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ABSTRACT

In 2004, Carter, Elhamdadi and Saito defined a homology theory for set-theoretic
Yang–Baxter operators (we will call it the “algebraic” version in this paper). In 2012,
Przytycki defined another homology theory for pre-Yang–Baxter operators which has a
nice graphic visualization (we will call it the “graphic” version in this paper). We show
that they are equivalent. The “graphic” homology is also defined for pre-Yang–Baxter
operators, and we give some examples of its one-term and two-term homologies. In the
two-term case, we have found torsion in homology of Yang–Baxter operator that yields
the Jones polynomial.

Keywords: Homology; pre-cubical module; pre-simplicial module; torsion; Yang–Baxter
operators.
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1. Introduction

The Yang–Baxter equation was introduced independently by Yang(1967) [18] and
Baxter (1972) [1]. It is well known that a certain solution of Yang–Baxter equation
gives rise to the Jones polynomial [6]. In 2004, Carter, Elhamdadi and Saito defined
a (co)homology theory for set-theoretic Yang–Baxter operators, from which they
gave a way to generate link invariants, cocycle invariants [2]. In 2012, Przytycki gave
a graphical definition of homology for a pre-Yang–Baxter operator [13]. We provide
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the definitions of two homology theories for set-theoretic Yang–Baxter operators in
Sec. 2 and show their equivalence in Sec. 3. In Sec. 4, we give definitions of one-
term and two-term homology of pre-Yang–Baxter operators, and show examples,
in particular, we find torsion in two-term homology of Yang–Baxter operator that
yields the Jones polynomial. In Sec. 5, we will mention some future direction. We
start from basic definitions.

Definition 1.1. Let X be a set. If R : X ×X → X ×X is a function that satisfies

(R × IdX) ◦ (IdX × R) ◦ (R × IdX) = (IdX × R) ◦ (R × IdX) ◦ (IdX × R),

then we say R is a set-theoretic pre-Yang–Baxter operator and the equation above
is a set-theoretic Yang–Baxter equation. If, in addition, R is invertible, then we say
R is a set-theoretic Yang–Baxter operator.

Set-theoretic pre-Yang–Baxter operator leads to Yang–Baxter operator (see Def-
inition 4.1) by putting V = kX, and extending R : X × X → X × X to R :
V ⊗ V → V ⊗ V . This Yang–Baxter operator is still called set-theoretic pre-Yang–
Baxter operator.

2. Set-Theoretic Yang–Baxter Homology Theories

Given a set-theoretic pre-Yang–Baxter operator R, we have two approaches to
homology built on R. The “algebraic” version defined in [2] and the “Graphic”
version in [13]. We discuss them in the next two subsections. We prove the equiva-
lence of them in Sec. 3.

We first review the “algebraic” version of set-theoretic Yang–Baxter homology
theory based on [2] and then introduce the “graphic” version of set-theoretic Yang–
Baxter homology theory.

2.1. “Algebraic” homology of Carter, Elhamdadi, and Saito

Definition 2.1. The set X together with a set-theoretic Yang–Baxter operator R,
(X, R), is called in [2] a Yang–Baxter set. We represent a function R by R(x1, x2) =
(R1(x1, x2), R2(x1, x2)).

We use the following notations. Let In be the n-dimensional cube In (I = [0, 1])
regarded as a CW (cubical) complex, where n is a positive integer.a Denote the k-
skeleton by I(k)

n with orientation given by the order of coordinate axes. In particular,
every 2-face can be written as ε1×· · ·×εi−1×Ii×εi+1×· · ·×εj−1×Ij×εj+1×· · ·×εn,

for some 1 ≤ i < j ≤ n, where εk = 0 or 1, and Ii, Ij denote two copies of I at the
ith, jth positions, respectively.

aWe deal here with a co-pre-cubic set (Xk , di
ε) where Xk = Ik and co-face maps di,k−1

ε :
Xk−1 → Xk defined by di

ε(x1, x2, . . . , xk−1) = (x1, x2, . . . , xi−1, ε, xi, . . . , xk−1); they satisfy

dj
δdi

ε = di
εd

j−1
δ where i < j.
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Definition 2.2. The Yang–Baxter coloring of In by a Yang–Baxter set (X, R) is
a map L : E(In) → X , where E(In) denotes the set of edges of In, with each edge
oriented as above, such that if

L(ε1 × · · · × Ii × · · · × 0j × · · · × εn) = x,

L(ε1 × · · · × 1i × · · · × Ij × · · · × εn) = y,

then
L(ε1 × · · · × 0i × · · · × Ij × · · · × εn) = R1(x, y),
L(ε1 × · · · × Ii × · · · × 1j × · · · × εn) = R2(x, y).

