

Intepretative efforts
Drápal gave an interpretation via an affine plane. This resulted in computer
experiments (Kozlik, Lisoněk) that led to the discovery of intepretation in
the form x ∗ y = x + (y − x) ◦ c , where (N,+, ◦, 0, 1) is a nearfield and
c ∈ N, c /∈ {0, 1}.
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About nearfields

Definition of a (left) nearfield (N ,+, ◦, 0, 1)
1 (N,+, 0) is an Abelian group;
2 (N∗, ◦, 1) is a group, where N∗ = N \ {0};
3 x ◦ 0 = 0 = 0 ◦ x for all x ∈ N; and
4 x ◦ (y + z) = x ◦ y + x ◦ z for all x , y , z ∈ N.

Classification and Dickson’s nearfields
Finite nearfields are completely classified (Zassenhaus). Dickson’s nearfields
are defined on Fq2 , q power of an odd prime so that
x ◦ y = xy if x a square, x ◦ y = xyq if x a nonsquare.

Quasigroups derived from a nearfield (Stein)
If c ̸= 0, 1, then x ∗c y = x + (y − x) ◦ c is a quasigroup. The mappings
x 7→ λ ◦ x and x 7→ x + u are automorphisms of (N, ∗c) for all λ ∈ N∗ and
u ∈ N. All quasigrps Q with Aut(Q) sharply 2-transitive are of this form.
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Under which conditions gives a nearfield a mnq?

A useful lemma
Q idempotent quasigroup. If (x , x , y) or (y , x , x) ass., then x = y .

A consequence for quasigroups with Aut(Q) 2-transitive
Let 0, 1 ∈ Q. Then Q is a mnq ⇔ (0, 1, z) associative for no z ∈ Q.

What does this mean for quasigroups over nearfields?
0 ∗c z = 0 + (z − 0) ◦ c = z ◦ c . Thus 0 ∗ (1 ∗ z) = (1 ∗ z) ◦ c gives
(1 + (z − 1) ◦ c) ◦ c , while (0 ∗ 1) ∗ z = c ∗ z = c + (z − c) ◦ c .

Multiply to simplify: x ◦ (z − 1) = 1
z − c = 1 + (z − 1)− c , x◦(c + (z − c) ◦ c) = x ◦ c + (x + 1 − x ◦ c) ◦ c
and x ◦ (1 + (z − 1) ◦ c) ◦ c = (x + c) ◦ c .
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When Dickson’s nearfield gives a mnq?

x ◦ c + (x + 1 − x ◦ c) ◦ c = (x + c) ◦ c
should never hold. Set ε0, ε1, ε2 to zero if x , x + 1− x ◦ c , x + c a square.
Otherwise εi = 1. Interpret the equation for each choice ε = (ε0, ε1, ε2).

ε = (0, 0, 0) and ε = (0, 0, 1)
xc + (x + 1 − xc)c = (x + c)c ⇔ c(x + 1)(c − 1) = 0
xc + (x + 1 − xc)c = (x + c)cq ⇔ c(x(cq−1 + c − 2) + cq − 1) = 0

What does it say?
ε = (0, 0, 0): one of −1, c and −1 + c has to be a nonsquare.
ε = (0, 0, 1): not mnq if x(cq−1 + c − 2) = (1 − c)q, x a square, and ... If
so, x−1 = ((cq−1 + c − 2)/(1 − c)q = ((1 − c)2−q − 1)c−1 is a square,
and thus ((1 − c)2−q − 1)c is a square. Employing values ε1 and ε2 shows
that (Fq2 , ∗c) not mnq if cq−1(c2 − c + 1)− 1 a nonsquare.
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Squares, nonsquares and Weil’s bound

Six other terms that should avoid zero
c2(xcq−2(c − 1)− cq−2 − 1), c(c − 1)(x(c − 1)q−1 + cq−1), c(c − 1)(xcq−1 + 1),
c(c − 1)q(x + 1), c(x(2cq−1 − c2q−1 − 1) + cq − 1 − c), cq(c − 1)(x(c − 1)q−1 + 1).

The result of processing the conditions
A mnq (Fq2 , ∗c ) exists iff ∪Ki a proper subset of Fq2 . Ki are sets of c ∈ Fq2 , c /∈ {0, 1}, where
K0: c and c − 1 are squares,
K1: c − 1 and cq−1(c2 − c + 1)− 1 are nonsquares, c((c − 1)2−q + 1) is a square,
K2: c, (c + 1)− (c − 1)q−1 and c−1 − (c−1 − 1)q−1 are nonsquares,
K3: (c−1 − 1)q−1 + (c − 1) and c(c−1 − 1)q−1 − 1 nonsquares,
K4: (c2q − 2cq + c)(cq − c2) and cq(cq+1 − 2c + 1)(cq − c2) are nonsquares, while

(c − 1)(cq+1 + cq − c)(cq − c2) is a square.

