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GÁBOR P. NAGY AND PETR VOJTĚCHOVSKÝ

1. Congruences

Let Q = (Q, ·, /) be a right quasigroup. Then an equivalence relation ∼ on Q is
a right quasigroup congruence if for every x, y, u, v ∈ Q, if x ∼ y and u ∼ v then
xu ∼ yv and x/u ∼ y/v.

Proposition 1.1. Let Q = (Q, ·, /) be a right quasigroup and ∼ an equivalence
relation on Q. Then:

(i) ∼ is a right quasigroup congruence iff for every x, y, u ∈ Q, if x ∼ y then
xu ∼ yu, x/u ∼ y/u, ux ∼ uy and u/x ∼ u/y.

(ii) If Q is finite then ∼ is a right quasigroup congruence iff for every x, y, u ∈
Q, if x ∼ y then xu ∼ yu and ux ∼ uy.

Proof. If ∼ is a right quasigroup congruence then certainly the conditions of (i) and
(ii) hold. Conversely, suppose that the condition of (i) holds and let x, y, u, v ∈ Q
be such that x ∼ y and u ∼ v. Then xu ∼ yu ∼ yv and x/u ∼ y/u ∼ y/v shows
that ∼ is a right quasigroup congruence.

Finally suppose that Q is finite and the condition of (ii) holds. We will verify
the condition of (i). Suppose that x, y, u ∈ Q and x ∼ y. We then have xu ∼ yu
and ux ∼ uy by assumption. Since Q is finite, there is n such that Rn

u = 1 and thus
R−1

u = Rn−1
u . It follows by an easy induction on n that x/u = R−1

u (x) = Rn−1
u (x) ∼

Rn−1
u (y) = R−1

u (y) = y/u. Using finiteness again, let s and t be such that Rs
x = 1 =

Rt
y. Consider m = st− 1. Then Rm

x = Rst−1
x = R−1

x and Rm
y = Rts−1

y = R−1
y . We

then again have u/x = R−1
x (u) = Rm

x (u) ∼ Rm
y (u) = R−1

y (u) = u/y by induction
on m. The condition of (i) therefore holds and ∼ is a congruence. □

Let Q = (Q, ·, /, \) be a right quasigroup. Then an equivalence relation ∼ on
Q is a quasigroup congruence if for every x, y, u, v ∈ Q, if x ∼ y and u ∼ v then
xu ∼ yv, x/u ∼ y/v and x\u ∼ y\v.

Proposition 1.2. Let Q = (Q, ·, /, \) be a quasigroup and ∼ an equivalence relation
on Q. Then:

(i) ∼ is a quasigroup congruence iff for every x, y, u ∈ Q, if x ∼ y then xu ∼
yu, ux ∼ uy, x/u ∼ y/u and u\x ∼ u\y.

(ii) If Q is finite then ∼ is a quasigroup congruence iff for every x, y, u ∈ Q, if
x ∼ y then xu ∼ yu and ux ∼ uy.

Proof. If ∼ is a quasigroup congruence then the certainly the conditions of (i) and
(ii) holds. Conversely, suppose that the condition of (i) holds and let x, y, u, v ∈ Q
be such that x ∼ y and u ∼ v. Since u ∼ v, we have x = (x/u · u) ∼ (x/u · v) and
therefore x/v ∼ ((x/u ·v)/v) = x/u. Also, from x ∼ y we get x/v ∼ y/v. Therefore
x/u ∼ x/v ∼ y/v. Dually, x\u ∼ y\v. Hence ∼ is a quasigroup congruence.
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If Q is finite, the condition of (i) reduces to the condition of (ii) by the usual
trick: R−1

u = Rn−1
u and L−1

u = Lm−1
u for suitable n and m. □

2. Simplicity

Let G be a group acting on X. Then B ⊆ X is a block of the action if for every
g ∈ G either g(B) = B or g(B) ∩ B = ∅. Given a partition P of X, we say that
the action of G preserves P if for every B ∈ P and every g ∈ G we have g(B) ∈ P.
The partitions {{x} : x ∈ X} and {X} are trivial. A transitive permutation group
G acts primitively on X if it preserves no nontrivial partition of X, else it acts
imprimitively. (The requirement that G be transitive is only needed if |X| = 2.)