Compare Fig. 1.

Definition 2.3. The initial path in In is the sequence of edges of In,(e1, . . . , en),
where

e1 = I1 × 02 × · · · × 0n,

e2 = 11 × I2 × 03 × · · · × 0n,
...
en = 11 × 12 · · · × 1n−1 × In.

Lemma 2.4 ([2]). Let (X, R) be a Yang–Baxter set, and (e1, . . . , en) be the initial
path of In. For any n-tuple of elements of X, (x1, . . . , xn), there exists a unique
Yang–Baxter coloring L of In by (X, R) such that L(ei) = xi for all i = 1, . . . , n.

This lemma gives the following two properties:

• Each edge has the color uniquely induced by the n-tuple associated to the initial
path of In,

• Each k-face J of In has its induced initial path determined by the order of
coordinates. Therefore, we can associate to it the k-tuple (y1, . . . , yk) determined
by colors on its induced initial path. Denote this situation by L(J ) = (y1, . . . , yk).
That is, L(J ) is the restriction of the function L : E(In) → X of Definition 2.2
to the initial path of J .

Fig. 1. Local behavior of Yang–Baxter coloring.
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From these two facts, we have a way to map an n-tuple to (n−1)-tuple through
the face maps in cubic homology theory.

Recall that ∂C
n denotes the n-dimensional boundary map in the cubical homol-

ogy theory. Thus ∂C
n (In) =

∑2n
i=1 εiJi, where Ji is an (n − 1)-face and εi = ±1

depending on whether the orientation of Ji matches the induced orientation. For
the induced orientation, we take the convention that the inward pointing normal to
an (n − 1)-face appears last in a sequence of vectors that specifies an orientation,
and the orientation of the (n − 1)-face is chosen so that this sequence agrees with
the orientation of the n-cube.

Let (X, R) be a Yang–Baxter set. Let CY B
n (X) be the free Abelian group gen-

erated by n-tuples (x1, . . . , xn) of elements of X. Define a homomorphism ∂A
n :

CY B
n (X) → CY B

n−1(X) by ∂A
n ((x1, . . . , xn)) = L(∂C

n (In)) =
∑2n

i=1 εiL(Ji). We have
∂A

n−1◦∂A
n = 0, and (CY B

∗ (X), ∂A
n ) is a chain complex. As usual, we can define HA

n =
ker∂A

n /im∂A
n+1 to be the “algebraic” version of Yang–Baxter homology group [2].

2.2. “Graphic” approach to Yang–Baxter homology

In this homology theory, the chain groups are the same as before, that is CY B
n (X) =

ZXn. We define the boundary homomorphism ∂G
n : CY B

n (X) → CY B
n−1(X) as fol-

lows, ∂G
n =

∑n
i=1(−1)idi,n, where di,n = dl

i,n−dr
i,n. We can interpret the face maps

through Fig. 2. The meaning of dl
i,n, is illustrated in Fig. 3; dr

i,n can be described
similarly.

We have an n-tuple as an input and each strand carries the corresponding
element of the n-tuple. We track down the graph from top to bottom, and at
each crossing we apply the fixed Yang–Baxter operator with input the ordered pair
consists of two elements carried by the two strands right above the crossing (as in
Fig. 4).

Then the left strand after the crossing carries the R1 function value and the right
strand after the crossing carries the R2 function value. In the end, we ignore the
element carried by the left most strand, and this procedure generates an (n−1)-tuple
consisting of the n − 1 elements carried by the other n − 1 strands at the bottom.

Fig. 2. A face map di,n.
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Fig. 3. A face map dl
i,n.

Fig. 4. Encoding R at each crossing.

One can easily check (Xn, dε
i,n) form a pre-cubic set,b which implies that

(CY B∗ (X), ∂G
n ) is a chain complex. We define HG

n = ker∂G
n /im∂G

n+1 as the “graphic”
version of Yang–Baxter homology group.

bThe pre-cubical set is a collection of sets Xn, n ≥ 0, together with maps, called face maps or
face operators,

dε
i : Xn → Xn−1, 1 ≤ i ≤ n, ε = 0, 1

such that:

dε
id

δ
j = dδ

j−1dε
i , 1 ≤ i < j ≤ n, ε, δ = 0, 1,

we define a chain complex with chain groups Xn and a boundary map ∂n : Xn → Xn−1 given by:

∂n =
nX

i=1

(−1)i(d0
i − d1

i ).

