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DISTRIBUTIVITY VERSUS ASSOCIATIVITY

IN THE HOMOLOGY THEORY

OF ALGEBRAIC STRUCTURES

Abstract. While homology theory of associative structures, such as groups and rings,
has been extensively studied in the past beginning with the work of Hopf, Eilenberg, and
Hochschild, homology of non-associative distributive structures, such as quandles, were
neglected until recently. Distributive structures have been studied for a long time. In
1880, C.S. Peirce emphasized the importance of (right) self-distributivity in algebraic
structures. However, homology for these universal algebras was introduced only sixteen
years ago by Fenn, Rourke, and Sanderson. We develop this theory in the historical
context and propose a general framework to study homology of distributive structures.
We illustrate the theory by computing some examples of 1-term and 2-term homology,
and then discussing 4-term homology for Boolean algebras. We outline potential relations
to Khovanov homology, via the Yang-Baxter operator.
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1. Introduction

This paper is a summary of numerous talks I gave last year1 . My goal was
to understand homology theory related to distributivity (and motivated by
knot theory), but along the way I discovered various elementary structures,
probably new, or at least not studied before. Thus I will devote the second
section to the monoid of binary operations and its elementary properties.
This, in addition to being a basis for my multi-term distributive homology,
may be of interest to people working on universal algebras.

Because I hope for a broad audience I do not assume any specific knowl-
edge of homological algebra or algebraic topology and will survey the basic
concepts like chain complex chain homotopy and abstract simplicial complex

1From my Summer 2010 talk at Knots in Poland III to a seminar at Warsaw Tech-
nical University in June 2011 (e.g. Knots in Chicago conference, AMS meeting in Chile,
Conference in San Antonio, Colloquium at U. Louisiana, seminars at GWU, Columbia
University, George Mason U., Universidad de Valparaiso, SUNY at Buffalo, University of
Maryland, Warsaw University and Gdansk University, and Knots in Washington XXXI
and XXXII). I am grateful for the opportunity given and stress that I gained a lot from
interaction with the audience.
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in Sections 3 and 4. In the fifth section I recall two classical approaches to
homology of a semigroup: group homology and Hochschild homology. In the
sixth section we build a one-term homology of distributive structures and
recall the definition of the rack homology of Fenn, Rourke, and Sanderson
[FRS]. In further sections we deepen our study of distributive homology,
define multi-term distributive homology and show a few examples of compu-
tations. In the tenth section we relate distributivity to the third Reidemeister
move (or braid relation) and discuss motivation coming from knot theory.
In a concluding remark we speculate on relations with the Yang-Baxter op-
erator and a potential path to Khovanov homology.

2. Monoid of binary operations

Let X be a set and ∗ : X ×X → X a binary operation. We call (X; ∗)
a magma. For any b ∈ X the adjoint map ∗b : X → X, is defined by
∗b(a) = a ∗ b. Let Bin(X) be the set of all binary operations on X.

Proposition 2.1. Bin(X) has a monoidal (i.e. semigroup with identity)
structure with composition ∗1∗2 given by a∗1∗2b = (a∗1b)∗2b, and the identity
∗0 being the right trivial operation, that is, a ∗0 b = a for any a, b ∈ X.

Proof. Associativity follows from the fact that adjoint maps ∗b compose
in an associative way, (∗3)b((∗2)b(∗1)b) = ((∗3)b(∗2)b)(∗1)b; we can write
directly: a(∗1∗2) ∗3 b = ((a ∗1 b) ∗2 b) ∗3 b = (a ∗1 b)(∗2∗3)b = a ∗1 (∗2∗3)b.

The submonoid of Bin(X) of all invertible elements in Bin(X) is a group
denoted by Bininv(X). If ∗ ∈ Bininv(X) then ∗−1 is usually denoted by ∗̄.

It is worth mentioning here that the composition of operations in the
monoid Bin(X) may be thought as taking first the diagonal coproduct
∆ : X → X × X (i.e., ∆(b) = (b, b)) and applying the result on a ∈ X;
Berfriend Fauser suggested after my March talk in San Antonio to try other
comultiplications (he did some unpublished work on it).

One should also remark that ∗0 is distributive with respect to any other
operation, that is, (a ∗ b) ∗0 c = a ∗ b = (a ∗0 c) ∗ (b ∗0 c), and (a ∗0 b) ∗ c =
a ∗ c = (a ∗ c) ∗0 (b ∗ c). This distributivity later plays an important role2 .

While the associative magma has been called a semigroup for a long
time, the right self-distributive magma didn’t have an established name,
even though C. S. Peirce considered it in 1880. Alissa Crans, in her PhD
thesis of 2004, suggested the name right shelf (or simply shelf) [Cr]. Below
we write the formal definition of a shelf and the related notions of spindle,
rack, and quandle.

2Notice that ∗0 and ∗ are seldom associative, as (a ∗0 b) ∗ c = a ∗ c but a ∗0 (b ∗ c) = a.



826 J. H. Przytycki

Definition 2.2. Let (X; ∗) be a magma, then:

(i) If ∗ is right self-distributive, that is, (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c), then
(X; ∗) is called a shelf.

(ii) If a shelf (X; ∗) satisfies the idempotency condition, a ∗ a = a for any
a ∈ X, then it is called a right spindle, or just a spindle (again the term
coined by Crans).

(iii) If a shelf (X; ∗) has ∗ invertible in Bin(X) (equivalently ∗b is a bijection
for any b ∈ X), then it is called a rack (the term wrack, like in “wrack
and ruin”, of J. H. Conway from 1959 [C-W], was modified to rack in
[F-R]).

(iv) If a rack (X; ∗) satisfies the idempotency condition, then it is called a
quandle (the term coined in Joyce’s PhD thesis of 1979; see [Joy]). Ax-
ioms of a quandle were motivated by three Reidemeister moves (idem-
potency by the first move, invertibility by the second, and right self-
distributivity by the third move); see Section 10 and Figures 10.2-10.4.

(v) If a quandle (X; ∗) satisfies ∗∗ = ∗0 (i.e. (a ∗ b) ∗ b = a) then it is
called kei or an involutive quandle. The term kei ( ) was coined in a
pioneering paper by Mituhisa Takasaki in 1942 [Tak].

The main early example of a rack (and a quandle) was a group G with a
∗ operation given by conjugation, that is, a ∗ b = b−1ab; Conway jokingly
thought about it as a wrack of a group. The premiere example given by
Takasaki was to take an abelian group and define a ∗ b = 2b − a. We will
give many more examples later (mostly interested in the possibility of having
shelves which are not racks; e.g. Definition 2.13).

Definition 2.2 describes properties of an individual magma (X; ∗). It
is also useful to consider subsets or submonoids of Bin(X) satisfying the
related conditions described in Definition 2.3.

Definition 2.3.

(1) We say that a subset S ⊂ Bin(X) is a distributive set if all pairs of
elements ∗α, ∗β ∈ S are right distributive, that is, (a ∗α b) ∗β c = (a ∗β c)
∗α (b ∗β c) (we allow ∗α = ∗β).
(i) The pair (X;S) is called a multi-shelf if S is a distributive set. If

S is additionally a submonoid (resp. subgroup) of Bin(X), we say
that it is a distributive monoid (resp. group).

(ii) If S ⊂ Bin(X) is a distributive set such that each ∗ in S satisfies
the idempotency condition, we call (X;S) a multi-spindle.

(iii) We say that (X;S) is a multi-rack if S is a distributive set, and all
elements of S are invertible.
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(iv) We say that (X;S) is a multi-quandle if S is a distributive set, and
elements of S are invertible and satisfy the idempotency condition.

(v) We say that (X;S) is a multi-kei if it is a multi-quandle with ∗∗ = ∗0
for any ∗ ∈ S. Notice that if ∗21 = ∗0 and ∗22 = ∗0 then (∗1∗2)

2 = ∗0;
more generally if ∗n1 = ∗0 and ∗n2 = ∗0 then (∗1∗2)

n = ∗0. This
follows from Proposition 2.8.