Weil’s bound: r polynomial sq/nsq conditions ≈ |F|/2r solutions
This is approximative, size of error depends on polynomial degrees. To get
upper estimates of |Ki | the polynomials are thus turned into polynomials of
small degree in two variables over Fq.
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Final slide on quasigroups from nearfields

Results
Applying Weil’s bound to the list of polynomials: For q > 14400 there are
not enough c that fulfil at least one ε condition. Hence for q > 14400
there exists c for which (Fq2 , ∗c) is maximally nonassociative.
Computer: Such a c exists for each q < 14400 too.
Computations suggest that (Fq2 , ∗c) is a mnq with limit probability 0.289.
In every proper nearfield N, |N| < 10000, there ∃ c ∈ N such that (N, ∗c)
is a mnq.

Source
Drápal & Lisoněk, Maximal nonassociativity via nearfields, Finite Fields and
Their Applications 62 (2020).
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Product constructions

Direct product
Q1 and Q2 quasigroups: a(Q1 × Q2) = a(Q1)a(Q2).
Hence Q1 and Q2 mnqs ⇒ Q1 × Q2 is a mnq as well.

Product construction using idempotent quasigroups
Result: Let (Q, ·) and (U, ∗) be finite quasigroups, |Q| ≥ |U| and U
idempotent. Then there exists a quasigroup on Q × U, the associativity
index of which is equal to a(Q) · |U|.
We need j : U → Q injective mapping and (Q,+) abelian group. Let

(x , u)(y , v) =

{
(x · y , u) if u = v , and
(x + y + j(u), u ∗ v) if u ̸= v .

A consequence for maximally nonassociative quasigroups
If n ≥ m > 2 and ∃ a mnq of order n, then ∃ a mnq of order mn.
This is because an idempotent quasigroup ∃ for each m ≥ 3.
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Elementary associative triples

Triples (ey , y , z), (x , y , fy ) and (x , fx = ez , z).
Q a quasigroup with local units ex and fx .
ey = eyz ⇒ ey · yz = yz = eyy · z ;
fy = fxy ⇒ xy · fy = xy = x · yfy ;
y = fx = ez ⇒ xy · z = xz = x · yz .

These associative triples are called elementary. Criterion:
An associative triple (x , y , z) is elementary ⇐⇒ xyz ∈ {xy , xz , yz}.

Grošek—Horák inequality
a(Q) ≥ 2|Q| − |I(Q)|, where I(Q) is the set of idempotents of Q.

A consequence of the inequality
a(Q) = |Q| ⇒ I(Q) = Q.
Finite maximally nonassociative quasigroups are idempotent.
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Extremely nonassociative quasigroups (enqs)

Definition of a finite exnq
Q is extremely nonassociative ⇐⇒ a(Q) = 2|Q| − |I(Q)|, |Q| ≥ 2.

Improved Grošek—Horák inequality
a(Q) ≥ 2|Q| − |I(Q)|+ δ(Q), where δ(Q) is the number of fixed point free
left translations Lx plus the number of fixed point free right translations
Rx . (The proof is quite long, cf. D & Valent, JCD 2018.)

Consequences for a finite exnq Q

Mappings e : x 7→ ex and f : x 7→ fx permute Q; and
The only associative triples of Q are (e(x), x , f (x)) and
(e−1(x), x , f −1(x)), x ∈ Q.

This can be used as a definition of an exnq that covers infinite Q too.
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Existence of extremely nonassociative quasigroups

Orders 8 and 9
Up to ∼= 6 exnqs of order 8, forming 3 pairs of opposite quasigroups and
belong to two main classes. Associativity index = 16 (no idempotents).
Up to ∼= 3 exnqs of order 9. One is the mnq. The other two mirror each
other and have 17 associative triples (one idempotent).

Extremely nonassociative quasigroup of order eight
1 2 3 4 5 6 7 8

1 3 8 2 4 6 1 5 7
2 1 4 5 3 8 7 2 6
3 4 2 1 6 7 5 8 3
4 7 1 3 2 4 8 6 5

5 5 7 6 1 3 2 4 8
6 2 6 8 7 5 4 3 1
7 8 3 7 5 2 6 1 4
8 6 5 4 8 1 3 7 2

e = (1 2 3 4)(5 6 7 8),
f = (1 6 2 7 3 8 4 5).
To get orders > 8 direct product not
applicable. The other product con-
struction yields exnqs of orders 2km,
where m < 2k is odd and k ≥ 3, k ̸= 4

For which orders does there exist an idempotent-free exnq?
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Minimal nonassociativity for loops

An open problem
Let Q be a loop of order n. There are 3n2 − 3n + 1 triples (x , y , z) such
that 1 ∈ {x , y , z}. Each of them is associative. Does there exist a loop of
order n > 1 with exactly 3n2 − 3n + 1 associative triples?

