SOME RESULTS USED BY THE GAP PACKAGE RIGHTQUASIGROUPS

GABOR P. NAGY AND PETR VOJTECHOVSKY

1. CONGRUENCES

Let Q = (Q,-, /) be a right quasigroup. Then an equivalence relation ~ on @ is
a right quasigroup congruence if for every z,y,u,v € @, if x ~ y and u ~ v then
zu ~ yv and x/u ~ y/v.

Proposition 1.1. Let Q = (Q,-,/) be a right quasigroup and ~ an equivalence
relation on Q. Then:
(i) ~ is a right quasigroup congruence iff for every x,y,u € Q, if x ~ y then
xu~yu, r/u~y/u, ur ~uy and u/x ~ uly.
(ii) If Q is finite then ~ is a right quasigroup congruence iff for every x,y,u €
Q, if v ~y then zu ~ yu and ux ~ uy.

Proof. If ~ is a right quasigroup congruence then certainly the conditions of (i) and
(ii) hold. Conversely, suppose that the condition of (i) holds and let z,y,u,v € Q
be such that  ~ y and u ~ v. Then zu ~ yu ~ yv and x/u ~ y/u ~ y/v shows
that ~ is a right quasigroup congruence.

Finally suppose that @ is finite and the condition of (ii) holds. We will verify
the condition of (i). Suppose that x,y,u € @ and = ~ y. We then have zu ~ yu
and uz ~ uy by assumption. Since () is finite, there is n such that R;' = 1 and thus
R, = R"~1. It follows by an easy induction on n that x/u = R;1(x) = R?~!(z) ~
R 1(y) = R;'(y) = y/u. Using finiteness again, let s and ¢ be such that RS = 1 =
R!. Consider m = st — 1. Then R} = Ri'"!' = R;' and R}’ = Rl*"! = R'. We
then again have u/xz = R;"(u) = R} (u) ~ R;*(u) = R, ' (u) = u/y by induction
on m. The condition of (i) therefore holds and ~ is a congruence. (]

Let Q@ = (Q,-,/,\) be a right quasigroup. Then an equivalence relation ~ on
Q is a quasigroup congruence if for every x,y,u,v € @, if x ~ y and u ~ v then
xu ~ yvu, x/u ~y/v and x\u ~ y\v.

Proposition 1.2. Let Q@ = (Q, -, /,\) be a quasigroup and ~ an equivalence relation
on Q. Then:
(i) ~ is a quasigroup congruence iff for every x,y,u € Q, if x ~ y then xu ~
yu, ux ~ uy, x/u~y/u and u\x ~ u\y.
(ii) If Q is finite then ~ is a quasigroup congruence iff for every x,y,u € Q, if
x ~y then Tu ~ yu and ux ~ uy.

Proof. If ~ is a quasigroup congruence then the certainly the conditions of (i) and
(ii) holds. Conversely, suppose that the condition of (i) holds and let z,y,u,v € Q
be such that  ~ y and u ~ v. Since u ~ v, we have © = (z/u - u) ~ (z/u - v) and
therefore x/v ~ ((x/u-v)/v) = x/u. Also, from x ~ y we get x/v ~ y/v. Therefore
x/u~ z/v~y/v. Dually, x\u ~ y\v. Hence ~ is a quasigroup congruence.
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If @ is finite, the condition of (i) reduces to the condition of (ii) by the usual
trick: R, = R~ and L' = L™ for suitable n and m. O

2. SIMPLICITY

Let G be a group acting on X. Then B C X is a block of the action if for every
g € G either g(B) = B or g(B) N B = ). Given a partition P of X, we say that
the action of G preserves P if for every B € P and every g € G we have g(B) € P.
The partitions {{z} : # € X} and {X} are trivial. A transitive permutation group
G acts primitively on X if it preserves no nontrivial partition of X, else it acts
imprimitively. (The requirement that G be transitive is only needed if | X| = 2.)