(2) We say that a subset S ⊂ Bin(X) is an associative set if all pairs of
elements ∗α, ∗β ∈ S are associative with respect to each another, that
is, (a ∗α b) ∗β c = a ∗α (b ∗β c).

Proposition 2.4.

(i) If S is a distributive set and ∗ ∈ S is invertible, then S ∪ {∗̄} is also a
distributive set.

(ii) If S is a distributive set and M(S) is the monoid generated by S then
M(S) is a distributive monoid.

(iii) If S is a distributive set of invertible operations and G(S) is the group
generated by S, then G(S) is a distributive group.

We divide our proof into three elementary but important lemmas.

Lemma 2.5. Let (X; ∗) be a magma and f : X → X a magma homomor-
phism (i.e. f(x ∗ y) = f(x) ∗ f(y)). If f is invertible (we denote f−1 by f̄)
then f̄ is also a magma homomorphism.

Proof. Our goal is to show that f̄(x∗y) = f̄(x)∗ f̄(y). For this, let x̄ = f̄(x)
and ȳ = f̄(y) (equivalently f(x̄) = x and f(ȳ) = y). Then, from f(x̄ ∗ ȳ) =
f(x̄) ∗ f(ȳ) follows f(x̄ ∗ ȳ) = x ∗ y. Therefore, x̄ ∗ ȳ = f̄(x ∗ y) which gives
f̄(x) ∗ f̄(y) = f̄(x ∗ y).

Corollary 2.6.

(i) If ∗, ∗′ ∈ Bin(X) and ∗ is invertible and (right) distributive with respect
to ∗′, then ∗̄ is (right) distributive with respect to ∗′.

(ii) If ∗, ∗′ ∈ Bin(X), ∗ is invertible, and ∗′ is (right) distributive with
respect to ∗, then ∗′ is (right) distributive with respect to ∗̄.

(iii) If (X; ∗) is a rack, then (X; ∗̄) is a rack.
(iv) If {∗′, ∗} is a distributive set and ∗ is invertible, then {∗′, ∗, ∗̄} is a

distributive set.

Proof. (i) Because (a ∗′ b) ∗ c = (a ∗ c) ∗′ (b ∗ c), the map ∗c : X → X
is a ∗′-shelf homomorphism; thus by Lemma 2.5, ∗̄c : X → X is a ∗′-shelf
homomorphism. The last property can be written as (a∗′b)∗̄c = (a∗̄c)∗′(b∗̄c),
that is, ∗̄ is (right) distributive with respect to ∗′.
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(ii) To prove the distributivity of ∗′ with respect to ∗̄ we consider the
formula that follows from the distributivity of ∗′ with respect to ∗: ((a∗̄b) ∗
b) ∗′ c = ((a∗̄b) ∗′ c) ∗ (b ∗′ c). This is equivalent to a ∗′ c = ((a∗̄b) ∗′ c) ∗ (b ∗′ c)
and thus:

(a ∗′ c)∗̄(b ∗′ c) = ((a∗̄b) ∗′ c).

(iii) To see the (right) self-distributivity of ∗̄ we notice that the (right)
self-distributivity of ∗ gives, by (ii), the distributivity of ∗ with respect to
∗̄. Thus, ∗c is a ∗̄-shelf homomorphism so, by Lemma 2.5, ∗̄c is a ∗̄-shelf
homomorphism which gives the (right) self-distributivity of ∗̄.

(iv) follows from (i), (ii), and (iii).

Proposition 2.4(i) follows from Corollary 2.6. Part (ii) of Proposition 2.4
follows from the following elementary lemma, and (iii) is a combination of
(i) and (ii).

Lemma 2.7.

(i) Let ∗, ∗1, ∗2 ∈ Bin(X) and let ∗ be (right) distributive with respect to
∗1 and ∗2. Then ∗ is (right) distributive with respect to ∗1∗2.

(ii) Let ∗, ∗1, ∗2 ∈ Bin(X) and let ∗1 and ∗2 be (right) distributive with
respect to ∗. Then ∗1∗2 is (right) distributive with respect to ∗.

(iii) If {S, ∗1, ∗2} is a distributive set, then {S, ∗1, ∗2, ∗1∗2} is also a distribu-
tive set.

Proof. (i) We have (a∗1∗2b)∗c = ((a∗1b)∗2b)∗c = ((a∗c)∗1(b∗c))∗2(b∗c) =
(a ∗ c) ∗1 ∗2((b ∗ c), as needed.

(ii) We have (a∗b)∗1∗2c = ((a∗b)∗1c)∗2c = ((a∗1 c)∗2c)∗((b∗1c)∗2 c) =
(a ∗1 ∗2c) ∗ (b ∗1 ∗2c), as needed.

(iii) Because of (i) and (ii) we have to only prove the (right) self-distribu-
tivity of ∗1∗2. We have

(a ∗1 ∗2b) ∗1 ∗2c = (((a ∗1 b) ∗2 b) ∗1 c) ∗2 c = (((a ∗1 b) ∗1 c) ∗2 (b ∗1 c)) ∗2 c

= (((a ∗1 c) ∗1 (b ∗1 c)) ∗2 c) ∗2 ((b ∗1 c) ∗2 c)

= ((a ∗1 c) ∗2 c) ∗1 ((b ∗1 c) ∗2 c)) ∗2 ((b ∗1 c) ∗2 c))

= (a ∗1 ∗2c) ∗1 ∗2(b ∗1 ∗2c).

This proves the (right) self-distributivity of ∗1∗2.

Our monoidal structure of Bin(X) behaves well with respect to (right)
distributivity, as demonstrated by Proposition 2.4. It is interesting to notice
that the analogue of Proposition 2.4 does not hold for associative sets. For
example, if (X; ∗) is a group, then, ∗̄ is seldom associative. Similarly, it very
seldom happens that if {∗1, ∗2} is an associative set then the operation ∗1∗2
is associative.
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2.1. When is a distributive monoid commutative?

Soon after I gave the definition of a distributive submonoid of Bin(X)
Michal Jablonowski, a graduate student at Gdańsk University, noticed that
any distributive monoid whose elements are idempotent operations is com-
mutative. We have:

Proposition 2.8.

(i) Consider ∗α, ∗β ∈ Bin(X) such that ∗β is idempotent (a ∗β a = a) and
distributive with respect to ∗α, then ∗α and ∗β commute. In particular:

(ii) If M is a distributive monoid and ∗β ∈ M is an idempotent operation,
then ∗β is in the center of M .

(iii) A distributive monoid whose elements are idempotent operations is com-
mutative.

Proof. We have: (a ∗α b) ∗β b
distrib
= (a ∗β b) ∗α (b ∗β b)

idemp
= (a ∗β b) ∗α b.

A few months later Agata Jastrzȩbska (also a graduate student at Gdańsk
University), checked that any distributive group in Bininv(X) for |X| ≤ 5
is commutative. Finally, in July of 2011 Maciej Mroczkowski (attending my
series of talks at Gdańsk University) constructed noncommutative distribu-
tive submonoids of Bin(X), the smallest for |X| = 3. Here is Mroczkowski’s
construction.

Construction 2.9. Consider a pair of sets X ⊃ A and the set of all
retractions from X to A (denoted by R(X,A)). Then the set of all shelfs
(X; ∗r) with r ∈ R(X,A) and a ∗r b = r(b) forms a distributive subsemi-
group of Bin(X) which is non-abelian for |X| > |A| > 1. This semigroup,
denoted SR(X,A), has a presentation: {R | ∗rα ∗rβ = ∗rβ} and is clearly
not commutative. Notice that it is a semigroup with a left trivial operation.

