SOME RESULTS USED BY THE GAP PACKAGE RIGHTQUASIGROUPS

GÁBOR P. NAGY AND PETR VOJTĚCHOVSKÝ

1. Congruences

Let $Q=(Q, \cdot, /)$ be a right quasigroup. Then an equivalence relation \sim on Q is a right quasigroup congruence if for every $x, y, u, v \in Q$, if $x \sim y$ and $u \sim v$ then $x u \sim y v$ and $x / u \sim y / v$.

Proposition 1.1. Let $Q=(Q, \cdot, /)$ be a right quasigroup and \sim an equivalence relation on Q. Then:
(i) \sim is a right quasigroup congruence iff for every $x, y, u \in Q$, if $x \sim y$ then $x u \sim y u, x / u \sim y / u, u x \sim u y$ and $u / x \sim u / y$.
(ii) If Q is finite then \sim is a right quasigroup congruence iff for every $x, y, u \in$ Q, if $x \sim y$ then $x u \sim y u$ and $u x \sim u y$.

Proof. If \sim is a right quasigroup congruence then certainly the conditions of (i) and (ii) hold. Conversely, suppose that the condition of (i) holds and let $x, y, u, v \in Q$ be such that $x \sim y$ and $u \sim v$. Then $x u \sim y u \sim y v$ and $x / u \sim y / u \sim y / v$ shows that \sim is a right quasigroup congruence.

Finally suppose that Q is finite and the condition of (ii) holds. We will verify the condition of (i). Suppose that $x, y, u \in Q$ and $x \sim y$. We then have $x u \sim y u$ and $u x \sim u y$ by assumption. Since Q is finite, there is n such that $R_{u}^{n}=1$ and thus $R_{u}^{-1}=R_{u}^{n-1}$. It follows by an easy induction on n that $x / u=R_{u}^{-1}(x)=R_{u}^{n-1}(x) \sim$ $R_{u}^{n-1}(y)=R_{u}^{-1}(y)=y / u$. Using finiteness again, let s and t be such that $R_{x}^{s}=1=$ R_{y}^{t}. Consider $m=s t-1$. Then $R_{x}^{m}=R_{x}^{s t-1}=R_{x}^{-1}$ and $R_{y}^{m}=R_{y}^{t s-1}=R_{y}^{-1}$. We then again have $u / x=R_{x}^{-1}(u)=R_{x}^{m}(u) \sim R_{y}^{m}(u)=R_{y}^{-1}(u)=u / y$ by induction on m. The condition of (i) therefore holds and \sim is a congruence.

Let $Q=(Q, \cdot, /, \backslash)$ be a right quasigroup. Then an equivalence relation \sim on Q is a quasigroup congruence if for every $x, y, u, v \in Q$, if $x \sim y$ and $u \sim v$ then $x u \sim y v, x / u \sim y / v$ and $x \backslash u \sim y \backslash v$.
Proposition 1.2. Let $Q=(Q, \cdot, /, \backslash)$ be a quasigroup and \sim an equivalence relation on Q. Then:
(i) \sim is a quasigroup congruence iff for every $x, y, u \in Q$, if $x \sim y$ then $x u \sim$ $y u, u x \sim u y, x / u \sim y / u$ and $u \backslash x \sim u \backslash y$.
(ii) If Q is finite then \sim is a quasigroup congruence iff for every $x, y, u \in Q$, if $x \sim y$ then $x u \sim y u$ and $u x \sim u y$.

Proof. If \sim is a quasigroup congruence then the certainly the conditions of (i) and (ii) holds. Conversely, suppose that the condition of (i) holds and let $x, y, u, v \in Q$ be such that $x \sim y$ and $u \sim v$. Since $u \sim v$, we have $x=(x / u \cdot u) \sim(x / u \cdot v)$ and therefore $x / v \sim((x / u \cdot v) / v)=x / u$. Also, from $x \sim y$ we get $x / v \sim y / v$. Therefore $x / u \sim x / v \sim y / v$. Dually, $x \backslash u \sim y \backslash v$. Hence \sim is a quasigroup congruence.