For a right quasigroup @ let Mlt,.(Q) = (R, : € Q) be the right multiplication
group of Q. For a quasigroup @ let Mlt(Q) = (R, L., : © € Q) be the multiplication
group of Q.

Theorem 2.1 (Albert). A quasigroup Q is simple if and only if MIt(Q) acts prim-
itiwely on Q.

Proof. Well known. (Il
Example 2.2. Consider the right quasigroup @ with multiplication table
1 2 3 4
112 1 1 1
213 2 2 2
314 3 3 3
411 4 4 4

Then G = Mlt,.(Q) = (g), where g = (1,2,3,4). Note that G acts transitively but
imprimitively on @, with {{1, 3}, {2,4}} being a nontrivial partition of Q) preserved
by G. However, an inspection of all possible partitions of @) reveals that ¢ has no
nontrivial congruences and hence is simple. For instance, the above partition is not
a right quasigroup congruence since 1 ~3 but 1-1=2x1=1-3.

Proposition 2.3. Let Q be a right quasigroup. If Mlt,.(Q) acts primitively on Q
then @ is simple. (The converse does not hold, as shown by the above example.)

Proof. Suppose that @ is not simple and let ~ be a nontrivial congruence on ). Let
B be an equivalence class of ~. If y ~ z then R, (y) ~ R.(z) and R;'(y) ~ R;'(2)
since ~ is a congruence. In particular, R,(B) is contained in some equivalence
class C of ~. Write B = [b] and C' = [bx]. If ¢ € C then ¢ ~ bz and thus
c/x ~ (bx)/x = b, so ¢/x € B, but then R,(c/x) = (¢/x)r = ¢ shows that
R,(B) = C. Similarly, R;(B) is an equivalence class of ~. This shows that
Mlt,-(Q) preserves the partition induced by ~ and hence Mlt,.(Q) acts imprimitively
on Q. O

Lemma 2.4. Let Q be a right quasigroup. The orbits of Mlt,.(Q) form a right
quasigroup congruence of Q.

Proof. Let ~ be the equivalence relation induced by the orbits of G = Mlt,.(Q).
Suppose that z ~ y and v € Q. Then ux = R,(u) ~ R,(u) = uy and u/z =
R;Y(u) ~ R, (u) = u/y. Let g € G be such that g(z) = y. Then zu = Ry (x) ~
Ry(9(x)) = Ru(y) = yu and z/u = R (x) ~ R (g(x)) = Ry (y) = y/u. By
Proposition 1.1, ~ is a right quasigroup congruence. (]
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Corollary 2.5. Let Q be a right quasigroup and suppose that Mlt,.(Q) # 1 does
not act transitively on Q). Then Q is not simple.

Note that a right quasigroup @ satisfies Mlt,.(Q) = 1 if and only if it is a
projection right quasigroup, that is, a right quasigroup with multiplication and
right division given by zy = z, z/y = .

Lemma 2.6. Let @ be a projection right quasigroup. Then any partition of Q is a
right quasigroup congruence of Q. In particular, Q is simple if and only if |Q| > 2.

Proof. Let ~ be the equivalence relation induced by a given partition of (). Suppose
that t ~yand u € Q. Thenzu =z ~y =yu, z/u =z ~y = y/u, ur = u ~
u = wuy and u/r = u ~ v = u/y. By Proposition 1.1, ~ is a right quasigroup
congruence. [

3. NUCLEI AND CENTER

Proposition 3.1. A nonempty subset S of a finite (right) quasigroup @ is a
sub(right)quasigroup of @Q iff it is closed under multiplication.

Proof. In the case of right quasigroups, it suffices to show that S is closed under
right division. For z,y € S, consider R, € Sym(Q). Since @ is finite, there is n such
that R? =idg, so R;! = R?~!. Then y/z = R;'(y) = R?'(y) € S by induction
on n. The argument for left divisions is dual in the case of quasigroups. O

Proposition 3.2. Let Q be a finite (right) quasigroup. Then each of the four nuclei
is either a sub(right)quasigroup of Q or the empty set.