The simplest example is given by X = {b, a1, a2} and A = {a1, a2}; then
SR(X,A) has 2 elements ∗r1 and ∗r2 with r1(b) = a1 and r2(b) = a2.

The choices above are related to the following:

(i) (X; ∗g) with a ∗g b = g(b) is a shelf if and only if g2 = g.
(ii) Two operations ∗g1 and ∗g2 are distributive with respect to each other

iff g1g2 = g2 and g2g1 = g1, since: (a ∗g1 b) ∗g2 c = g2(c) and (a ∗g2 c) ∗g1
(b ∗g2 c) = g1(b ∗g2 c) = g1(g2(c)).

(iii) g1 and g2 form a distributive set if g1(X) = g2(X) and g1 and g2 are
retractions.

SR(X,A) is a distributive semigroup. If we add ∗0 to it we obtain a
distributive monoid MR(X,A).

It still remains an open problem whether an invertible operation is in
the center of a distributive submonoid of Bin(X), or whether a distributive
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subgroup of Bin(X) is abelian. With relation to these questions, we propose
a few problems for a computer savvy student, possibly for her/his senior
thesis or master degree:

Problem 2.10.

(i) For small X, say |X| ≤ 6, find all distributive submonoids of Bin(X).
In fact, such monoids form a poset with respect to inclusion, so it is
sufficient to find all maximal distributive monoids.

(ii) Consider only distributive subgroups of Bin(X). As in (i) find all max-
imal subgroups. Are they all abelian?

(iii) Now assume that we have a distributive monoid of idempotent operations
(not necessarily invertible). Again find maximal distributive monoids in
this category. It is interesting that, for |X| = 2, we have four-spindle
structures and they form a unique maximal distributive submonoid of 4
elements (related to the two element Boolean algebra).

(iv) Consider now submonoids of Bin(X) such that their elements satisfy all
quandle conditions. Find all maximal distributive subgroups of Bin(X)
in this category. This is stronger than classifying small quandles since
we build posets of them.

For |X| = 6 the problems above may test the strength of a computer and
the quality of the algorithm. For |X| = 5 it is feasible and for |X| = 4 even
a small computer and not that efficient program should work and a solution
will still be of great interest.

2.2. Every abelian group is a distributive subgroup of Bin(X) for

some X

In the previous subsection we stressed that the question of whether every
distributive subgroup of Bin(X) is abelian is open; it is easy, however, to
construct any abelian group as a distributive subsemigroup of some Bin(X).
The following proposition describes an elementary generalization of this:

Proposition 2.11. Let X be a semigroup. Consider a map τ : X →
Bin(X) given by xτ(a)y = xa. Then:

(i) τ is a homomorphism of semigroups.
(ii) If 1r is a right unit of X (i.e. x1r = x) then τ(1r) = ∗0.
(iii) If X is a group, or more generally a semigroup with the property3 that

if xa = xb for every x ∈ X then a = b, then τ is a monomorphism.

3Functions satisfying this property are called functionally equal. The property holds,
for example, for a semigroup with the left cancellation property xa = xb ⇒ a = b, or
an abelian semigroup whose elements are all idempotent (if xa = xb for every x, then
a = aa = ab = ba = bb = b).
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(iv) For any function f : X → X we define a shelf (X; ∗f ) by a ∗f b = f(a)
(this is a rack if f is invertible and a spindle if f = IdX). Then
{∗f1 , ∗f2} forms a distributive set iff f1 and f2 commute.

(v) If X is a commutative semigroup such that if xa = xb for any x then
a = b, then X embeds as a distributive subsemigroup in Bin(X).

Proof. (i) We have xτ(ab)y = xab and xτ(a)τ(b)y = (xτ(a)y)τ(b)y =
xaτ(b)y = xab.

(ii) xτ(1r)y = x1r = x thus τ(1r) = ∗0.
(iii) If τ(a) = τ(b), then for all x we have xa = xb. Thus, by our property,

a = b and τ is a monomorphism.
(iv) We have: (a∗f1 b)∗f2 c = f2(a∗f1 b) = f2f1(a), (a∗f2 c)∗f1 (b∗f2 c) =

f1((a∗f2 c) = f1f2(a). Thus, right distributivity holds iff f1 and f2 commute.
(v) With our assumption τ is a monomorphism, and by (iv) its image is

a distributive semigroup (compare Proposition 7.2 where we show that com-
mutativity of X is not needed if we replace distributivity by chronological-
distributivity).

2.3. Multi-shelf homomorphism

Homomorphism of multi-shelves is a special case of a homomorphism of
universal algebras (heterogeneous two-sorted algebras). Concretely, consider
two multi-shelves (X1;S1) and (X2;S2) and a map h : S1 → S2. We say
that f : X1 → X2 is a multi-shelves homomorphism if for any ∗ ∈ S1 we
have f(a ∗ b) = f(a)h(∗)f(b).

Proposition 2.12. Let (X;S) be a multi-shelf and ∗ ∈ S. Then for any
c ∈ X the adjoint map ∗c : X → X is a multi-shelf endomorphism of X
(with h = Id : S → S).

Proof. The map is a homomorphism because, for any ∗α ∈ S, from right dis-
tributivity we have: ∗c(a∗αb) = (a∗αb)∗c = (a∗c)∗α(b∗c) = ∗c(a) ∗α ∗c(b).

2.4. Examples of shelves and multi-shelves from a group

Consider the three classical classes of quandles: the trivial quandles,
the conjugate quandles, and the core quandles. They have (also classical)
generalizations (e.g. [Joy, A-G]), or we can say deformations, important for
us because they also produce interesting shelves which are often not quandles
or racks, and lead to interesting families of multi-shelves.

Definition 2.13. Let G be a group and h : G → G a group homomor-
phism. Then we define three classes of spindles with (G, ∗h) as follows:

(i) a ∗h b = h(ab−1)b;
(ii) a ∗h b = h(b−1a)b;
(iii) a ∗h b = h(ba−1)b, here we assume that h2 = h.
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We comment on each class below:

(i) (G, ∗h) is a quandle iff h is invertible, and for h = Id it is a trivial
quandle. If G is an abelian group we obtain an Alexander spindle (Alexander
quandle for h invertible); in an additive convention we write a ∗h b = h(a)−
h(b) + b = (1− h)(b) + h(a).

(ii) (G, ∗h) is a quandle iff h is invertible, and for h = Id we obtain the
conjugacy quandle (a ∗ b = b−1ab). If G is an abelian group we obtain an
Alexander spindle, the same as in case (i).

(iii) We need h2 = h for right self-distributivity, as the following calcula-
tion demonstrates:

(a ∗h b) ∗h c = (h(ba−1)b) ∗h c = h(c(h(ba−1)b)−1)c

= h(cb−1)h2(ab−1)c
h2=h
= h(cb−1ab−1)c

(a ∗h c) ∗h (b ∗h c) = h((b ∗h c)(a ∗h c)
−1)(b ∗h c)

= h(h(cb−1)c(h(ca−1)c)−1))h(cb−1)c

= h2(cb−1)h(c)h(c−1)h2(ac−1)h(cb−1)c

= h2(cb−1ac−1)h(cb−1)c
h2=h
= h(cb−1ab−1)c.

Because of the condition h2 = h, our spindle is a quandle only if h = Id, in
which case we obtain a core quandle (a ∗ b = ba−1b).
It is interesting to compose ∗h∗h in (iii), as we obtain example (i). We can
interpret this by saying that ∗h from (i), for h2 = h has a square root. One
can also check that for (iii) ∗3h = ∗h, thus the monoid in Bin(X) generated
by ∗h is the three element cyclic monoid {∗h| ∗

3
h = ∗h}. We have: a ∗3h b =

((a ∗h b) ∗h b) ∗h b = ((h(ba−1)b) ∗h b) ∗h b = (h(bb−1h(ab−1)b)) ∗h b =

(h2(ab−1)b) ∗h b
h2=h
= (h(ab−1)b) ∗h b = h(bb−1h(ba−1)b = h2(ba−1)b

h2=h
=

h(ba−1)b = a ∗h b.