A related problem for involutory loops
A loop Q is involutory if x2 = 1 for all x ∈ Q. Involutory loops may be
obtained by a prolongation of idempotent quasigroups. In an involutory
loop x2 · x = 1 · x = x · 1 = x · x2. The number of associative triples is at
least 3n2 − 3n+ 1+ (n− 1) = 3n2 − 2n. Does there exist a involutory loop
of order n > 1 with exactly 3n2 − 2n associative triples?

A partial answer relating to involutory loops
No such loop for orders n ≤ 9.
∃ if n − 1 = p ≥ 13, p a prime, or n − 1 = q2, q odd and prime power.
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Minimal associativity in abelian groups 1

Defining a parameter u(G ), (G ,+) an abelian group

u(G ) is the minimum size of {(x , y , z) ∈ G 3; λ(x) + ρ(y) + µ(z) = 0},
which is counted over all transformation λ, ρ and µ that have the property
that λ(x) + ρ(x) + µ(x) = 0 for all x ∈ G .

Connecting u(G ) to the associativity index
Claim: If Q is an isotope of G , then a(Q) ≥ u(G ).
Source: D & Valent: Designs, Codes and Cryptography 86 (2018).

Expressing u(G ) as min v((qij)).
Here S = (qij) is a square matrix of non-negative integers indexed by
elements of G ,

∑
qij = |G |, v(S) =

∑
i ,j ,k∈G
i+j+k=0

aibjck , where

ai =
∑
i∈G

qij , bj =
∑
j∈G

qij and ck =
∑
k∈G

i+j+k=0

qij .
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Minimal associativity in abelian groups 2

Conjecture for finite quasigroups Q isotopic to abelian groups
There exists λ > 0 such that a(Q) > λ|Q|2.
A stronger but perhaps more accessible is this problem:
Does there exist λ > 0 such that u(G ) > λ|G |2 for every finite abelian
group G?

A much weaker result
For each ε > 0 there exists n0 > 0 such that for G a finite abelian group
|G | > n0 ⇒ u(G ) > (3 − ε)|G |. Possible choices: ε = 1/2 and n0 = 30.

Notation and a consequence
For Q a quasigroup and for α, β permutations of Q denote by Qα,β the
principal isotope with operation x ∗ y = α(x)β(y).
We have: If G is abelian group, then a(Gα,β)) ≥ (3 − ε)|G |.
An isotope of G is thus never an exnq. This is also true if G is a
noncommutative group. However, that case is even less understood.
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Associative triples in groups 1

Associative index in a principal isotope Qα,β.

a(Qα,β) = |{(x , y , z) ∈ Q3; xβ(α(y)z) = α(xβ(y))z}|.

Associative index in a principal isotope Gα,β.

a(Gα,β) = |{(x , y , z) ∈ G 3; ρ(z)α(y) = β(y)λ(x)}|, where
λ(x) = x−1α(x) and ρ(z) = β(z)z−1.
Proof: β(α(y)z)z−1(α(y))−1α(y) = β(y)(xβ(y))−1α(xβ(y)) is the
equality above. It may be written as ρ(α(y)z)α(y) = β(y)λ(xβ(y)).
(x , y , z) runs through Q3 ⇐⇒ (xβ(y), y , α(y)(z)) runs through Q3.

Consequence for α left orthomorphism or β right orthomorphism
λ or ρ a permutation ⇒ a(Gα,β) = |G |2. Proof: Let λ permute G . For any
choice of y and z there ∃! x ∈ G such that ρ(z)α(y) = β(y)λ(x).
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Associative triples in groups 2

The number of fixed point free translations
Easy to verify: Let |G | = n. In Gα,β there are n − | Im(ρ)| fixed point free
left translations, and n − | Im(λ)| fixed point free right translations.
(Here, λ(x) = x−1α(x) and ρ(x) = β(x)x−1.)
In other words δ(Gα,β) = 2n − | Im(ρ)| − | Im(λ)|.
If Gα,β is extremely nonassociative, then ρ and λ are permutations, since
a(Q) ≥ 2|Q| − |I(Q)|+ δ(Q), for any quasigroup Q.
However, if λ or ρ is a permutation, then a(Gα,β) = n2.
Hence: A quasigroup isotopic to a group is never extremely nonassociative.