If Q is finite, the condition of (i) reduces to the condition of (ii) by the usual trick: $R_{u}^{-1}=R_{u}^{n-1}$ and $L_{u}^{-1}=L_{u}^{m-1}$ for suitable n and m.

2. Simplicity

Let G be a group acting on X. Then $B \subseteq X$ is a block of the action if for every $g \in G$ either $g(B)=B$ or $g(B) \cap B=\emptyset$. Given a partition \mathcal{P} of X, we say that the action of G preserves \mathcal{P} if for every $B \in \mathcal{P}$ and every $g \in G$ we have $g(B) \in \mathcal{P}$. The partitions $\{\{x\}: x \in X\}$ and $\{X\}$ are trivial. A transitive permutation group G acts primitively on X if it preserves no nontrivial partition of X, else it acts imprimitively. (The requirement that G be transitive is only needed if $|X|=2$.)

For a right quasigroup Q let $\operatorname{Mlt}_{r}(Q)=\left\langle R_{x}: x \in Q\right\rangle$ be the right multiplication group of Q. For a quasigroup Q let $\operatorname{Mlt}(Q)=\left\langle R_{x}, L_{x}: x \in Q\right\rangle$ be the multiplication group of Q.
Theorem 2.1 (Albert). A quasigroup Q is simple if and only if $\operatorname{Mlt}(Q)$ acts primitively on Q.

Proof. Well known.
Example 2.2. Consider the right quasigroup Q with multiplication table

	1	2	3	4
1	2	1	1	1
2	3	2	2	2
3	4	3	3	3
4	1	4	4	4

Then $G=\operatorname{Mlt}_{r}(Q)=\langle g\rangle$, where $g=(1,2,3,4)$. Note that G acts transitively but imprimitively on Q, with $\{\{1,3\},\{2,4\}\}$ being a nontrivial partition of Q preserved by G. However, an inspection of all possible partitions of Q reveals that Q has no nontrivial congruences and hence is simple. For instance, the above partition is not a right quasigroup congruence since $1 \sim 3$ but $1 \cdot 1=2 \nsim 1=1 \cdot 3$.
Proposition 2.3. Let Q be a right quasigroup. If $\operatorname{Mlt}_{r}(Q)$ acts primitively on Q then Q is simple. (The converse does not hold, as shown by the above example.)
Proof. Suppose that Q is not simple and let \sim be a nontrivial congruence on Q. Let B be an equivalence class of \sim. If $y \sim z$ then $R_{x}(y) \sim R_{x}(z)$ and $R_{x}^{-1}(y) \sim R_{x}^{-1}(z)$ since \sim is a congruence. In particular, $R_{x}(B)$ is contained in some equivalence class C of \sim. Write $B=[b]$ and $C=[b x]$. If $c \in C$ then $c \sim b x$ and thus $c / x \sim(b x) / x=b$, so $c / x \in B$, but then $R_{x}(c / x)=(c / x) x=c$ shows that $R_{x}(B)=C$. Similarly, $R_{x}^{-1}(B)$ is an equivalence class of \sim. This shows that $\mathrm{Mlt}_{r}(Q)$ preserves the partition induced by \sim and hence $\operatorname{Mlt}_{r}(Q)$ acts imprimitively on Q.

Lemma 2.4. Let Q be a right quasigroup. The orbits of $\mathrm{Mlt}_{r}(Q)$ form a right quasigroup congruence of Q.
Proof. Let \sim be the equivalence relation induced by the orbits of $G=\operatorname{Mlt}_{r}(Q)$. Suppose that $x \sim y$ and $u \in Q$. Then $u x=R_{x}(u) \sim R_{y}(u)=u y$ and $u / x=$ $R_{x}^{-1}(u) \sim R_{y}^{-1}(u)=u / y$. Let $g \in G$ be such that $g(x)=y$. Then $x u=R_{u}(x) \sim$ $R_{u}(g(x))=R_{u}(y)=y u$ and $x / u=R_{u}^{-1}(x) \sim R_{u}^{-1}(g(x))=R_{u}^{-1}(y)=y / u$. By Proposition 1.1, \sim is a right quasigroup congruence.