Let us go back to case (ii): We check below that ∗h given by a ∗h b =
h(b−1a)b is right self-distributive. Thus by Proposition 2.4(ii) the monoid
generated by ∗h is a distributive monoid; however ∗h1 and ∗h2 are seldom
right distributive as the calculation below shows (proving also distributivity
for h1 = h2):

(a ∗h1 b) ∗h2 c = (h1(b
−1a)b) ∗h2 c = h2(c

−1(h1(b
−1a)b)c

= h2(c
−1)h2h1(b

−1a)h2(b)c

(a ∗h2 c) ∗h1 (b ∗h2 c) = (h2(c
−1a)c) ∗h1 (h2(c

−1b)c)

= h1(h2(c
−1b)c)−1h2(c

−1a)c)h2(c
−1b)c
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= h1(c
−1)h1h2(b

−1c)h1h2(c
−1a)h1(c)h2(c

−1b)c

= h1(c
−1)h1h2(b

−1a)h1(c)h2(c
−1)h2(b)c.

Again back in case (i) (a ∗h b = h(ab−1)b) we get:

(a ∗h1 b) ∗h2 c = (a ∗h2 c) ∗h2h1h
−1
2

(b ∗h2 c).

In particular, ∗h1 and ∗h2 are right distributive if the functions commute
(h1h2 = h2h1). The last equation can be interpreted as twisted distributivity,
for G-families of quandles, the concept developed by Ishii, Iwakiri, Jang, and
Oshiro [Is-Iw, Ca-Sa, IIJO].

In the next few sections we compare associativity and distributivity in
developing homology theory. In Section 3 we recall the basic notions of a
chain complex, homology, and a chain homotopy, in order to make this paper
accessible to non-topologists. We also recall the notion of a presimplicial and
simplicial module, the basic concepts that are not familiar to nonspecialists.

3. Chain complex, homology, and chain homotopy

Let {Cn}n∈Z be a graded abelian group (or an R-module4). A chain
complex C = {Cn, ∂n} is a sequence of homomorphisms ∂n : Cn → Cn−1

such that ∂n−1∂n = 0 for any n. So Im(∂n+1) ⊂ Ker(∂n), and the quotient

group Ker(∂n)
Im(∂n+1)

is called the nth homology of a chain complex C, and denoted

by Hn(C). Elements of Ker(∂n) are called n-cycles, and we write Zn =
Ker(∂n), and elements of Im(∂n+1) are called n-boundaries and we write
Bn = Im(∂n+1).

A map of chain complexes f : C′ → C is a collection of group ho-
momorphisms fn : C ′

n → Cn such that all squares in the diagram com-
mute, that is, fn−1∂

′
n = ∂nfn. A chain map induces a map on homology

f∗ : Hn(C
′) → Hn(C).

One important and elementary tool we use in the paper is a chain ho-
motopy, so we recall the notion:

Definition 3.1. Two chain maps f, g : C′ → C are chain homotopic if
there is a degree 1 map h : C ′ → C (that is hi : C

′
i → Ci+1) such that

f − g = ∂i+1hi + hi−1∂
′
i.

The importance of chain homotopy is given by the following classical
result:

4For simplicity we work mostly with abelian groups, i.e. Z-modules, but we could also
assume that we work with R-modules, where R is a ring with identity.
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Theorem 3.2. If two chain maps f and g are chain homotopic, then they
induce the same homomorphism of homology f∗ = g∗ : H(C′) → H(C). In
particular, if C′ = C, f = Id, and g is the zero map, then the chain complex
C is acyclic, that is Hn(C) = 0 for any n.

3.1. Presimplicial module and simplicial module

It is convenient to have the following terminology, whose usefulness is
visible in the next sections and which takes into account the fact that, in
most homology theories, the boundary operation ∂n : Cn → Cn−1 can be
decomposed as an alternating sum of face maps di : Cn → Cn−1. Often we
also have degeneracy maps si : Cn → Cn+1. Formal definitions mostly follow
[Lod].

Definition 3.3.

(Sim) A simplicial module (Cn, di, si), over a ring R, is a collection of
R-modules Cn, n ≥ 0, together with face maps di : Cn → Cn−1

and degenerate maps si : Cn → Cn+1, 0 ≤ i ≤ n, which satisfy the
following properties:

(1) didj = dj−1di for i < j.

(2) sisj = sj+1si, 0 ≤ i ≤ j ≤ n,

(3) disj =

{

sj−1di if i < j

sjdi−1 if i > j + 1

(4) disi = di+1si = IdCn .

(Presim) (Cn, di) satisfying (1) is called a presimplicial module and leads to
the chain complex (Cn, ∂n) with ∂n =

∑n
i=0(−1)idi.

(W) A weak simplicial module (Mn, di, si) satisfies conditions (1)–(3)
and a weaker condition in place of condition (4):

(4′) disi = di+1si.

(VW) A very weak simplicial module (Mn, di, si) satisfies conditions (1)–
(3).

We defined weak and very weak simplicial modules motivated by homol-
ogy of distributive structures (as it will be clear later, Proposition 6.4). We
use the terms weak and very weak simplicial modules as the terms pseudo
and almost simplicial modules are already in use5 .

5According to [Fra], a pseudo-simplicial module (Mn, di, si) satisfies only conditions
(1),(3),(4) of Definition 3.3 [Ti-Vo, In]. An almost-simplicial module satisfies conditions
(1)-(4) of Definition 3.3 except sisi = si+1si. A pseudo-simplicial module satisfies the
Eilenberg-Zilber Theorem described in [Fra1] and proved in [In].
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3.2. Subcomplex of degenerate elements

Consider a graded module (Cn, si) where si : Cn → Cn+1 for 0 ≤ i ≤ n.
We define a graded module of degenerated submodules CD

n as follows:

CD
n = span{s0(Cn−1), . . . , sn−1(Cn−1)}.

If (Cn, di, si) is a presimplicial module with degeneracy maps, then CD
n forms

a subchain complex of (Cn, ∂n) with ∂n =
∑n

i=1(−1)idi provided that con-
ditions (3) and (4’) of Definition 3.3 hold (in particular, if (Cn, di, si) is a
weak simplicial module). We compute:

∂nsp =
(

n
∑

i=0

(−1)idi

)

sp =
n
∑

i=0

(−1)i(disp)

=

p−1
∑

i=0

(−1)i(disp) + (−1)pdpsp + (−1)p+1dp+1sp +

p−1
∑

i=p+2

(−1)i(disp)

=

p−1
∑

i=0

(−1)i(sp−1di) +

p−1
∑

i=p+2

(−1)i(spdi−1) ∈ CD
n−1.

It is a classical result that if (Cn, di, si) is a simplicial module, then CD
n

is an acyclic subchain complex. The result does not hold, however, for a
weak simplicial module, and we can have nontrivial degenerate homology
HD

n = Hn(C
D) and normalized homology HNorm

n = Hn(C/CD) different
from Hn(C). These play an important role in the theory of distributive
homology.

Remark 3.4. Even if (Cn, di, si) is only a very weak simplicial module,
that is disi is not necessarily equal to di+1si, we can construct the analogue of
a degenerate subcomplex. We define ti : Cn → Cn by ti = disi − di+1si, and

define subgroups C
(t)
n ⊂ Cn as span(t0(Cn), . . . , tn−1(Cn), tn(Cn)). Then we

define the subgroups C
(tD)
n as span(C

(t)
n , CD

n ). We check directly that C
(t)
n

and C
(tD)
n are subchain complexes of (Cn, ∂n) and they play an important

role in distributive homology. In Theorem 6.6 we show how to use the triplet

of chain complexes C
(t)
n ⊂ C

(tD)
n ⊂ Cn to find the homology of a shelf (X; ∗g)

with a ∗g b = g(b), g : X → X, and g2 = g. The generalization of this is
given in [P-S].