For a right quasigroup Q let Mltr(Q) = ⟨Rx : x ∈ Q⟩ be the right multiplication
group of Q. For a quasigroup Q let Mlt(Q) = ⟨Rx, Lx : x ∈ Q⟩ be the multiplication
group of Q.

Theorem 2.1 (Albert). A quasigroup Q is simple if and only if Mlt(Q) acts prim-
itively on Q.

Proof. Well known. □

Example 2.2. Consider the right quasigroup Q with multiplication table

1 2 3 4
1 2 1 1 1
2 3 2 2 2
3 4 3 3 3
4 1 4 4 4

Then G = Mltr(Q) = ⟨g⟩, where g = (1, 2, 3, 4). Note that G acts transitively but
imprimitively on Q, with {{1, 3}, {2, 4}} being a nontrivial partition of Q preserved
by G. However, an inspection of all possible partitions of Q reveals that Q has no
nontrivial congruences and hence is simple. For instance, the above partition is not
a right quasigroup congruence since 1 ∼ 3 but 1 · 1 = 2 ̸∼ 1 = 1 · 3.

Proposition 2.3. Let Q be a right quasigroup. If Mltr(Q) acts primitively on Q
then Q is simple. (The converse does not hold, as shown by the above example.)

Proof. Suppose that Q is not simple and let ∼ be a nontrivial congruence on Q. Let
B be an equivalence class of ∼. If y ∼ z then Rx(y) ∼ Rx(z) and R−1

x (y) ∼ R−1
x (z)

since ∼ is a congruence. In particular, Rx(B) is contained in some equivalence
class C of ∼. Write B = [b] and C = [bx]. If c ∈ C then c ∼ bx and thus
c/x ∼ (bx)/x = b, so c/x ∈ B, but then Rx(c/x) = (c/x)x = c shows that
Rx(B) = C. Similarly, R−1

x (B) is an equivalence class of ∼. This shows that
Mltr(Q) preserves the partition induced by ∼ and hence Mltr(Q) acts imprimitively
on Q. □

Lemma 2.4. Let Q be a right quasigroup. The orbits of Mltr(Q) form a right
quasigroup congruence of Q.

Proof. Let ∼ be the equivalence relation induced by the orbits of G = Mltr(Q).
Suppose that x ∼ y and u ∈ Q. Then ux = Rx(u) ∼ Ry(u) = uy and u/x =
R−1

x (u) ∼ R−1
y (u) = u/y. Let g ∈ G be such that g(x) = y. Then xu = Ru(x) ∼

Ru(g(x)) = Ru(y) = yu and x/u = R−1
u (x) ∼ R−1

u (g(x)) = R−1
u (y) = y/u. By

Proposition 1.1, ∼ is a right quasigroup congruence. □
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Corollary 2.5. Let Q be a right quasigroup and suppose that Mltr(Q) ̸= 1 does
not act transitively on Q. Then Q is not simple.

Note that a right quasigroup Q satisfies Mltr(Q) = 1 if and only if it is a
projection right quasigroup, that is, a right quasigroup with multiplication and
right division given by xy = x, x/y = x.

Lemma 2.6. Let Q be a projection right quasigroup. Then any partition of Q is a
right quasigroup congruence of Q. In particular, Q is simple if and only if |Q| > 2.

Proof. Let ∼ be the equivalence relation induced by a given partition of Q. Suppose
that x ∼ y and u ∈ Q. Then xu = x ∼ y = yu, x/u = x ∼ y = y/u, ux = u ∼
u = uy and u/x = u ∼ u = u/y. By Proposition 1.1, ∼ is a right quasigroup
congruence. □

3. Nuclei and center

Proposition 3.1. A nonempty subset S of a finite (right) quasigroup Q is a
sub(right)quasigroup of Q iff it is closed under multiplication.

Proof. In the case of right quasigroups, it suffices to show that S is closed under
right division. For x, y ∈ S, consider Rx ∈ Sym(Q). Since Q is finite, there is n such
that Rn

x = idQ, so R−1
x = Rn−1

x . Then y/x = R−1
x (y) = Rn−1

x (y) ∈ S by induction
on n. The argument for left divisions is dual in the case of quasigroups. □

Proposition 3.2. Let Q be a finite (right) quasigroup. Then each of the four nuclei
is either a sub(right)quasigroup of Q or the empty set.