Note that here 0, 1, Xn corresponds to l, r, Xn, respectively.
Compare[4, 15].
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3. Equivalence of Two Homology Theories

Theorem 3.1. Chain complexes (CY B
n , ∂A

n ) and (CY B
n , ∂G

n ) are chain homotopy
equivalent. Consequently, the “algebraic” and “graphic” definitions of Yang–Baxter
homology coincide.

Proof. Consider an n-dimensional cube In and denote it as I1 × · · · × In. For any
coloring, say L(I1 × · · · × In) = (x1, . . . , xn), and an (n − 1)-face J = I1 × · · · ×
Ii−1×1i×Ii+1×· · ·×In, we are going to demonstrate that L(J ) = dl

i,n(x1, . . . , xn).
To see this, we need to calculate the coloring of the initial path (a1, . . . , an−1) of
this (n − 1)-face. By definition,

a1 = I1 × 02 × 03 × · · · × 0i−1 × 1i × 0i+1 × · · · × 0n

a2 = 11 × I2 × 03 × · · · × 0i−1 × 1i × 0i+1 × · · · × 0n

...
ai−1 = 11 × 12 × 13 × · · · × Ii−1 × 1i × 0i+1 × · · · × 0n

ai = 11 × 12 × 13 × · · · × 1i−1 × 1i × Ii+1 × 0i+2 × · · · × 0n

ai+1 = 11 × 12 × 13 × · · · × 1i−1 × 1i × 1i+1 × Ii+2 × · · · × 0n

...
an−2 = 11 × 12 × 13 × · · · × 1i−1 × 1i × 1i+1 × · · · × In−1 × 0n

an−1 = 11 × 12 × 13 × · · · × 1i−1 × 1i × 1i+1 × · · · × 1n−1 × In.
We need another sequence (b2, . . . , bi), where
b2 = 11 × 02 × 03 × · · · × 0i−2 × 0i−1 × Ii × 0i+1 × · · · × 0n

b3 = 11 × 12 × 03 × · · · × 0i−2 × 0i−1 × Ii × 0i+1 × · · · × 0n

...
bi−1 = 11 × 12 × 13 × · · · × 1i−2 × 0i−1 × Ii × 0i+1 × · · · × 0n

bi = 11 × 12 × 13 × · · · × 1i−2 × 1i−1 × Ii × 0i+1 × · · · × 0n.
For example, for j = i, the edges of the square are
ei−1 = 11 × 12 × 13 × · · · × Ii−1 × 0i × 0i+1 × · · · × 0n,
bi = ei = 11 × 12 × 13 × · · · × 1i−2 × 1i−1 × Ii × 0i+1 × · · · × 0n,
bi−1 = 11 × 12 × 13 × · · · × 1i−2 × 0i−1 × Ii × 0i+1 × · · · × 0n,
ai−1 = 11 × 12 × 13 × · · · × Ii−1 × 1i × 0i+1 × · · · × 0n.
Since
L(ei−1) = xi−1, L(bi) = xi,
we have
L(ai−1) = R2(L(ei−1), L(bi)) = R2(xi−1, xi),
L(bi−1) = R1(L(ei−1), L(bi)) = R1(xi−1, xi).
Once we know the color of bj , we know the colors of bj−1, and aj−1 (at each

iteration we deal with a square in Fig. 5). Thus, recursively, we know all the colors
of ajs

′, i.e. we get an (n − 1)-tuple.

1841013-6



June 20, 2018 16:5 WSPC/S0218-2165 134-JKTR 1841013

Yang–Baxter homology

Fig. 5. Square of iteration.

In general, we have

L(aj) =

{
R2(L(ej), L(bj+1)) 1 ≤ j ≤ i − 1,

xj+1 i ≤ j ≤ n − 1,

L(bj) =

{
R1(L(ej), L(bj+1)) 2 ≤ j ≤ i − 1,

xj j = i.

We can see that this (n− 1)-tuple is the same as the one given by dl
i,n(compare

with Fig. 3).
Similarly, if we consider J = I1 × · · · × Ii−1 × 0i × Ii+1 × · · · × In, we can show

L(J ) = dr
i,n(x1, . . . , xn).