4. Homology for a simplicial complex

The homology theories that we introduce are modelled on the classical
homology of simplicial complexes. We review this for completeness below.

Let K = (X,S) be an abstract simplicial complex with vertices X (which
we order) and simplexes S ⊂ 2X . That is, we assume elements of S are finite,



836 J. H. Przytycki

include all one-element subsets6 , and that if s′ ⊂ s ∈ S, then also s′ ∈ S. The
associated chain complex has a chain group Cn that is a subgroup of ZXn+1

(i.e. a free abelian group with basis Xn+1) generated by n-dimensional
simplexes (x0, x1, . . . , xn): we assume that x0 < x1 < · · · < xn in our
ordering. The boundary operation is defined by:

∂(x0, x1, . . . , xn) =
n
∑

i=0

(−1)i(x0, . . . , xi−1, xi+1, . . . , xn).

Notice that we can put di(x0, x1, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn) with
∂n =

∑n
i=0(−1)idi, and that (Cn, di) is a simplicial module (i.e. didj =

dj−1di for 0 ≤ i < j ≤ n).
We do not require any structure on X, but as we will see later we can

think of X as a (trivial) semigroup or a shelf, (X, ∗0), with a ∗0 b = a for
any a, b ∈ X.

One proves classically that homology does not depend on the ordering
of X. Alternatively, one can consider a chain complex with bigger chain
groups C̄n ⊂ ZXn+1 generated by sequences (x0, x1, . . . , xn) such that the
set {x0, x1, . . . , xn} is a simplex in S; as before we put ∂(x0, x1, . . . , xn) =
∑n

i=0(−1)i(x0, . . . , xi−1, xi+1, . . . , xn). In this approach, our definition is or-
dering independent and allows degenerated simplexes. The homology is
the same as we can consider the acyclic subcomplex of C̄n generated by
degenerate elements (x0, x1, . . . , xn), that is, elements with xi = xi+1 for
some i, and “transposition” elements (x0, . . . xi−1, xi, xi+1, xi+2, . . . , xn) +
(x0, . . . xi−1, xi+1, xi, xi+2, . . . , xn).

In this second approach we have a simplicial module (Cn, di, si) with
si(x0, . . . , xn) = (x0, . . . , xi−1, xi, xi, xi+1, . . . , xn).

The motivation for the boundary operation comes from the geo-
metrical realization of an abstract simplicial complex as illustrated below:

∂(x0, x1, x2) = ∂









���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

x0 x

x

1

2








=

x0 x

x

1

2

= (x1, x2)− (x0, x2) + (x0, x1).

5. Homology of an associative structure: group homology and

Hochschild homology

We describe below two classical homology theories for semigroups. Our
homology of distributive structures is related to these theories.

6We find it convenient to also allow an empty simplex, say of dimension −1; it will
lead to augmented chain complexes.
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5.1. Group homology of a semigroup

Let (X, ∗) be a semigroup. We define a chain complex {Cn, ∂n} as follows:
Cn(X) = ZXn and ∂n : ZXn → ZXn−1 is defined by

∂(x1, . . . , xn) = (x2, . . . , xn) +
n−1
∑

i=1

(−1)i(x1, . . . , xi−1, xi ∗ xi+1, xi+2, . . . , xn)

+ (−1)n(x1, . . . xn−1).

We also assume that H0(X) = Z and ∂1(x) = 1. We can check that ∂2 = 0
if and only if ∗ is associative.

Example 5.1. Checking this is quite illuminative, so we perform it for
n = 3:

∂2(∂3(x1, x2, x3)) = ∂2((x1, x2)− (x0 ∗ x1, x2) + (x0, x1 ∗ x2)− (x0, x1))

= x2 − x1 ∗ x2 + x1 − x2 + (x0 ∗ x1) ∗ x2 − x0 ∗ x1

+ x1 ∗ x2 − x0 ∗ (x1 ∗ x2) + x0 − x1 + x0 ∗ x1 − x0

= (x0 ∗ x1) ∗ x2 − x0 ∗ (x1 ∗ x2),

which is 0 iff ∗ is associative.

Let ∂(ℓ) be a boundary map obtained from the group homology boundary
operation by dropping the first term from the sum. Analogously, let ∂(r) be
a boundary map obtained from the group homology boundary operation
by dropping the last term from the sum. It is a classical observation that
(Cn, ∂

(ℓ) and (Cn, ∂
(r)) are acyclic for a group (or a monoid). We show this

below in a slightly more general context (used later in the distributive case).

Example 5.2.

(ℓ) Assume that a semigroup (X, ∗) has a left identity 1ℓ (i.e. 1ℓx = x),
then the chain homotopy

Hℓ(x1, . . . , xn) = (1ℓ, x1, . . . , xn)
satisfies:

(∂(ℓ)Hℓ +Hℓ∂
(ℓ))(x1, . . . , xn) = IdX .

Thus the identity map is chain homotopic to the zero map, and the
related homology groups are trivial.

(r) Assume that a semigroup (X, ∗) has a right identity 1r (i.e. x1r = x),
then the chain homotopy

Hr(x1, . . . , xn) = (−1)n+1(x1, . . . , xn, 1r)
and we get:

(∂(r)Hr +Hr∂
(r))(x1, . . . , xn) = IdX .

Thus the identity map is chain homotopic to the zero map, and the
related homology groups are trivial.



838 J. H. Przytycki

One of the classical observations in group homology is that if (X, ∗) is a
finite group, then the cardinality of X, |X|, annihilates homology groups.
We demonstrate this below in a slightly more general context; we use the
observation later for distributive homology.

Proposition 5.3. Assume that (X, ∗) is a semigroup which contains a
finite right orbit A, that is, A is a finite subset of X such that for each
b ∈ X, we have ∗b(A) = A (i.e. ∗b : A → A is a bijection). Then |A|
annihilates Hn(X). In particular, if (X, ∗) is a finite group we can take
A = X. If (X, ∗) has a left zero7 pℓ (i.e. pℓ ∗ x = pℓ), then we can take
A = {pℓ} and the homology groups are trivial.

Proof. Let Σ =
∑

a∈A a, in ZX. We have Σ ∗ b = Σ. We consider the
chain homotopy hn(x1, . . . , xn) = (Σ, x1, . . . , xn) (with the convention that
h−1(1) = Σ). This is a chain homotopy between |A|Id and the zero map, i.e.
we have ∂n+1h+ h∂n = |A|Id. Thus we conclude that |A| is an annihilator
of homology (|A|Hn(X) = 0).

Remark 5.4.

(i) If we define di : Cn → Cn−1 by:

d0(x1, . . . , xn) = (x2, . . . , xn)

di(x1, . . . , xn) = (x1, . . . , xi−1, xi ∗ xi+1, xi+2, . . . , xn) for 0 < i < n

and

dn(x1, . . . , xn) = (x1, . . . xn−1)

then (Cn, di) is a presimplicial module.
(ii) If (X; ∗) is a monoid, we define degeneracy maps s0(x1, . . . , xn) =

(1, x1, . . . , xn), and for i>0, si(x1, . . . , xn)=(x1, . . . , xi, 1, xi+1, . . . , xn).
Then (Cn, di, si) is a simplicial module.

5.2. Hochschild homology of a semigroup

Let (X; ∗) be a semigroup. We define a Hochschild chain complex
{Cn, ∂n} as follows [Hoch, Lod]: Cn(X) = ZXn+1 and the Hochschild bound-
ary ∂n : ZXn → ZXn−1 is defined by:

∂(x0, x1, . . . xn) =
n−1
∑

i=0

(−1)i(x0, . . . , xi−1, xi ∗ xi+1, xi+2, . . . , xn)

+ (−1)n(xn ∗ x0, x1, . . . xn−1).