Proof. Let S = Nucℓ(Q) ̸= ∅. Then for every x, y ∈ S and every u, v ∈ Q we have
(xy)(uv) = x(y(uv)) = x((yu)v) = (x(yu))v = ((xy)u)v, so xy ∈ S and we are
done by Proposition 3.1. Dually, if Nucr(Q) ̸= ∅ then it is a sub(right)quasigroup
of Q. Now suppose that S = Nucm(Q) ̸= ∅. Then for all x, y ∈ S and u, v ∈ Q
we have (u(xy))v = ((ux)y)v = (ux)(yv) = u(x(yv)) = u((xy)v), so xy ∈ S and
we are done by Proposition 3.1. The intersection of sub(right)quasigroups is a
sub(right)quasigroup. □

Proposition 3.3. Let Q be a finite (right) quasigroup. Then the center of Q is
either a sub(right)quasigroup of Q or the empty set. (Do we need finiteness here?)

Proof. It remains to prove that if x, y ∈ Z(Q) and u ∈ Q then (xy)u = u(xy). We
have (xy)u = x(yu) = (yu)x = (uy)x = u(yx) = u(xy). □

4. Lower central series for loops

The lower central series for a loop Q is defined by Q(0) = Q, Q(i+1) = [Q(i), Q]Q,
using the congruence commutator of normal subloops. Here we are only using the
commutator of the form [A,Q]Q for A⊴Q. It’s easy to see that [A,Q]Q = D iff D
is the smallest normal subloop of Q such that A/D ≤ Z(Q/D).

Lemma 4.1. Let A ⊴ Q. Then [A,Q]Q is the smallest normal subloop of Q con-
taining {θ(a)/a : a ∈ A, θ ∈ Inn(Q)}.

Proof. Let D ⊴Q. The following conditions are equivalent:

• A/D ≤ Z(Q/D)
• θ(aD) = aD for all a ∈ A, θ ∈ Inn(Q/D)
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• LxD,yD(aD) = aD, RxD,yD(aD) = aD, TxD(aD) = aD for all x, y ∈ Q,
a ∈ A

• Lx,y(a)D = aD, Rx,y(a)(D) = aD, Tx(a)D = aD for all x, y ∈ Q, a ∈ A,
• θ(a)D = aD for all a ∈ A, θ ∈ Inn(Q)
• θ(a)/a ∈ D for all a ∈ A, θ ∈ Inn(Q).

□

5. Displacement groups

For a right quasigroup (Q, ·), define the right positive displacement group, the
right negative displacement group and the right displacement group by

Dis+r (Q) = ⟨RxR
−1
y : x, y ∈ Q⟩,

Dis−r (Q) = ⟨R−1
x Ry : x, y ∈ Q⟩,

Disr(Q) = ⟨RxR
−1
y , R−1

x Ry : x, y ∈ Q⟩,

respectively.
Fix e ∈ Q. Since RxR

−1
y = (ReR

−1
x )−1(ReR

−1
y ) = (RxR

−1
e )(RyR

−1
e )−1 and

R−1
x Ry = (R−1

x Re)(R
−1
y Re)

−1 = (R−1
e Rx)

−1(R−1
e Ry), we have

Dis+r (Q) = ⟨ReR
−1
x : x ∈ Q⟩ = ⟨RxR

−1
e : x ∈ Q⟩,

Dis−r (Q) = ⟨R−1
x Re : x ∈ Q⟩ = ⟨R−1

e Rx : x ∈ Q⟩.

The left displacement groups are defined analogously for a left quasigroup (Q, ·)
by

Dis+ℓ (Q) = ⟨LxL
−1
y : x, y ∈ Q⟩,

Dis−ℓ (Q) = ⟨L−1
x Ly : x, y ∈ Q⟩,

Disℓ(Q) = ⟨LxL
−1
y , L−1

x Ly : x, y ∈ Q⟩,

and we once again have

Dis+ℓ (Q) = ⟨LeL
−1
x : x ∈ Q⟩ = ⟨LxL

−1
e : x ∈ Q⟩,

Dis−ℓ (Q) = ⟨L−1
x Le : x ∈ Q⟩ = ⟨L−1

e Lx : x ∈ Q⟩

for a fixed e ∈ Q.