Fig. 6. Coloring of face I × I × 1.
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Fig. 7. Face map dl
3,3.

As for the sign, we can directly calculate that, for L(I1 × · · ·× Ii−1× εi × Ii+1 ×
· · · × In), the sign is (−1)n−i(1 − 2εi).

Thus, the boundary map of “algebraic” version and the boundary map of
“graphic” version only differ by a global sign, therefore, the considered chain com-
plexes are isomorphic and they give isomorphic homology groups.

Example 3.2. Comparison of the face maps corresponding to the 2-face I1×I2×13

of a cube and dl
3,3.

From Fig. 6, we can see a “curtain-like” object similar to Fig. 7 “climbing”
on the faces of the cube. For higher dimensions, the similar consideration holds.
Therefore, this also gives a way to visualize the equivalence.

4. Homology for Unital Yang–Baxter Operators

The “graphic” definition of Yang–Baxter homology was motivated by the homology
theory of self-distributive systems [11, 13], for example shelves, racks and quandles.
More generally, we can define one-term and two-term homology not only for set-
theoretic Yang–Baxter operators but also for pre-Yang–Baxter operators.

Definition 4.1. Let k be a commutative ring and V be a k-module. If a k-linear
map, R : V ⊗ V → V ⊗ V , satisfies the following equation:

(R ⊗ IdV ) ◦ (IdV ⊗ R) ◦ (R ⊗ IdV ) = (IdV ⊗ R) ◦ (R ⊗ IdV ) ◦ (IdV ⊗ R),

then we say R is a pre-Yang–Baxter operator. The equation above is called a Yang–
Baxter equation. If, in addition, R is invertible, then we say R is a Yang–Baxter

1841013-8
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operator. From now on, we assume k is a commutative ring with identity and
V = kX, the free k-module with a basis set X .

Furthermore, we can extend the definition of pre-Yang–Baxter homology to pre-
Yang–Baxter operators with Yang–Baxter wall (see Definition 4.3). We will give the
general definitions below and discuss some properties of these homology theories.

4.1. One-term Yang–Baxter homology

Let k be a commutative ring with identity, V = kX be a free k-module with
basis X and M be a right k-module. We define in Definition 4.3 the one-term
pre-Yang–Baxter chain complex CY B = (Cn, M, ∂n) from the pre-simplicial module
(Cn, M, di).

First, we recall the notion of a pre-simplicial module.

Definition 4.2. The pre-simplicial module M is a collection of modules Mn, n ≥ 0,
together with maps, called face maps or face operators,

di : Mn → Mn−1, 0 ≤ i ≤ n,

such that

didj = dj−1di, 0 ≤ i < j ≤ n,

we define a chain complex with chain modules Mn and a boundary map ∂n : Mn →
Mn−1 given by

∂n =
n∑

i=0

(−1)idi.

We are ready to define the pre-Yang–Baxter pre-simplicial module.

Definition 4.3 ([10, 13]). Consider a linear map RW : M ⊗ V → M, such that
RW ◦ (RW ⊗ idV ) = RW ◦ (RW ⊗ idV ) ◦ (idM ⊗ R) as shown graphically in Fig. 8,
we call this the left wall condition.

Let Cn = M ⊗ V ⊗n and the face map di = di,n : Cn → Cn−1 is defined by

di = (RW ⊗ id⊗n−1) ◦ (idM ⊗ R ⊗ id⊗n−2) ◦ (idM ⊗ id ⊗ R ⊗ id⊗n−3) ◦ · · · ◦
× (idM ⊗ id⊗i−2 ⊗ R ⊗ idn−i).

We can interpret the face maps through Fig. 9.
(Cn, M, di) is a pre-simplicial module, and (Cn, M, ∂n) is the one-term pre-

Yang–Baxter chain complex. Its homology is called the one-term pre-Yang–Baxter
homology Hn(R, RW ).

The following result generalizes Corollary 8.2(ii) about one-term rack homology in
[11] (see Remark 4.7).

1841013-9
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Fig. 8. The left wall condition.

Fig. 9. Face map di,n.

Proposition 4.4. Let (Cn, M, ∂n) be the chain complex of the one-term pre-Yang–
Baxter homology. For a fixed element v ∈ V, consider the map fn : Cn → Cn, defined
by fn(a) = dn+1,n+1(a ⊗ v), where a ∈ Cn, then this is a chain map. We have

(1) (fn)∗(Hn) = 0,

(2) If there is an element v ∈ V such that fn is invertible, then the one-term
pre-Yang–Baxter homology is trivial.