The resulting homology is called the Hochschild homology of a semigroup
(X, ∗) and denoted by HHn(X) (introduced by Hochschild in 1945 [Hoch]).

7Sometimes called a left projector.
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It is useful to define C−1 = Z and define ∂0(x) = 1 to obtain the augmented
Hochschild chain complex and augmented Hochschild homology.

Again if (X, ∗) is a monoid then dropping the last term gives an acyclic
chain complex.

More generally (and similarly to group homology), we check that if (X, ∗)
has a left unit 1ℓ, then the chain homotopy Hℓ(x0, . . . , xn) = (1ℓ, x0, . . . , xn)
satisfies (∂Hℓ + Hℓ∂)(x0, . . . , xn) = (x0, x1, . . . , xn), so the identity map is
chain homotopic to the zero map. For (X, ∗) with a right unit 1r we use the
chain homotopy Hr((x0, . . . , xn) = (−1)n+1(x0, . . . , xn, 1r) to get a chain
homotopy between the identity and the zero map.

Notice that dropping the last term in the definition of the boundary
operation in Hochschild homology is like dropping the first and the last
terms in ∂ for the group homology of a semigroup (up to a grading shift).

Remark 5.5.

(i) If we define di : Cn → Cn−1 by:

di(x0, . . . , xn) = (x0, . . . , xi−1, xi ∗ xi+1, xi+2, . . . , xn) for 0 ≤ i < n

and

dn(x0, . . . , xn) = (xn ∗ x0, x1, . . . xn−1),

then (Cn, di) is a presimplicial module.
(ii) If (X, ∗) is a monoid, we define degeneracy maps for 0 ≤ i ≤ n by the

formula si(x0, . . . , xn) = (x0, . . . , xi, 1, xi+1, . . . , xn). Then (Cn, di, si) is
a simplicial module.

Remark 5.6. To build a Hochschild chain complex we do not have to
restrict ourselves to the case of a semigroup X or a semigroup ring RX.
We can consider a general (associative) ring A and our definitions still
work due to the homogeneity of the boundary operation. Thus we put
Cn(A) = A⊗n+1, di(a0, . . . , an) = (a0, .., ai ∗ ai+1, . . . an) for 0 ≤ i < n,
and dn(a0, . . . , an) = (an ∗ a0, a1, . . . , an−1). Notice that didi+1 = didi iff
ai ∗ (ai+1 ∗ ai+2) = (ai ∗ ai+1) ∗ ai+2, that is, iff ∗ is associative.

6. Homology of distributive structures

Recall that a shelf (X, ∗) is a set X with a right self-distributive binary
operation ∗ : X ×X → X (i.e. (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c)).

Definition 6.1. We define a (one-term) distributive chain complex C(∗)

as follows: Cn = ZXn+1 and the boundary operation ∂
(∗)
n : Cn → Cn−1 is

given by:

∂(∗)
n (x0, . . . , xn) = (x1, . . . , xn)+

n
∑

i=1

(−1)i(x0∗xi, . . . , xi−1∗xi, xi+1, . . . , xn).
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The homology of this chain complex is called a one-term distributive homol-

ogy of (X, ∗) (denoted by H
(∗)
n (X)).

We directly check that ∂(∗)∂(∗) = 0 (see Example 6.3 and Proposition
6.4).

We can put C−1 = Z and ∂0(x) = 1. We have ∂0∂
(∗)
1 = 0, so we

obtain an augmented distributive chain complex and an augmented (one-

term) distributive homology, H̃
(∗)
n . As in the classical case we get:

Proposition 6.2. H
(∗)
n (X) =

{

Z⊕ H̃
(∗)
n (X) n = 0

H̃
(∗)
n (X) otherwise.

Example 6.3. We check here that ∂
(∗)
1 (∂

(∗)
2 (x0, x1.x2)) = 0 is equivalent

to ∗ being right self-distributive:

∂
(∗)
1 (∂

(∗)
2 (x0, x1, x2)) = ∂

(∗)
1 ((x1, x2)− (x0 ∗ x1, x2) + (x0 ∗ x2, x1 ∗ x2))

= x2 − x1 ∗ x2 +−x2 + (x0 ∗ x1) ∗ x2 + x1 ∗ x2

− (x0 ∗ x2) ∗ (x1 ∗ x2)

= (x0 ∗ x1) ∗ x2 − (x0 ∗ x2) ∗ (x1 ∗ x2)
distrib
= 0.

Proposition 6.4.

(i) Let d0(x0, . . . xn) = (x1, . . . , xn) and di(x0, . . . xn) = (x0 ∗ xi, . . . , xi−1 ∗
xi, xi+1, . . . , xn), for 0 < i ≤ n. Then (Cn, di) is a presimplicial module.
In fact, didi+1 = didi for i > 0 is equivalent to right self-distributivity.

(ii) Let si(x0, . . . xn) = (x0, . . . , xi−1, xi, xi, xi+1, . . . , xn), then (Cn, di, si)
is a very weak simplicial module.

(iii) If (X, ∗) is a spindle, then (Cn, di, si) is a weak simplicial module.

Proof. (i) This is a direct calculation and in the cases of 0 = i ≤ j and
i ≤ j − 1 the equality didj = dj−1di holds without any assumption on ∗.
The equality didi+1 − didi = 0 for 0 < i = j − 1 is equivalent to right
self-distributivity. We have:

(didi+1 − didi)(x0, . . . , xn)

= di((x0 ∗ xi+1, . . . , xi−1 ∗ xi+1, xi ∗ xi+1, xi+2, . . . , xn)

− (x0 ∗ xi, . . . , xi−1 ∗ xi, xi+1, xi+1, xi+2, . . . , xn))

= ((x0 ∗ xi+1) ∗ (xi ∗ xi+1), . . . , (xi−1 ∗ xi+1) ∗ (xi ∗ xi+1), xi+2, . . . , xn)

− ((x0 ∗ xi) ∗ xi+1, . . . , (xi−1 ∗ xi) ∗ xi+1, xi+2, . . . , xn)
distr
= 0.

(ii) A short calculation shows that conditions (2) and (3) of a very weak
simplicial module hold without any assumption on ∗.
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(iii) We check condition (4′) of Definition 3.3:

(disi − di+1si)(x0, . . . , xn)

= (di − di+1)((x0, . . . , xi−1, xi, xi, xi+1, . . . , xn))

= (x0 ∗ xi, . . . , xi−1 ∗ xi,xi − xi ∗ xi, xi+1, . . . , xn)
idemp
= 0.

We notice that distributivity was not needed here, only the idempotency
property of ∗.

Proposition 6.4 is generalized in Lemma 7.1.

6.1. Computation of one-term distributive homology

If (X; ∗) is a rack, then the one-term (augmented) distributive chain
complex is acyclic. This may be the reason that this homology was not
studied before. The first systematic calculations are given in [P-S]. We
observe there, in particular, that if there is given b ∈ X in a shelf (X; ∗)

such that ∗b is invertible, then H̃
(∗)
n (X) = 0. To this effect, consider a

chain homotopy (−1)n+1hb, where hb(x0, . . . , xn) = (x0, . . . , xn, b) to get

(∂
(∗)
n+1(−1)n+1hb + (−1)nhb∂

(∗)
n )(x0, . . . , xn) = (x0, . . . , xn) ∗ b. Thus the

map (x0, . . . , xn) → (x0, . . . , xn) ∗ b is chain homotopic to zero and if ∗b is

invertible, H̃
(∗)
n (X) = 0; compare Proposition 8.5(v).

Below we show another result in this direction, motivated by an analogous
observation from group homology (Proposition 5.3).