Proof. Let S = Nucy(Q) # 0. Then for every z,y € S and every u,v € Q we have
(zy)(wv) = z(y(uww)) = z((yu)v) = (x(yuw))v = ((zy)u)v, so zy € S and we are
done by Proposition 3.1. Dually, if Nuc,(Q) # 0 then it is a sub(right)quasigroup
of Q. Now suppose that S = Nuc,,,(Q) # 0. Then for all z,y € S and u,v € Q
we have (u(zy))v = (ux)y)v = (uz)(yv) = u(z(yv)) = u((zy)v), so zy € S and
we are done by Proposition 3.1. The intersection of sub(right)quasigroups is a
sub(right)quasigroup. O

Proposition 3.3. Let Q be a finite (right) quasigroup. Then the center of Q is
either a sub(right)quasigroup of @ or the empty set. (Do we need finiteness here?)

Proof. Tt remains to prove that if z,y € Z(Q) and u € Q then (zy)u = u(zy). We
have (zy)u = z(yu) = (yu)z = (uy)z = u(yr) = u(zy). O

4. LOWER CENTRAL SERIES FOR LOOPS

The lower central series for a loop @ is defined by Qo) = Q, Q(i+1) = [Q), Qlg,
using the congruence commutator of normal subloops. Here we are only using the
commutator of the form [A4, Q]g for A < Q. It’s easy to see that [A, Qo = D iff D
is the smallest normal subloop of @ such that A/D < Z(Q/D).

Lemma 4.1. Let A< Q. Then [A,Q]q is the smallest normal subloop of Q con-
taining {0(a)/a:a € A, § € Inn(Q)}.

Proof. Let D < Q. The following conditions are equivalent:
e A/D <Z(Q/D)
e (aD)=aD for all a € A, 6 € Inn(Q/D)
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Lypyp(aD) = aD, Rypyp(aD) = aD, Typ(aD) = aD for all z,y € Q,
a€cA

L, y(a)D =aD, Ry y(a)(D) = aD, Tp(a)D = aD for all 2,y € Q, a € A,
6(a)D = aD for all a € A, 6 € Inn(Q)

O(a)/a € D for all a € A, 0§ € Inn(Q).

5. DISPLACEMENT GROUPS

For a right quasigroup (Q,-), define the right positive displacement group, the
right negative displacement group and the right displacement group by

Dis} (Q) = (R.R, ' : 2,y € Q),
Dis, (Q) = (R;'R, : 7,y € Q),
Dis,.(Q) = <R$Ry JRI'R, i x,y € Q),
respectively.
Fix e € Q. Since R,R,;' = (R.R;') ' (R.R,') = (R.R;")(R,R;")~" and
R;'R, = (R;'R.)(R;'R.)™" = (R;'R,) "' (R_'R,), we have
DisT(Q) = (R.R,' 12 € Q) = (R,R;' : v € Q),

Dis, (Q) = <R;:1Re rx € Q) = (R, 1R:c 17 € Q).

The left displacement groups are defined analogously for a left quasigroup (@, -)
by

Dis/ (Q) = (LoL, " : 2,y € Q),
Dis, (Q) = (L, 'Ly : 2,y € Q),
Disy(Q) = (Lo Ly Ly Ly s,y € Q),
and we once again have
Dis; (Q) = (LeLy' 12 € Q) = (L. L. :x € Q),

Dis; (Q) = (L;'Le 1w € Q) = (L.}

for a fixed e € Q.

L,:2€Q)

Proposition 5.1. Let (Q,-) be a quasigroup. Then (Q,-) is isotopic to a group if
and only if the left positive displacement group Disj (Q,-) acts regularly on Q. In
that case, (Q, ) is isotopic to Diszr(Q, ).