Simplification for abelian groups
Write ρ(z) + α(y) = β(y) + λ(x) as ρ(z) + α(y) = λ(x) + β(y) and
subtract y . We obtain ρ(z) + λ(y) = λ(x) + ρ(y). Minimum a(Gα,β) is
equal to the minimum of solutions (x , y , z) when λ and ρ run through
transformations that may be expressed as σ − idG .
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Computational results

The least associative index for small values
n 2 3 4 5 6 7 8 9 10

a(n) 8 9 16 15 16 17 16 9 ≥ 11

Surpluses for loops and involutory loops
Call a(Q)− (3n2 − 3n + 1) the surplus for loops, |Q| = n, and
a(Q)− (3n2 − 2n) an (involutory) surplus if Q is an involutory loop.

n 2 3 4 5 6 7 8 9 10

general 1 8 27 13 13 20 17 16 ≤11
involutory − − 24 24 20 21 25 28 0

Minimal associativity index m(G ) for isotopes of a group G

G Z5 Z6 S3 Z7 Z8 Z4 × Z2 D8 Q8 E8

m(G ) 20 26 28 40 48 48 48 48 64
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Results on the average value of associativity index

Ingredients upon which the results are based
a(Q) =

∑
x ,y∈Q |Fix([Lx ,Ry ])| - points fixed by translation commutators;

and
∑

φ,ψ∈Sn |Fix([φ,ψ])| = n3(n − 1)!(n − 2)!. - an easy result based on
Burnside’s Lemma.

Average associativity index over all principal isotopes
1

(n!)2
∑

α,β∈Sym(Q) a(Qα,β) = n2
(
1 + 1

n−1

)
, whenever |Q| = n.

Hence: Average value of a(Q), |Q| = n, is n2(1 + (n−1)−1).

Average associativity index over one sided principal isotopes
Q a quasigroup of order n, α ∈ Sym(Q) fixed, fx = |Fix(Rxα)|, ∀ x ∈ Q.
1
n!

∑
φ∈Sym(Q) a(Qα,φ) =

n
n−1

∑
x∈Q(f

2
x − 2fx + n) ≥ n2.

Equality to n2 ⇐⇒ α−1 a (left) orthomorphism of Q (α(x)\x permutes
Q).
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What made a complete search feasible

Estimate for the # of elementary associative triples

|I(Q)| − |Q|+ S , where for Q = {x1, . . . , xn}, ai = |e−1(xi )| and
bi = |f −1(xi )|, S =

∑n
i=1

(
a2
i + b2

i + aibi
)
−
∑k

i=1
(
ai + bi

)
.

|I(Q)| − |Q|+ S ≥ 2|Q| − |I(Q)|+ δL(Q) + δR(Q),
δL(Q) = |{i ; ai = 0}| = |{x ∈ Q; Fix(Lx) = ∅}| and δR(Q) = |{i ; bi = 0}|.

The search may be parallelized by prefilling e and f . A partially filled Latin
square is being completed bottom down (row by row) and left to right (cell
by cell) until a nonelementary ass. triple is found. Such triples are diagonal
(x , x , x) and nondiagonal. Search can be speeded by this fact:

At the time of a nonelemenatry nondiagonal associative triple only 1
constituent is missing.
The time of ass. triple (x , y , z) is the pair (a, b) such that with ab both
x(yz) and (xy)z can be computed (by using only that part of the latin
square that precedes (a, b)). Constituents: xy , xy · z , x · yz , yz .
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The situation with two operations

x ∗ (y ◦ z) = (x ∗ y) ◦ z
Let ∗ and ◦ be two quasigroup operations upon a set Q. Define a2(∗, ◦) to
be the number of all (x , y , z) ∈ Q3 such that x ∗ (y ◦ z) = (x ∗ y) ◦ z .

Expressing by translations
Denote by L and R the translations of (Q, ∗), and by λ and ρ the
translations of (Q, ∗). Then a2(∗, ◦) =

∑
x ,z |Fix([Lx , ρz ])|. The right

translations of ∗ and left translations of ◦ are not involved.

Average values
Denote by ∗α,β the operation of the principal isotope. Thus
x ∗α,β y = α(x) ∗ β(y). 1

(n!)4
∑

α,β,γ,δ a2(∗α,β, ◦γ,δ) = n2(1 + 1
n−1).

The same average value as in one-operation case. In fact,
a2(∗α,β, ◦γ,δ) = a2(∗σ,β, ◦γ,τ ), so for the computation only β and γ are
relevant.
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Minimum associative triples in two operations

a2(n) = minimum a2(∗, ◦) for order n
Presently a2(n) known only up to n = 5. Comparison:

n 2 3 4 5

a(n) 8 9 16 15
a2(n) 8 9 8 9

Spectrum in order 5
2 op: 9, 11, ..., 63, 65, 67, 68, 69, 71, 74, 76, 77, 79, 80, 89, 125
1 op: 15,..., 57, 59, 62, 63, 74, 79, 80, 89, 125

A problem
Do there exist quasigroups (Q, ∗) and (Q, ◦) of order n > 1 such that both
are isotopic to a group and a2(∗, ◦) = n?
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