Proposition 6.5. Assume that (X; ∗) is a shelf which contains a finite
right orbit A, that is, A is a finite subset of X such that for each b ∈ X, we
have ∗b(A) = A∗b = A (i.e. ∗b : A → A is a bijection). Then |A| annihilates
Hn(X). In particular, if (X; ∗) has a left zero pℓ (i.e. pℓ ∗ x = pℓ for any
x ∈ X), then we can take A = {pℓ} and the (augmented) homology groups
are trivial.

Proof. The element
∑

a∈A a ∈ ZX is invariant under the right action, that
is, (

∑

a∈A a) ∗ b =
∑

a∈A a. We consider the chain homotopy

h(x1, . . . , xn) =
((

∑

a∈A

a
)

, x1, . . . , xn

)

with the convention that h(1)

=
∑

a∈A

a.

This is a chain homotopy between |A|Id and the zero map, i.e. we have
∂n+1h+h∂n = |A|Id. Thus we conclude that |A| is an annihilator of homol-
ogy (|A|Hn(X) = 0).
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In Section 7, we introduce a multi-term distributive homology and Propo-
sition 6.5 can also be generalized to this case, that is, for ∂(a1,...,ak) =
∑k

i=1 ai∂
(∗i) with

∑k
i=1 ai 6= 0 and A right invariant for any operation ∗i.

In general, we conjecture in [P-S] that one-term distributive homology
is always torsion free. Thus in the case of Proposition 6.5 homology groups
are conjectured to be trivial. In the special case of invertible ∗ (so A = X),
we proved already at the beginning of this Subsection that the (augmented)
homology groups are trivial (see also [P-S] and Corollary 8.2(ii)).

6.2. Computation for a shelf with a ∗g b = g(b)

In [P-S] we compute the one-term distributive homology for a family of
shelves with a premiere example of a left trivial shelf (X; ∗g), where a ∗g b =
g(b) with g2 = g.

Theorem 6.6. [P-S]

H̃
(∗g)
n (X) ≃ Z((g(X)− {x0})×Xn)

where x0 is any fixed element of g(X). In other words, H̃
(∗g)
n (X) is isomor-

phic to a free abelian group with basis (g(X)− {x0})×Xn. For a finite X,

we can write it as H̃
(∗g)
n (X) = Z

(|g(X)|−1)|X|n .

Proof. We give a relatively short “ideological” computation of H
(∗g)
n (X)

based on the short exact sequence of chain complexes introduced in Sec-

tion 3 (compare Remark 3.4). More precisely, let F
(t)
0 = F

(t)
0 (Cn) = t0(Cn),

and F
(tD)
0 = F

(tD)
0 (Cn) = span(t0(Cn), s0(Cn−1)). We consider three nested

chain complexes F
(t)
0 ⊂ F

(tD)
0 ⊂ Cn. The idea of our proof is to observe that

F
(t)
0 has trivial boundary operations, F

(tD)
0 /F

(t)
0 is acyclic, and Cn/F

(tD)
0

has trivial boundary operations. Finally, we have to study carefully the
long exact sequence corresponding to the short exact sequence of chain

complexes 0 → F
(tD)
0 → Cn → Cn/F

(tD)
0 → 0 to get the conclusion of

the theorem. In more detail, we are mostly interested in the case of ∗g
from the theorem, but much of what follows applies in more general set-
ting. We have t0(x0, x1, . . . , xn) = (x0, x1, . . . , xn) − (x0 ∗ x0, x1, . . . , xn) =
(x0 − x0 ∗ x0, x1, . . . , xn); we use a “bilinear notation”. We have ∂t0 = 0 as
long as the equality x ∗ a = (x ∗ x) ∗ a holds8 in (X, ∗). Thus we have:

(I) Hn(F
t
0) = F t

0 = t0Cn = Z
(|X|−|X/∼|)|X|n , where ∼ is an equivalence

relation on X generated by x ∼ x ∗ x. For ∗ = ∗g, we can take as a

8It holds if a subshelf A = ∗(X × X) = {z ∈ X | z = x ∗ y for some x, y ∈ X}
is a spindle. For example, if there is a retraction p : X → A of X to a spindle A with
x1∗x2 = p(x1)∗p(x2). Two basic examples are: a∗g b = g(b), g2 = g = p and a∗f b = f(a),
f2 = f = p; this idea is considered in [P-S].
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basis of Hn(F
t
0) = F t

0 elements (x0 − g(x0), x1, . . . , xn), and for a finite X,
Hn(F

t
0) = Z

(|X|−|g(X)|)|X|n .

(II) For any shelf, F
(tD)
0 /F

(t)
0 is acyclic. Namely, s0 is a chain homotopy

between the identity and the zero map on F
(tD)
0 /F t

0. We have:

∂s0 + s0∂ = t0 + s0d0 ≡ s0d0 ≡ Id on F
(tD)
0 /F t

0

(here we use the fact that in a shelf d0s0 = Id, so s0d0s0 = s0, thus s0d0 is

the identity on F
(tD)
0 /F t

0).

As a corollary, we have that the embedding F t
0 → F

(tD)
0 induces an

isomorphism on homology.

(III) Consider now the chain complex Cn/F
(tD)
0 . Here, for a ∗g b = g(b),

g2 = g, the boundary operation is trivial as

∂(x0, x1, . . . , xn) = t0(x1, . . . , xn)

+
n
∑

i=2

(−1)i(g(xi), . . . , g(xi), xi+1, . . . , xn) ∈ F
(tD)
0 .

From this we conclude that Hn(Cn/F
(tD)
0 ) = Cn/F

(tD)
0 . As a basis of the

group we can take elements (x0, x1, . . . , xn) with x0 = g(x0) and x1 6= x0.
Thus the group is isomorphic to Z(g(X) × (X − {x0}|) × Xn−1) and for a

finite X, the group is isomorphic to Z
|g(X)|(|X|−1)|X|n−1

.
(IV) We consider the long exact sequence of homology corresponding to

0 → F
(tD)
0 → Cn → Cn/F

(tD) → 0:

· · ·
b∗→ Hn(F

(tD)
0 ) → Hn(C) → Hn(C/F (tD))

b∗→ Hn−1(F
(tD)
0 ) → . . .

We now show that the connecting homomorphism b∗ : Hn(C/F
(tD)
0 ) →

Hn−1(F
(tD)
0 ) is an epimorphism. In fact, the element (x0, x1 − x1 ∗ x1,

x2, . . . , xn) is a chain in Cn but it is a cycle in Cn/F
(tD)
0 . Thus its boundary

∂(x0, x1 − x1 ∗ x1, x2, . . . , xn) = (x1 − x1 ∗ x1, x2, . . . , xn) ∈ F
(tD)
0 , and this

yields our connecting homomorphism b : Cn/F
(tD)
0 → F

(tD)
0 , defined on the

level of chains, with the image equal to C
(t)
n . However, because of (II), b

yields an epimorphism b∗ : Hn(C/F
(tD)
0 ) → Hn−1(F

(tD)
0 ). Thus the long

exact sequence of homology gives the short exact sequence:

0 → Hn(C) → Hn(C/F (tD))
b∗→ Hn−1(F

(tD)
0 ) → 0.

We now compute Hn(C) as the kernel of b∗ to get the free abelian group with
a basis obtained from the basis of Hn(C/F (tD)) by deleting elements of the
form (x0, x1 − x1 ∗ x1, x2, . . . , xn) for fixed x0. Thus, Hn(X) is isomorphic
to Z((g(X)) − {x0}) × Xn) for n > 0 and H0(X) = Z(g(X)). If X is
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finite we get rank H̃n = |g(X)|(|X| − 1)|X|n−1 − (|X| − |g(X)|)|X|n−1 =
(|g(X)| − 1)|X|n.