Proof. Let D = Disé (Q,). Given y,z € @, there exists a unique & € @ such
that L,L;'(y) = z, namely z = z/(e\y). Suppose that D acts regularly on Q.
Then D = {LTL; :x € Q} and for every z,y € @ there is z € @ such that
L,L;'L,L;' = L,L;'. Thus L,L;'L, = L, and, applying this to e, we get
xz(e\(ye)) = ze and z = z(e\ye)/e. Deﬁne (Q,%) by x xy = m(e\ye)/e. Then
f:D — (Q,%), LyL;* — x is an isomorphism, so (Q,*) is a group. Since
(z * y)e = z(e\ye), the triple (id, L; ' R., R,) is an isotopism (Q,*) — (@Q,-).
Conversely, suppose that (@, *) is a group and («, 8,7) is an isotopism (Q, *) —
(Q,), 50 () - By) = ¥(x ), or -y = (o~ (z) * B-(y)) for all 2,y € Q. This
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shows that the left translation by z in (Q,-) is equal to L, = yL* _ L(2) B~L. Then

LmLe_l = (’YLZ*1(z)ﬁ_l)(sz*I(e)ﬁ_l)_l
=L 1y (Li1(0) T Y = YLa @)r(at(e) 1Y

because (@, ) is a group. Hence D is a conjugate of (Lo—1(z)x(a-1(e))-1 : T € Q) =
(LY 2 e Q) ={L: : x € Q}, which certainly acts regularly on Q. O

Corollary 5.2. A quasigroup Q is isotopic to a group iff |DiSZ(Q)\ =1Q|.

6. TWISTS OF RIGHT QUASIGROUPS

Given a magma @ and three mappings f,g,h : Q — Q, the twist Tw(Q, f,g,h)
of Q via (f,g,h) is defined to be the magma (Q,*) with multiplication = * y =
h(f(x)g(y)).

If Q is a right quasigroup, the twist Tw(Q, f, g, h) is a right quasigroup iff both f
and h are bijections of Q. Moreover, the twist Tw(Q, f, g, h) is a quasigroup iff all
three f, g and h are bijections of Q. Finally, if Tw(Q, f, g, k) is a quasigroup then
it is a loop iff g~ 1(f(x)\h~1(z)) is equal to f~1(h~!(x)/g(x)) and independent of
x.

Isotopes and affine constructions can be realized as twists.

7. AFFINE RIGHT QUASIGROUPS

Given a loop (Q,-), its automorphism f, endomorphism g and two elements
u, v, define Aff(Q, -, f,u,g,v) = (Q,*) by zxy = (f(x)u)(g(y)v). (We also allow
variations with uf(z), vg(y) and any combinations. For instance, Aff(Q, -, u, f, g,v)
has multiplication x * y = (uf(x))(g(y)v).) Then (Q,*) is affine over (Q,-) and
(Q,, f,u,g,v) is the arithmetic form of (Q,*).

Lemma 7.1. (Q,*) is a right quasigroup. (Q,*) is a quasigroup iff g is an auto-
morphism.

Proof. Solving x *y = (f(z)u)(g9(y)v) = 2 for x yields x = f~1((z/(g(y)v))/u)
and similarly in the other three cases. Solving = *xy = (f(z)u)(g(y)v) = z for y is

equivalent to solving g(y) = ((f(x)u)\z)/v. O

If (@, -) is an abelian group, the formula zxy = (f(x)u)(g(y)v) becomes f(x)g(y)uv
and it therefore suffices to consider only arithmetic forms (Q, -, f, g, ¢) with auto-
morphism f, endomorphism ¢ and central element ¢, and define the multiplication
by z xy = f(z)g(y)c. In general this is a special case of the affine construction.
From now on we assume that we are dealing with the special case (Q, f, g, ¢).

Lemma 7.2. (Q,*) is a rack iff g(c) = 1, fg = gf, g(z) = fg(x)g*(x) and
2fg(y) - 9(2) = xfg(2) - f9(y)g*(2) for all z,y,z € Q.