Corollary 2.5. Let Q be a right quasigroup and suppose that $\operatorname{Mlt}_{r}(Q) \neq 1$ does not act transitively on Q. Then Q is not simple.

Note that a right quasigroup Q satisfies $\operatorname{Mlt}_{r}(Q)=1$ if and only if it is a projection right quasigroup, that is, a right quasigroup with multiplication and right division given by $x y=x, x / y=x$.

Lemma 2.6. Let Q be a projection right quasigroup. Then any partition of Q is a right quasigroup congruence of Q. In particular, Q is simple if and only if $|Q|>2$.

Proof. Let \sim be the equivalence relation induced by a given partition of Q. Suppose that $x \sim y$ and $u \in Q$. Then $x u=x \sim y=y u, x / u=x \sim y=y / u, u x=u \sim$ $u=u y$ and $u / x=u \sim u=u / y$. By Proposition 1.1, \sim is a right quasigroup congruence.

3. Nuclei and center

Proposition 3.1. A nonempty subset S of a finite (right) quasigroup Q is a sub(right)quasigroup of Q iff it is closed under multiplication.

Proof. In the case of right quasigroups, it suffices to show that S is closed under right division. For $x, y \in S$, consider $R_{x} \in \operatorname{Sym}(Q)$. Since Q is finite, there is n such that $R_{x}^{n}=\operatorname{id}_{Q}$, so $R_{x}^{-1}=R_{x}^{n-1}$. Then $y / x=R_{x}^{-1}(y)=R_{x}^{n-1}(y) \in S$ by induction on n. The argument for left divisions is dual in the case of quasigroups.
Proposition 3.2. Let Q be a finite (right) quasigroup. Then each of the four nuclei is either a sub(right)quasigroup of Q or the empty set.
Proof. Let $S=\operatorname{Nuc}_{\ell}(Q) \neq \emptyset$. Then for every $x, y \in S$ and every $u, v \in Q$ we have $(x y)(u v)=x(y(u v))=x((y u) v)=(x(y u)) v=((x y) u) v$, so $x y \in S$ and we are done by Proposition 3.1. Dually, if $\operatorname{Nuc}_{r}(Q) \neq \emptyset$ then it is a sub(right)quasigroup of Q. Now suppose that $S=\operatorname{Nuc}_{m}(Q) \neq \emptyset$. Then for all $x, y \in S$ and $u, v \in Q$ we have $(u(x y)) v=((u x) y) v=(u x)(y v)=u(x(y v))=u((x y) v)$, so $x y \in S$ and we are done by Proposition 3.1. The intersection of sub(right)quasigroups is a sub(right)quasigroup.

Proposition 3.3. Let Q be a finite (right) quasigroup. Then the center of Q is either a sub(right)quasigroup of Q or the empty set. (Do we need finiteness here?)

Proof. It remains to prove that if $x, y \in Z(Q)$ and $u \in Q$ then $(x y) u=u(x y)$. We have $(x y) u=x(y u)=(y u) x=(u y) x=u(y x)=u(x y)$.

4. LOWER CENTRAL SERIES FOR LOOPS

The lower central series for a loop Q is defined by $Q_{(0)}=Q, Q_{(i+1)}=\left[Q_{(i)}, Q\right]_{Q}$, using the congruence commutator of normal subloops. Here we are only using the commutator of the form $[A, Q]_{Q}$ for $A \unlhd Q$. It's easy to see that $[A, Q]_{Q}=D$ iff D is the smallest normal subloop of Q such that $A / D \leq Z(Q / D)$.
Lemma 4.1. Let $A \unlhd Q$. Then $[A, Q]_{Q}$ is the smallest normal subloop of Q containing $\{\theta(a) / a: a \in A, \theta \in \operatorname{Inn}(Q)\}$.