Proposition 5.1. Let (Q, ·) be a quasigroup. Then (Q, ·) is isotopic to a group if
and only if the left positive displacement group Dis+ℓ (Q, ·) acts regularly on Q. In

that case, (Q, ·) is isotopic to Dis+ℓ (Q, ·).

Proof. Let D = Dis+ℓ (Q, ·). Given y, z ∈ Q, there exists a unique x ∈ Q such
that LxL

−1
e (y) = z, namely x = z/(e\y). Suppose that D acts regularly on Q.

Then D = {LxL
−1
e : x ∈ Q} and for every x, y ∈ Q there is z ∈ Q such that

LxL
−1
e LyL

−1
e = LzL

−1
e . Thus LxL

−1
e Ly = Lz and, applying this to e, we get

x(e\(ye)) = ze and z = x(e\ye)/e. Define (Q, ∗) by x ∗ y = x(e\ye)/e. Then
f : D → (Q, ∗), LxL

−1
e 7→ x is an isomorphism, so (Q, ∗) is a group. Since

(x ∗ y)e = x(e\ye), the triple (id, L−1
e Re, Re) is an isotopism (Q, ∗) → (Q, ·).

Conversely, suppose that (Q, ∗) is a group and (α, β, γ) is an isotopism (Q, ∗) →
(Q, ·), so α(x) · β(y) = γ(x ∗ y), or x · y = γ(α−1(x) ∗ β−1(y)) for all x, y ∈ Q. This
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shows that the left translation by x in (Q, ·) is equal to Lx = γL∗
α−1(x)β

−1. Then

LxL
−1
e = (γL∗

α−1(x)β
−1)(γL∗

α−1(e)β
−1)−1

= γL∗
α−1(x)(L

∗
α−1(e))

−1γ−1 = γLα−1(x)∗(α−1(e))−1γ−1

because (Q, ∗) is a group. Hence D is a conjugate of ⟨Lα−1(x)∗(α−1(e))−1 : x ∈ Q⟩ =
⟨L∗

x : x ∈ Q⟩ = {L∗
x : x ∈ Q}, which certainly acts regularly on Q. □

Corollary 5.2. A quasigroup Q is isotopic to a group iff |Dis+ℓ (Q)| = |Q|.

6. Twists of right quasigroups

Given a magma Q and three mappings f, g, h : Q → Q, the twist Tw(Q, f, g, h)
of Q via (f, g, h) is defined to be the magma (Q, ∗) with multiplication x ∗ y =
h(f(x)g(y)).

If Q is a right quasigroup, the twist Tw(Q, f, g, h) is a right quasigroup iff both f
and h are bijections of Q. Moreover, the twist Tw(Q, f, g, h) is a quasigroup iff all
three f , g and h are bijections of Q. Finally, if Tw(Q, f, g, h) is a quasigroup then
it is a loop iff g−1(f(x)\h−1(x)) is equal to f−1(h−1(x)/g(x)) and independent of
x.

Isotopes and affine constructions can be realized as twists.

7. Affine right quasigroups

Given a loop (Q, ·), its automorphism f , endomorphism g and two elements
u, v, define Aff(Q, ·, f, u, g, v) = (Q, ∗) by x ∗ y = (f(x)u)(g(y)v). (We also allow
variations with uf(x), vg(y) and any combinations. For instance, Aff(Q, ·, u, f, g, v)
has multiplication x ∗ y = (uf(x))(g(y)v).) Then (Q, ∗) is affine over (Q, ·) and
(Q, ·, f, u, g, v) is the arithmetic form of (Q, ∗).

Lemma 7.1. (Q, ∗) is a right quasigroup. (Q, ∗) is a quasigroup iff g is an auto-
morphism.

Proof. Solving x ∗ y = (f(x)u)(g(y)v) = z for x yields x = f−1((z/(g(y)v))/u)
and similarly in the other three cases. Solving x ∗ y = (f(x)u)(g(y)v) = z for y is
equivalent to solving g(y) = ((f(x)u)\z)/v. □

If (Q, ·) is an abelian group, the formula x∗y = (f(x)u)(g(y)v) becomes f(x)g(y)uv
and it therefore suffices to consider only arithmetic forms (Q, ·, f, g, c) with auto-
morphism f , endomorphism g and central element c, and define the multiplication
by x ∗ y = f(x)g(y)c. In general this is a special case of the affine construction.
From now on we assume that we are dealing with the special case (Q, f, g, c).