Proof. We have (xxy)*z = (f(x)g(y)e)xz = f2(x)fg(y)f(c) g(z)-c, while (zx2)

(y*2) = (f(2)g(2))* (f()g(2)c) = f*(2) fg(2) f(c) 9f (y)g*(2)g(c)-c. Sincec f(e)
and g(c) are central, we see that (Q, *) is a rack iff f2( Vfa(y)-g9(z) = f2(x)fg(2) -

9f(y)g*(2)-g(c). Substituting z = y = z = 1 then yields g(c) = 1 as a necessary con-

dition. Assuming this, we need to verify f2(x)fg(y)-g9(z) = f2(x)fg(2)-9f(v)g*(2).
With z = z = 1 we obtain fg(y) = gf(y) as a necessary condition. Assuming this,

we need to verify f2(x)fg(y) - g(z) = f2(z)fg(2) - fg(y)g?(z). With z =y = 1 we
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get g(2) = fg(2)g%(2) as a necessary condition. Assuming this and substituting x
for f2(x) yields the last condition. O

Substituting fg(z)g?(z) for g(z) into the left hand side of the last condition
of Lemma 7.2 yields zfg(y) - f9(2)9%(2) = 2fg(z) - fg(y)g?(2). This condition is
certainly satisfied when (Q),-) is a medial loop. Recall that a loop is medial iff it
is an abelian group. Indeed, from (zu)(vy) = (zv)(uy) we obtain commutativity
with x = y = 1 and associativity with v = 1.

Lemma 7.3. (Q,*) is a quandle iff c = 1, g(x) = f(z)\z and zfg(y) - g(z) =
wfg(2) - f(y)g*(2) for all z,y, 2 € Q.

Proof. We have zxx =z iff f(x)g(x)c = x. Substituting x = 1 yields ¢ = 1. Using
this, we have z x x = z iff f(x)g(x) = x, that is, g(z) = f(x)\z. If g(x) = f(z)\z
then both fg = gf and g(x) = fg(z)g?(x) hold. We are done by Lemma 7.2. [0

Note that the conditions of Lemma 7.3 do not impose any restrictions on the
loop (@,-). Indeed, if (@,-) is any loop, f(xz) = z, g(x) = 1 and ¢ = 1 then
xxy = f(z) =z and (Q, *) is a projection quandle.

Also note that a latin rack is a quandle. Indeed, substituting z = y into (zy)z =
(x2)(yz) yields (xy)y = (zy)(yy) and canceling zy on the left then yields y = yy.

Lemma 7.4. (Q,x) is a latin rack (i.e., latin quandle) iff c = 1, g(x) = f(z)\z
and xy -z =z f(z) - y(f(2)\z) for all z,y,z € Q.

Proof. Replace g(z) with z and fg(y) with y in the last condition of Lemma 7.3. O

Corollary 7.5. Suppose that (Q
g(c)=1, fg=gf and g(z) = fg(x)g*(z) for all z € Q.
!

g*(z
Proof. Suppose that g(z) = fg(z)g?(z) for all z € Q. Then zfg(y) - g(z) =
vfg(y)- f9(2)9%(z) = xfg(2) - fg(y)g?(2), where we have used mediality in the last
step. ([l

,+) is an abelian group. Then (Q,x) is a rack iff
)

g
g

Corollary 7.6. Suppose that (Q,-) is an abelian group. Then (Q,*) is a quandle
iff c=1 and g(x) = f(z)\z = 2 f(x)~ L.

8. CALCULATING ISOTOPISMS AND AUTOTOPISMS

Let Ql = (Qla B \a /)7 QQ = (Q27 *, \*a /*) be quasigroups. The triple (fmgv h) of
mappings Q1 — @2 is a homotopism if f(x) * g(y) = h(x - y) for all z,y € Q1.

8.1. Method via perfect matchings with invariants. Let (f,g,h) be an iso-
topism of right quasigroups (Q1,:) — (Q2,*). In principle, no information about
g can be deduced from f and h. For instance, if both (Q1,-), (Q2,*) are pro-
jection right quasigroups (that is, x - yy = x and x *y = x) then the identity
f(x) * g(y) = h(zy) becomes f(z) = h(x).