Proof. Let $D \unlhd Q$. The following conditions are equivalent:

- $A / D \leq Z(Q / D)$
- $\theta(a D)=a D$ for all $a \in A, \theta \in \operatorname{Inn}(Q / D)$
- $L_{x D, y D}(a D)=a D, R_{x D, y D}(a D)=a D, T_{x D}(a D)=a D$ for all $x, y \in Q$, $a \in A$
- $L_{x, y}(a) D=a D, R_{x, y}(a)(D)=a D, T_{x}(a) D=a D$ for all $x, y \in Q, a \in A$,
- $\theta(a) D=a D$ for all $a \in A, \theta \in \operatorname{Inn}(Q)$
- $\theta(a) / a \in D$ for all $a \in A, \theta \in \operatorname{Inn}(Q)$.

5. Displacement groups

For a right quasigroup (Q, \cdot), define the right positive displacement group, the right negative displacement group and the right displacement group by

$$
\begin{aligned}
\operatorname{Dis}_{r}^{+}(Q) & =\left\langle R_{x} R_{y}^{-1}: x, y \in Q\right\rangle \\
\operatorname{Dis}_{r}^{-}(Q) & =\left\langle R_{x}^{-1} R_{y}: x, y \in Q\right\rangle \\
\operatorname{Dis}_{r}(Q) & =\left\langle R_{x} R_{y}^{-1}, R_{x}^{-1} R_{y}: x, y \in Q\right\rangle
\end{aligned}
$$

respectively.
Fix $e \in Q$. Since $R_{x} R_{y}^{-1}=\left(R_{e} R_{x}^{-1}\right)^{-1}\left(R_{e} R_{y}^{-1}\right)=\left(R_{x} R_{e}^{-1}\right)\left(R_{y} R_{e}^{-1}\right)^{-1}$ and $R_{x}^{-1} R_{y}=\left(R_{x}^{-1} R_{e}\right)\left(R_{y}^{-1} R_{e}\right)^{-1}=\left(R_{e}^{-1} R_{x}\right)^{-1}\left(R_{e}^{-1} R_{y}\right)$, we have

$$
\begin{aligned}
& \operatorname{Dis}_{r}^{+}(Q)=\left\langle R_{e} R_{x}^{-1}: x \in Q\right\rangle=\left\langle R_{x} R_{e}^{-1}: x \in Q\right\rangle \\
& \operatorname{Dis}_{r}^{-}(Q)=\left\langle R_{x}^{-1} R_{e}: x \in Q\right\rangle=\left\langle R_{e}^{-1} R_{x}: x \in Q\right\rangle
\end{aligned}
$$

The left displacement groups are defined analogously for a left quasigroup (Q, \cdot) by

$$
\begin{aligned}
\operatorname{Dis}_{\ell}^{+}(Q) & =\left\langle L_{x} L_{y}^{-1}: x, y \in Q\right\rangle \\
\operatorname{Dis}_{\ell}^{-}(Q) & =\left\langle L_{x}^{-1} L_{y}: x, y \in Q\right\rangle \\
\operatorname{Dis}_{\ell}(Q) & =\left\langle L_{x} L_{y}^{-1}, L_{x}^{-1} L_{y}: x, y \in Q\right\rangle
\end{aligned}
$$

and we once again have

$$
\begin{gathered}
\operatorname{Dis}_{\ell}^{+}(Q)=\left\langle L_{e} L_{x}^{-1}: x \in Q\right\rangle=\left\langle L_{x} L_{e}^{-1}: x \in Q\right\rangle \\
\operatorname{Dis}_{\ell}^{-}(Q)=\left\langle L_{x}^{-1} L_{e}: x \in Q\right\rangle=\left\langle L_{e}^{-1} L_{x}: x \in Q\right\rangle
\end{gathered}
$$

for a fixed $e \in Q$.
Proposition 5.1. Let (Q, \cdot) be a quasigroup. Then (Q, \cdot) is isotopic to a group if and only if the left positive displacement group $\operatorname{Dis}_{\ell}^{+}(Q, \cdot)$ acts regularly on Q. In that case, (Q, \cdot) is isotopic to $\operatorname{Dis}_{\ell}^{+}(Q, \cdot)$.