Lemma 7.2. (Q, ∗) is a rack iff g(c) = 1, fg = gf , g(x) = fg(x)g2(x) and
xfg(y) · g(z) = xfg(z) · fg(y)g2(z) for all x, y, z ∈ Q.

Proof. We have (x∗y)∗z = (f(x)g(y)c)∗z = f2(x)fg(y)f(c) ·g(z) ·c, while (x∗z)∗
(y∗z) = (f(x)g(z)c)∗(f(y)g(z)c) = f2(x)fg(z)f(c)·gf(y)g2(z)g(c)·c. Since c, f(c)
and g(c) are central, we see that (Q, ∗) is a rack iff f2(x)fg(y) · g(z) = f2(x)fg(z) ·
gf(y)g2(z)·g(c). Substituting x = y = z = 1 then yields g(c) = 1 as a necessary con-
dition. Assuming this, we need to verify f2(x)fg(y)·g(z) = f2(x)fg(z)·gf(y)g2(z).
With x = z = 1 we obtain fg(y) = gf(y) as a necessary condition. Assuming this,
we need to verify f2(x)fg(y) · g(z) = f2(x)fg(z) · fg(y)g2(z). With x = y = 1 we
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get g(z) = fg(z)g2(z) as a necessary condition. Assuming this and substituting x
for f2(x) yields the last condition. □

Substituting fg(z)g2(z) for g(z) into the left hand side of the last condition
of Lemma 7.2 yields xfg(y) · fg(z)g2(z) = xfg(z) · fg(y)g2(z). This condition is
certainly satisfied when (Q, ·) is a medial loop. Recall that a loop is medial iff it
is an abelian group. Indeed, from (xu)(vy) = (xv)(uy) we obtain commutativity
with x = y = 1 and associativity with v = 1.

Lemma 7.3. (Q, ∗) is a quandle iff c = 1, g(x) = f(x)\x and xfg(y) · g(z) =
xfg(z) · fg(y)g2(z) for all x, y, z ∈ Q.

Proof. We have x ∗ x = x iff f(x)g(x)c = x. Substituting x = 1 yields c = 1. Using
this, we have x ∗ x = x iff f(x)g(x) = x, that is, g(x) = f(x)\x. If g(x) = f(x)\x
then both fg = gf and g(x) = fg(x)g2(x) hold. We are done by Lemma 7.2. □

Note that the conditions of Lemma 7.3 do not impose any restrictions on the
loop (Q, ·). Indeed, if (Q, ·) is any loop, f(x) = x, g(x) = 1 and c = 1 then
x ∗ y = f(x) = x and (Q, ∗) is a projection quandle.

Also note that a latin rack is a quandle. Indeed, substituting z = y into (xy)z =
(xz)(yz) yields (xy)y = (xy)(yy) and canceling xy on the left then yields y = yy.

Lemma 7.4. (Q, ∗) is a latin rack (i.e., latin quandle) iff c = 1, g(x) = f(x)\x
and xy · z = xf(z) · y(f(z)\z) for all x, y, z ∈ Q.

Proof. Replace g(z) with z and fg(y) with y in the last condition of Lemma 7.3. □

Corollary 7.5. Suppose that (Q, ·) is an abelian group. Then (Q, ∗) is a rack iff
g(c) = 1, fg = gf and g(x) = fg(x)g2(x) for all x ∈ Q.

Proof. Suppose that g(x) = fg(x)g2(x) for all x ∈ Q. Then xfg(y) · g(z) =
xfg(y) · fg(z)g2(z) = xfg(z) · fg(y)g2(z), where we have used mediality in the last
step. □

Corollary 7.6. Suppose that (Q, ·) is an abelian group. Then (Q, ∗) is a quandle
iff c = 1 and g(x) = f(x)\x = xf(x)−1.

8. Calculating isotopisms and autotopisms

Let Q1 = (Q1, ·, \, /), Q2 = (Q2, ∗, \∗, /∗) be quasigroups. The triple (f, g, h) of
mappings Q1 → Q2 is a homotopism if f(x) ∗ g(y) = h(x · y) for all x, y ∈ Q1.