Lemma 8.1. Let (Q1,-), (Q2,*) be right quasigroups and let e € Q1.

(i) If f : @1 — Q2 is a bijection and g(e) is given then there is a unique
h: Q1 — Q2 such that (f,g,h) is an isotopism (note that g might not be
unique).
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(ii) Suppose that two bijections f,h : Q1 — Qo are given. Then (f,g,h) is an
isotopism iff g is a bijection such that g(y) € S(y) for every x € Q, where

= (M {z€Qu: f(a)xg(z) = h(z - 2)}.
zeX
Hence an isotopism (f, g, h) with given components f and h exists if and
only if there is a perfect matching in the bipartite graph (V, E) with V =
Q1UQ2 and E = {(z,y) 1y € S(z)}.

Proof. (i) We have h(y) = f(z/e) % g(e).
Part (ii) is obvious. O

If (Q,-) is a groupoid and z € Q, let m, = m,(Q) be the sorted list (Mg :
y € Q), where my, = |{z € Q : zy = z}|, that is, my, counts the number
of occurrences of y in the row indexed by z. Since the effect of an isotopism
(f,g9,h) : (Q1,") = (Q2,%) on a multplication table is to rename rows by f, rename
columns by g and re rename entries by h, we must have m,(Q1) = ms(y)(Q2)-

The sorted list (m,, : z € @) is therefore an isotopism invariant. Moreover, while
searching for an isotopism (f,g,h) : Q1 — @2, we must select f(x) € {y € Q2 :
my(Q2) = my(Q1)}. This severely restricts f for random @;. The above lemma
then allows us to calculate h from a single entry g(e), and the we can easily decide
if a suitable g exists by solving the perfect matching problem.

8.2. Method via perfect matchings with automorphisms groups. The in-
variant (m, : ¢ € X) is useless for quasigroups. The perfect matching idea still
applies but it is not practical to check all possible permutations f. It suffices to
work modulo Aut(Q1), which sometimes helps.

8.3. Method via domain extension. The following works reasonably well for
quasigroups and loops.

Lemma 8.2. Let Q1, Q2 be quasigroups. Let ¢ be a fixed element of Q1. A
homotopism (f, g, h) from Q1 to Q2 is determined by the values of one of the three
mappings on Q1 and by the value on ¢ of one of the two remaining mappings.

Proof. We will give a proof when h(z) is known for all € @; and f(c) is known.
The remaining five cases are similar. We have f(c)*g(c\x) = h(c(c\z)) = h(z) and
hence g(c\z) = g(c)\*h(x). This shows that g(z) is determined for all z € Q1. We
also have f(z/c) * g(c) = h((z/c)c) = h(x) and hence f(x/c) = h(x)/*g(c). This
shows that f(z) is determined for all z € Q1. O

The following result shows how the domain of a partially defined homotopism of
quasigroups must be extended (iteratively) whenever a new image of f, g or h has
been chosen. The domain of a mapping f is denoted by D(f).

Lemma 8.3. Let (f,g,h) : Q1 — Q2 be a partial homotopism of quasigroups.
() If = € D(f) then g(w\y) = f(@)\"h(y) for all y € D(h) and h(zy) =
f(z)* g(y) for all y € D(g).
(ii) If € D(g) then f(y/x) = h(y)/*g(x) for all y € D(h) and h(yz) =

F(y) * g(a) for all y € D(F).
(iti) If ¢ € D(h) then g(y\e) = F(y)\*h(x) for all y € D(f) and f(x/y) =

h(x)/*g(y) for all y € D(g).
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8.4. Method via principal loop isotopes. To find an isotopism of loops Q — @’
it suffices to check whether there is an isomorphism Q. — @', for all a,b € Q1.
In both coordinates it suffices to work modulo some nucleus.