Proof. Let $D=\operatorname{Dis}_{\ell}^{+}(Q, \cdot)$. Given $y, z \in Q$, there exists a unique $x \in Q$ such that $L_{x} L_{e}^{-1}(y)=z$, namely $x=z /(e \backslash y)$. Suppose that D acts regularly on Q. Then $D=\left\{L_{x} L_{e}^{-1}: x \in Q\right\}$ and for every $x, y \in Q$ there is $z \in Q$ such that $L_{x} L_{e}^{-1} L_{y} L_{e}^{-1}=L_{z} L_{e}^{-1}$. Thus $L_{x} L_{e}^{-1} L_{y}=L_{z}$ and, applying this to e, we get $x(e \backslash(y e))=z e$ and $z=x(e \backslash y e) / e$. Define $(Q, *)$ by $x * y=x(e \backslash y e) / e$. Then $f: D \rightarrow(Q, *), L_{x} L_{e}^{-1} \mapsto x$ is an isomorphism, so $(Q, *)$ is a group. Since $(x * y) e=x(e \backslash y e)$, the triple (id, $\left.L_{e}^{-1} R_{e}, R_{e}\right)$ is an isotopism $(Q, *) \rightarrow(Q, \cdot)$.

Conversely, suppose that $(Q, *)$ is a group and (α, β, γ) is an isotopism $(Q, *) \rightarrow$ (Q, \cdot), so $\alpha(x) \cdot \beta(y)=\gamma(x * y)$, or $x \cdot y=\gamma\left(\alpha^{-1}(x) * \beta^{-1}(y)\right)$ for all $x, y \in Q$. This
shows that the left translation by x in (Q, \cdot) is equal to $L_{x}=\gamma L_{\alpha^{-1}(x)}^{*} \beta^{-1}$. Then

$$
\begin{aligned}
L_{x} L_{e}^{-1} & =\left(\gamma L_{\alpha^{-1}(x)}^{*} \beta^{-1}\right)\left(\gamma L_{\alpha^{-1}(e)}^{*} \beta^{-1}\right)^{-1} \\
& =\gamma L_{\alpha^{-1}(x)}^{*}\left(L_{\alpha^{-1}(e)}^{*}\right)^{-1} \gamma^{-1}=\gamma L_{\alpha^{-1}(x) *\left(\alpha^{-1}(e)\right)^{-1}} \gamma^{-1}
\end{aligned}
$$

because $(Q, *)$ is a group. Hence D is a conjugate of $\left\langle L_{\alpha^{-1}(x) *\left(\alpha^{-1}(e)\right)^{-1}}: x \in Q\right\rangle=$ $\left\langle L_{x}^{*}: x \in Q\right\rangle=\left\{L_{x}^{*}: x \in Q\right\}$, which certainly acts regularly on Q.

Corollary 5.2. A quasigroup Q is isotopic to a group iff $\left|\operatorname{Dis}_{\ell}^{+}(Q)\right|=|Q|$.

6. Twists of Right quasigroups

Given a magma Q and three mappings $f, g, h: Q \rightarrow Q$, the twist $\operatorname{Tw}(Q, f, g, h)$ of Q via (f, g, h) is defined to be the magma $(Q, *)$ with multiplication $x * y=$ $h(f(x) g(y))$.

If Q is a right quasigroup, the twist $\operatorname{Tw}(Q, f, g, h)$ is a right quasigroup iff both f and h are bijections of Q. Moreover, the twist $\operatorname{Tw}(Q, f, g, h)$ is a quasigroup iff all three f, g and h are bijections of Q. Finally, if $\operatorname{Tw}(Q, f, g, h)$ is a quasigroup then it is a loop iff $g^{-1}\left(f(x) \backslash h^{-1}(x)\right)$ is equal to $f^{-1}\left(h^{-1}(x) / g(x)\right)$ and independent of x.