Proof. We construct a chain homotopy Pn between (−1)n+1fn and zero map, in
particular, showing that fn is a chain map. The chain homotopy Pn : Cn → Cn+1

is defined by

Pn(vi1 ⊗ · · · ⊗ vin) = (−1)nvi1 ⊗ · · · ⊗ vin ⊗ v.

We check

∂n+1Pn + Pn−1∂n =
n+1∑
i=1

(−1)idi,n+1Pn +
n∑

j=1

(−1)jPndi,n

= (−1)n+1dn+1,n+1Pn = (−1)n+1fn.

1841013-10
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(1) Follows because {fn} is chain homotopic to the 0 map, therefore, (fn)∗ is the 0
map on homology. (2) Follows since if fn is invertible, so is (−1)n+1fn, thus Hn(C∗)
is isomorphic to Hn(C∗) through zero map. This shows that Hn(C∗) = 0.

In the case that M = k, and V acting on k trivially (RW (a, vi) = a, where a is
in M and vi is a basis element of V ), the left wall condition (in Definition 4.3) is
equivalent to that the sum of each column of the R matrix is 1, which we call the
column unital condition (e.g. stochastic matrices satisfy the condition).

Corollary 4.5. Let M = k, V act on k trivially, and R be a set-theoretic Yang–
Baxter operator. If for any A2, A4 ∈ X, there is a unique A1 ∈ X such that
R2(A1, A2) = A4, then conditions in Proposition 4.3 hold. In particular, biracks sat-
isfy this condition (see Definition 3.1 condition 3, that is right invertibility, in [2]).

Proof. We need to show that for any n-tuple (y1, . . . , yn) in Cn = kXn, there
exists unique n-tuple (x1, . . . , xn) in Cn such that

fn((x1, . . . , xn)) = dn+1,n+1((x1, . . . , xn, v)) = (y1, . . . , yn).

Since we know yn and v, we get the values of xn and R1(xn, v) uniquely. Once
we have R1(xn, v), together the value of yn−1, we get the value of xn−1 and
R1(xn−1, R1(xn, v)) uniquely. Thus by this iteration, we get the n-tuple (x1, . . . , xn)
uniquely and this shows fn is invertible.

Example 4.6 (Compare [2]). Let F be a commutative ring with identity. Let
k = F [s±1, t±1]/(1 − s)(1 − t), then

R(x, y) = (R1(x, y), R2(x, y)) = ((1 − s)x + ty, sx + (1 − t)y)

is a set-theoretic Yang–Baxter operator satisfying the conditions in Corollary 4.4.
This holds because for any given y and a = R2(x, y) = sx + (1 − t)y, we can solve
x = s−1(a − (1 − t)y). Thus, the one-term homology of this operator is trivial.

Remark 4.7. Pre-Yang–Baxter coming from racks (X, ∗) where R(a, b) = (b, a∗b)
satisfies the conditions in Proposition 4.3. Thus, it has zero one-term homology
(see [11]).

4.2. Two-term Yang–Baxter homology

Let k be a commutative ring with identity, V = kX be a free k-module with basis
X , M be a right k-module and N be a left k-module. We define in Definition 4.9
the two-term pre-Yang–Baxter chain complex CY B = (Cn, M, N, ∂n) from the pre-
cubical module (Cn, M, N, dε

i).

1841013-11
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Definition 4.8. The pre-cubical module M is a collection of modules Mn, n ≥ 0,
together with maps, called face maps or face operators,

dε
i : Mn → Mn−1, 1 ≤ i ≤ n, ε = 0, 1

such that

dε
id

δ
j = dδ

j−1d
ε
i , 1 ≤ i < j ≤ n, ε, δ = 0, 1,

we define a chain complex with chain groups Mn and a boundary map ∂n : Mn →
Mn−1 given by

∂n =
n∑

i=1

(−1)i(d0
i − d1

i ).

We are ready to define the pre-Yang–Baxter pre-cubical module.

Definition 4.9 ([10, 13]). Consider a linear map RW
l : M ⊗V → M, satisfies the

left wall condition in Definition 4.3 (see Fig. 8) and a linear map RW
r : V ⊗N → N,

such that RW
r ◦ (idV ⊗ RW

r ) = RW
r ◦ (idV ⊗ RW

r ) ◦ (R ⊗ idN) we call it the right
wall condition (see Fig. 10).