8.1. Method via perfect matchings with invariants. Let (f, g, h) be an iso-
topism of right quasigroups (Q1, ·) → (Q2, ∗). In principle, no information about
g can be deduced from f and h. For instance, if both (Q1, ·), (Q2, ∗) are pro-
jection right quasigroups (that is, x · yy = x and x ∗ y = x) then the identity
f(x) ∗ g(y) = h(xy) becomes f(x) = h(x).

Lemma 8.1. Let (Q1, ·), (Q2, ∗) be right quasigroups and let e ∈ Q1.

(i) If f : Q1 → Q2 is a bijection and g(e) is given then there is a unique
h : Q1 → Q2 such that (f, g, h) is an isotopism (note that g might not be
unique).
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(ii) Suppose that two bijections f, h : Q1 → Q2 are given. Then (f, g, h) is an
isotopism iff g is a bijection such that g(y) ∈ S(y) for every x ∈ Q, where

S(y) =
⋂
x∈X

{z ∈ Q1 : f(x) ∗ g(z) = h(x · z)}.

Hence an isotopism (f, g, h) with given components f and h exists if and
only if there is a perfect matching in the bipartite graph (V,E) with V =
Q1 ∪Q2 and E = {(x, y) : y ∈ S(x)}.

Proof. (i) We have h(y) = f(x/e) ∗ g(e).
Part (ii) is obvious. □

If (Q, ·) is a groupoid and x ∈ Q, let mx = mx(Q) be the sorted list (mx,y :
y ∈ Q), where mx,y = |{z ∈ Q : xy = z}|, that is, mx,y counts the number
of occurrences of y in the row indexed by x. Since the effect of an isotopism
(f, g, h) : (Q1, ·) → (Q2, ∗) on a multplication table is to rename rows by f , rename
columns by g and re rename entries by h, we must have mx(Q1) = mf(x)(Q2).

The sorted list (mx : x ∈ Q) is therefore an isotopism invariant. Moreover, while
searching for an isotopism (f, g, h) : Q1 → Q2, we must select f(x) ∈ {y ∈ Q2 :
my(Q2) = mx(Q1)}. This severely restricts f for random Q1. The above lemma
then allows us to calculate h from a single entry g(e), and the we can easily decide
if a suitable g exists by solving the perfect matching problem.

8.2. Method via perfect matchings with automorphisms groups. The in-
variant (mx : x ∈ X) is useless for quasigroups. The perfect matching idea still
applies but it is not practical to check all possible permutations f . It suffices to
work modulo Aut(Q1), which sometimes helps.

8.3. Method via domain extension. The following works reasonably well for
quasigroups and loops.

Lemma 8.2. Let Q1, Q2 be quasigroups. Let c be a fixed element of Q1. A
homotopism (f, g, h) from Q1 to Q2 is determined by the values of one of the three
mappings on Q1 and by the value on c of one of the two remaining mappings.

Proof. We will give a proof when h(x) is known for all x ∈ Q1 and f(c) is known.
The remaining five cases are similar. We have f(c)∗g(c\x) = h(c(c\x)) = h(x) and
hence g(c\x) = g(c)\∗h(x). This shows that g(x) is determined for all x ∈ Q1. We
also have f(x/c) ∗ g(c) = h((x/c)c) = h(x) and hence f(x/c) = h(x)/∗g(c). This
shows that f(x) is determined for all x ∈ Q1. □

The following result shows how the domain of a partially defined homotopism of
quasigroups must be extended (iteratively) whenever a new image of f , g or h has
been chosen. The domain of a mapping f is denoted by D(f).

Lemma 8.3. Let (f, g, h) : Q1 → Q2 be a partial homotopism of quasigroups.

(i) If x ∈ D(f) then g(x\y) = f(x)\∗h(y) for all y ∈ D(h) and h(xy) =
f(x) ∗ g(y) for all y ∈ D(g).

(ii) If x ∈ D(g) then f(y/x) = h(y)/∗g(x) for all y ∈ D(h) and h(yx) =
f(y) ∗ g(x) for all y ∈ D(f).

(iii) If x ∈ D(h) then g(y\x) = f(y)\∗h(x) for all y ∈ D(f) and f(x/y) =
h(x)/∗g(y) for all y ∈ D(g).
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8.4. Method via principal loop isotopes. To find an isotopism of loopsQ → Q′,
it suffices to check whether there is an isomorphism Qa,b → Q′, for all a, b ∈ Q1.
In both coordinates it suffices to work modulo some nucleus.