Isotopes and affine constructions can be realized as twists.

7. Affine right quasigroups

Given a loop (Q, \cdot), its automorphism f, endomorphism g and two elements u, v, define $\operatorname{Aff}(Q, \cdot, f, u, g, v)=(Q, *)$ by $x * y=(f(x) u)(g(y) v)$. (We also allow variations with $u f(x), v g(y)$ and any combinations. For instance, $\operatorname{Aff}(Q, \cdot, u, f, g, v)$ has multiplication $x * y=(u f(x))(g(y) v)$.) Then $(Q, *)$ is affine over (Q, \cdot) and (Q, \cdot, f, u, g, v) is the arithmetic form of $(Q, *)$.
Lemma 7.1. $(Q, *)$ is a right quasigroup. $(Q, *)$ is a quasigroup iff g is an automorphism.

Proof. Solving $x * y=(f(x) u)(g(y) v)=z$ for x yields $x=f^{-1}((z /(g(y) v)) / u)$ and similarly in the other three cases. Solving $x * y=(f(x) u)(g(y) v)=z$ for y is equivalent to solving $g(y)=((f(x) u) \backslash z) / v$.

If (Q, \cdot) is an abelian group, the formula $x * y=(f(x) u)(g(y) v)$ becomes $f(x) g(y) u v$ and it therefore suffices to consider only arithmetic forms (Q, \cdot, f, g, c) with automorphism f, endomorphism g and central element c, and define the multiplication by $x * y=f(x) g(y) c$. In general this is a special case of the affine construction. From now on we assume that we are dealing with the special case (Q, f, g, c).

Lemma 7.2. $(Q, *)$ is a rack iff $g(c)=1$, $f g=g f, g(x)=f g(x) g^{2}(x)$ and $x f g(y) \cdot g(z)=x f g(z) \cdot f g(y) g^{2}(z)$ for all $x, y, z \in Q$.

Proof. We have $(x * y) * z=(f(x) g(y) c) * z=f^{2}(x) f g(y) f(c) \cdot g(z) \cdot c$, while $(x * z) *$ $(y * z)=(f(x) g(z) c) *(f(y) g(z) c)=f^{2}(x) f g(z) f(c) \cdot g f(y) g^{2}(z) g(c) \cdot c$. Since $c, f(c)$ and $g(c)$ are central, we see that $(Q, *)$ is a rack iff $f^{2}(x) f g(y) \cdot g(z)=f^{2}(x) f g(z)$. $g f(y) g^{2}(z) \cdot g(c)$. Substituting $x=y=z=1$ then yields $g(c)=1$ as a necessary condition. Assuming this, we need to verify $f^{2}(x) f g(y) \cdot g(z)=f^{2}(x) f g(z) \cdot g f(y) g^{2}(z)$. With $x=z=1$ we obtain $f g(y)=g f(y)$ as a necessary condition. Assuming this, we need to verify $f^{2}(x) f g(y) \cdot g(z)=f^{2}(x) f g(z) \cdot f g(y) g^{2}(z)$. With $x=y=1$ we
get $g(z)=f g(z) g^{2}(z)$ as a necessary condition. Assuming this and substituting x for $f^{2}(x)$ yields the last condition.

Substituting $f g(z) g^{2}(z)$ for $g(z)$ into the left hand side of the last condition of Lemma 7.2 yields $x f g(y) \cdot f g(z) g^{2}(z)=x f g(z) \cdot f g(y) g^{2}(z)$. This condition is certainly satisfied when (Q, \cdot) is a medial loop. Recall that a loop is medial iff it is an abelian group. Indeed, from $(x u)(v y)=(x v)(u y)$ we obtain commutativity with $x=y=1$ and associativity with $v=1$.

Lemma 7.3. $(Q, *)$ is a quandle iff $c=1, g(x)=f(x) \backslash x$ and $x f g(y) \cdot g(z)=$ $x f g(z) \cdot f g(y) g^{2}(z)$ for all $x, y, z \in Q$.