Let Cn = M ⊗ V ⊗n ⊗ N and face maps dε
i : Cn → Cn−1 are given by

dl
i = (RW

l ⊗ id⊗n−1 ⊗ idN ) ◦ (idM ⊗ R ⊗ id⊗n−2 ⊗ idN ) ◦
× (idM ⊗ id ⊗ R ⊗ id⊗n−3 ⊗ idN ) ◦ · · · ◦ (idM ⊗ id⊗i−2 ⊗ R ⊗ id⊗n−i ⊗ idN)

and

dr
i = (idM ⊗ id⊗n−1 ⊗ RW

r ) ◦ (idM ⊗ id⊗n−2 ⊗ R ⊗ idN) ◦ (idM ⊗ id⊗n−3

⊗R ⊗ id ⊗ idN ) ◦ · · · ◦ (idM ⊗ id⊗i−1 ⊗ R ⊗ id⊗n−i−1 ⊗ idN ).

We can interpret the face maps dl
i, dr

i and their difference through Fig. 11.c

Fig. 10. The right wall condition.

cThe “curtain” interpretation of face maps was observed by Ivan Dynnikov at Przytycki’s talk in
Moscow in May of 2002 (see [12]). It was observed few weeks before by Victoria Lebed working
on her Ph.D. thesis [9, 10].
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Fig. 11. Face map di,n.

(Cn, M, N, dε
i) is a pre-cubical module, and (Cn, M, N, ∂n) is the two-term pre-

Yang–Baxter chain complex. Its homology is called the two-term pre-Yang–Baxter
homology Hn(R, RW

l , RW
r ).

In the case that M = k = N, and the action of V on k is the trivial action, the left
wall condition and the right wall condition is equivalent to saying that R has the
column unital condition.

Example 4.10. We give a family of unital Yang–Baxter operator R : V ⊗ V →
V ⊗V, where V = k{v1, . . . , vm}, k = Q[y, y−1] and m is a positive integer. For any
given m, R can be represented by its coefficients,

Rkl
ij =




1, if i = j = k = l,

1, if l = i > j = k,

y2, if l = i < j = k,

1 − y2, if k = i < j = l,

0, otherwise.

These family of Yang–Baxter operators are unital, for example, when m = 2, it is

1 0 0 0

0 1 − y2 1 0

0 y2 0 0

0 0 0 1


.

Our computation shows interesting pattern in the two-term Yang–Baxter homology
of this family of Yang–Baxter operators.

Conjecture 4.1 ([17]). When m = 2, Hn = k2
⊕

(k/(1 − y2))an
⊕

(k/(1 −
y4))sn−2 , where sn = Σn+1

i=1 fi is the partial sum of Fibonacci sequence, where
f1 = 1 = f2 and an is given by 2n = 2 + an−1 + sn−3 + an + sn−2 with a1 = 0. We
verified the conjecture for n ≤ 11.
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Fig. 12. Relation between third Reidemeister move and 2-(co)cycle condition.

What fascinates us is that this family of Yang–Baxter operators come from the
Yang–Baxter operators giving slm polynomial invariants of links (substitutions to
the Homflypt polynomial) see [5] and [16]. For example, when m = 2, the matrix is



−q 0 0 0

0 q−1 − q 1 0

0 1 0 0

0 0 0 −q.


.

If we divide elements in each column by the sum of those elements and make
the substitution y = (1 + q−1 − q)−1/2, we will get the matrix in Example 4.9.
In general, we can get our family in Example 4.9 in a similar way (normalizing
columns) and again they are Yang–Baxter operators. More interestingly, this new
family of Yang–Baxter operators also provide slm polynomial invariants of links
[17]. This fact is implicit in [6].

5. Future Work

Cocycle invariant for knotted curves and surfaces were defined in [3]. It was general-
ized by Carter, Elhamdadi and Saito to set-theoretic Yang–Baxter homology [2]. We
plan to investigate the possibility of 2-cocycle invariant in the case of column unital
Yang–Baxter operators. In [14], it demonstrates the third Reidemeister move pre-
serve the (co)homology of the (co)cycle constructed form a knot diagram. See Fig. 12
and [14] for details. The goal is to establish connections between Yang–Baxter
homology and Khovanov homology and Khovanov–Rozansky homology [7, 8].
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