Proof. We have $x * x=x$ iff $f(x) g(x) c=x$. Substituting $x=1$ yields $c=1$. Using this, we have $x * x=x$ iff $f(x) g(x)=x$, that is, $g(x)=f(x) \backslash x$. If $g(x)=f(x) \backslash x$ then both $f g=g f$ and $g(x)=f g(x) g^{2}(x)$ hold. We are done by Lemma 7.2.

Note that the conditions of Lemma 7.3 do not impose any restrictions on the loop (Q, \cdot). Indeed, if (Q, \cdot) is any loop, $f(x)=x, g(x)=1$ and $c=1$ then $x * y=f(x)=x$ and $(Q, *)$ is a projection quandle.

Also note that a latin rack is a quandle. Indeed, substituting $z=y$ into $(x y) z=$ $(x z)(y z)$ yields $(x y) y=(x y)(y y)$ and canceling $x y$ on the left then yields $y=y y$.

Lemma 7.4. $(Q, *)$ is a latin rack (i.e., latin quandle) iff $c=1, g(x)=f(x) \backslash x$ and $x y \cdot z=x f(z) \cdot y(f(z) \backslash z)$ for all $x, y, z \in Q$.

Proof. Replace $g(z)$ with z and $f g(y)$ with y in the last condition of Lemma 7.3.
Corollary 7.5. Suppose that (Q, \cdot) is an abelian group. Then $(Q, *)$ is a rack iff $g(c)=1, f g=g f$ and $g(x)=f g(x) g^{2}(x)$ for all $x \in Q$.

Proof. Suppose that $g(x)=f g(x) g^{2}(x)$ for all $x \in Q$. Then $x f g(y) \cdot g(z)=$ $x f g(y) \cdot f g(z) g^{2}(z)=x f g(z) \cdot f g(y) g^{2}(z)$, where we have used mediality in the last step.

Corollary 7.6. Suppose that (Q, \cdot) is an abelian group. Then $(Q, *)$ is a quandle iff $c=1$ and $g(x)=f(x) \backslash x=x f(x)^{-1}$.

8. Calculating isotopisms and autotopisms

Let $Q_{1}=\left(Q_{1}, \cdot, \backslash, /\right), Q_{2}=\left(Q_{2}, *, \backslash^{*}, /^{*}\right)$ be quasigroups. The triple (f, g, h) of mappings $Q_{1} \rightarrow Q_{2}$ is a homotopism if $f(x) * g(y)=h(x \cdot y)$ for all $x, y \in Q_{1}$.
8.1. Method via perfect matchings with invariants. Let (f, g, h) be an isotopism of right quasigroups $\left(Q_{1}, \cdot\right) \rightarrow\left(Q_{2}, *\right)$. In principle, no information about g can be deduced from f and h. For instance, if both $(Q 1, \cdot),\left(Q_{2}, *\right)$ are projection right quasigroups (that is, $x \cdot y y=x$ and $x * y=x$) then the identity $f(x) * g(y)=h(x y)$ becomes $f(x)=h(x)$.

Lemma 8.1. Let $\left(Q_{1}, \cdot\right),\left(Q_{2}, *\right)$ be right quasigroups and let $e \in Q_{1}$.
(i) If $f: Q_{1} \rightarrow Q_{2}$ is a bijection and $g(e)$ is given then there is a unique $h: Q_{1} \rightarrow Q_{2}$ such that (f, g, h) is an isotopism (note that g might not be unique).
(ii) Suppose that two bijections $f, h: Q_{1} \rightarrow Q_{2}$ are given. Then (f, g, h) is an isotopism iff g is a bijection such that $g(y) \in S(y)$ for every $x \in Q$, where

$$
S(y)=\bigcap_{x \in X}\left\{z \in Q_{1}: f(x) * g(z)=h(x \cdot z)\right\}
$$

Hence an isotopism (f, g, h) with given components f and h exists if and only if there is a perfect matching in the bipartite graph (V, E) with $V=$ $Q_{1} \cup Q_{2}$ and $E=\{(x, y): y \in S(x)\}$.

Proof. (i) We have $h(y)=f(x / e) * g(e)$.
Part (ii) is obvious.
If (Q, \cdot) is a groupoid and $x \in Q$, let $m_{x}=m_{x}(Q)$ be the sorted list ($m_{x, y}$: $y \in Q)$, where $m_{x, y}=|\{z \in Q: x y=z\}|$, that is, $m_{x, y}$ counts the number of occurrences of y in the row indexed by x. Since the effect of an isotopism $(f, g, h):\left(Q_{1}, \cdot\right) \rightarrow\left(Q_{2}, *\right)$ on a multplication table is to rename rows by f, rename columns by g and re rename entries by h, we must have $m_{x}\left(Q_{1}\right)=m_{f(x)}\left(Q_{2}\right)$.

The sorted list ($m_{x}: x \in Q$) is therefore an isotopism invariant. Moreover, while searching for an isotopism $(f, g, h): Q_{1} \rightarrow Q_{2}$, we must select $f(x) \in\left\{y \in Q_{2}\right.$: $\left.m_{y}\left(Q_{2}\right)=m_{x}\left(Q_{1}\right)\right\}$. This severely restricts f for random Q_{1}. The above lemma then allows us to calculate h from a single entry $g(e)$, and the we can easily decide if a suitable g exists by solving the perfect matching problem.
8.2. Method via perfect matchings with automorphisms groups. The invariant ($m_{x}: x \in X$) is useless for quasigroups. The perfect matching idea still applies but it is not practical to check all possible permutations f. It suffices to work modulo $\operatorname{Aut}\left(Q_{1}\right)$, which sometimes helps.
8.3. Method via domain extension. The following works reasonably well for quasigroups and loops.

Lemma 8.2. Let Q_{1}, Q_{2} be quasigroups. Let c be a fixed element of Q_{1}. A homotopism (f, g, h) from Q_{1} to Q_{2} is determined by the values of one of the three mappings on Q_{1} and by the value on c of one of the two remaining mappings.
Proof. We will give a proof when $h(x)$ is known for all $x \in Q_{1}$ and $f(c)$ is known. The remaining five cases are similar. We have $f(c) * g(c \backslash x)=h(c(c \backslash x))=h(x)$ and hence $g(c \backslash x)=g(c) \backslash{ }^{*} h(x)$. This shows that $g(x)$ is determined for all $x \in Q_{1}$. We also have $f(x / c) * g(c)=h((x / c) c)=h(x)$ and hence $f(x / c)=h(x) /^{*} g(c)$. This shows that $f(x)$ is determined for all $x \in Q_{1}$.

The following result shows how the domain of a partially defined homotopism of quasigroups must be extended (iteratively) whenever a new image of f, g or h has been chosen. The domain of a mapping f is denoted by $D(f)$.

Lemma 8.3. Let $(f, g, h): Q_{1} \rightarrow Q_{2}$ be a partial homotopism of quasigroups.
(i) If $x \in D(f)$ then $g(x \backslash y)=f(x) \backslash{ }^{*} h(y)$ for all $y \in D(h)$ and $h(x y)=$ $f(x) * g(y)$ for all $y \in D(g)$.
(ii) If $x \in D(g)$ then $f(y / x)=h(y) /^{*} g(x)$ for all $y \in D(h)$ and $h(y x)=$ $f(y) * g(x)$ for all $y \in D(f)$.
(iii) If $x \in D(h)$ then $g(y \backslash x)=f(y) \backslash{ }^{*} h(x)$ for all $y \in D(f)$ and $f(x / y)=$ $h(x) /{ }^{*} g(y)$ for all $y \in D(g)$.
8.4. Method via principal loop isotopes. To find an isotopism of loops $Q \rightarrow Q^{\prime}$, it suffices to check whether there is an isomorphism $Q_{a, b} \rightarrow Q^{\prime}$, for all $a, b \in Q_{1}$. In both coordinates it suffices to work modulo some nucleus.