We can make a small but useful generalization of Theorem 6.6 by consid-

ering a new chain complex C
(d)
n (X) obtained from C

(∗g)
n (X) by taking, for

any number d, the boundary operation ∂(d) = d∂(∗g). See Theorem 9.1 and
[Pr-Pu] for further generalizations of the case g = Id.

Corollary 6.7. Assume that X is a finite set.

(i) If d 6= 0 then

H̃(d)
n (X) = Z

(|g(X)|−1)|X|n ⊕ Z
|X|n+1−|g(X)|un

d ,

where un = un(|X|) = |X|n − |X|n−1 + · · · + (−1)n|X| + (−1)n+1. In
particular, if g = Id we get

H̃(d)
n (X) = Z

(|X|−1)|X|n ⊕ Z
un−(−1)n

d .

(ii) If d = 0, then H
(d)
n (X) = C

(d)
n (X) = Z

|X|n+1
.

Proof. (i) As long as d 6= 0 the free part of the homology does not depend
on d, so we know the free part from Theorem 6.6. We see that the torsion
part is (∂n+1(Cn+1))⊗Zd, so for a finite X we have to compute the rank of
∂n+1(Cn+1). We do this by observing that

rk∂n+1(Cn+1) + rkH̃
(∗g)
n + rk∂n(Cn) = rkCn(X) = |X|n+1.

For example, for n = 0 we get (|X| − |g(X)|) + (|g(X)| − 1) + 1 = |X|

(we work with the reduced homology H̃
(∗g)
n ). Knowing initial data, the

rank of homology, and the ranks of the chain groups we compute that
rk∂n+1(Cn+1) = |X|n+1−|g(X)||X|n+|g(X)||X|n−1+· · ·+(−1)n+1|g(X)| =
|X|n+1 − |g(X)|un, and the formula for homology is proven.

(ii) Boundary operations are trivial, so the formula follows.

7. Multi-term distributive homology

The first homology theory related to a self-distributive structure was
constructed in early 1990s by Fenn, Rourke, and Sanderson [FRS] and moti-
vated by (higher dimensional) knot theory9 . For a rack (X, ∗), they defined
rack homology HR

n (X) by taking CR
n = ZXn and ∂R

n : Cn → Cn−1 is given

by ∂R
n = ∂

(∗)
n−1 − ∂

(∗0)
n−1. Our notation has grading shifted by 1, that is,

Cn(X) = CR
n+1 = ZXn+1. It is routine to check that ∂R

n−1∂
R
n = 0. How-

ever, it is an interesting question what properties of ∗0 and ∗ are really

9The recent paper by Roger Fenn, [Fenn] states: “Unusually in the history of math-
ematics, the discovery of the homology and classifying space of a rack can be precisely
dated to 2 April 1990.”
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used. With relation to the paper [N-P-4] we noticed that it is distributiv-
ity again which makes (CR(X), ∂R

n ) a chain complex. More generally we
observed that if ∗1 and ∗2 are right self-distributive and distributive with
respect to each other, then ∂(a1,a2) = a1∂

(∗1) + a2∂
(∗2) leads to a chain

complex (i.e. ∂(a1,a2)∂(a1,a2) = 0). Below I answer more general question:
for a finite set {∗1, . . . , ∗k} ⊂ Bin(X) and integers a1, ..., ak ∈ Z, when is
(Cn, ∂

(a1,...,ak)) with ∂(a1,...,ak) = a1∂
(∗1) + · · · + ak∂

(∗k) a chain complex?

When is (Cn, d
(a1,...,ak)
i ) a presimplicial set? We answer these questions in

Lemma 7.1. In particular, for a distributive set {∗1, . . . , ∗k} the answer is
affirmative.

Lemma 7.1.

(i) If ∗1 and ∗2 are right self-distributive operations, then (Cn, ∂
(a1,a2)) is

a chain complex if and only if the operations ∗1 and ∗2 satisfy:

(a ∗1 b) ∗2 c+ (a ∗2 b) ∗1 c = (a ∗2 c) ∗1 (b ∗2 c) + (a ∗1 c) ∗2 (b ∗1 c).

We call this condition weak distributivity.
(ii) We say that a set {∗1, . . . , ∗k} ⊂ Bin(X) is weakly distributive if each

operation is right self-distributive and each pair of operations is weakly
distributive (with two main cases: distributivity (a ∗1 b) ∗2 c = (a ∗2
c) ∗1 (b ∗2 c) and time distributivity10 (a ∗1 b) ∗2 c = (a ∗1 c) ∗2 (b ∗1 c)).

We have: (Cn, d
(a1,...,ak)
i ) is a presimplicial set if and only if the set

{∗1, . . . , ∗k} ⊂ Bin(X) is weakly distributive.

(iii) (Cn, ∂
(a1,...,ak)
n ) is a chain complex if and only if the set {∗1, . . . , ∗k} ⊂

Bin(X) is weakly distributive.

Proof. We have

∂
(a1,a2)
n−1 ∂(a1,a2)

n = (a1∂
(∗1)
n−1 + a2∂

(∗2)
n−1)(a1∂

(∗1)
n + a2∂

(∗2)
n )

= a21∂
(∗1)
n−1∂

(∗1)
n + a22∂

(∗2)
n−1∂

(∗2)
n + a1a2(∂

(∗1)
n−1∂

(∗2)
n + ∂

(∗2)
n−1∂

(∗1)
n )

= a1a2(∂
(∗1)
n−1∂

(∗2)
n + ∂

(∗2)
n−1∂

(∗1)
n ).

To see that the condition (a ∗1 b) ∗2 c + (a ∗2 b) ∗1 c = (a ∗2 c) ∗1 (b ∗2 c) +
(a ∗1 c) ∗2 (b ∗1 c) is necessary, let us consider the case n = 2. We have

(∂
(∗1)
1 ∂

(∗2)
2 ) + ∂

(∗2)
1 ∂

(∗1)
2 )(x0, x1, x2)

= ∂
(∗1)
1 ((x1, x2)− (x0 ∗2 x1, x2) + (x0 ∗2 x2, x1 ∗2 x2))

+ ∂
(∗2)
1 ((x1, x2)− (x0 ∗1 x1, x2) + (x0 ∗1 x2, x1 ∗1 x2))

10I did not see this concept considered in literature, but it seems to be important in
K. Putyra’s work on odd Khovanov homology [Put]; see also Proposition 7.2.
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= x2 −x1 ∗1 x2−x2 +(x0 ∗2 x1) ∗1 x2+x1 ∗2 x2− (x0 ∗2 x2) ∗1 (x1 ∗2 x2)

+x2 −x1 ∗2 x2−x2 +(x0 ∗1 x1) ∗2 x2+x1 ∗1 x2− (x0 ∗1 x2) ∗2 (x1 ∗1 x2)

= (x0 ∗2 x1) ∗1 x2− (x0 ∗2 x2) ∗1 (x1 ∗2 x2)

+ (x0 ∗1 x1) ∗2 x2− (x0 ∗1 x2) ∗2 (x1 ∗1 x2),

which is equal to zero iff weak distributivity holds.

On the other hand, we show below that weak distributivity is sufficient

to have d
(a1,a2)
i d

(a1,a2)
i+1 = d

(a1,a2)
i d

(a1,a2)
i for 0 < i < n and is sufficient for

(Cn, d
(a1,a2)
i ) being a presimplicial module (the other needed equalities didj =

dj−1di for i < j follow without using any special conditions). Namely, we
have:

(d
(a1,a2)
i d

(a1,a2)
i+1 − d

(a1,a2)
i d

(a1,a2)
i )(x0, . . . , xn)

= d
(a1,a2)
i (a1((x0, . . . , xi) ∗1 xi+1, xi+2, . . . , xn)

+ a2((x0, . . . , xi) ∗2 xi+1, xi+2, . . . , xn)

− (a1((x0, . . . , xi−1) ∗1 xi, xi+1, . . . , xn)

+ a2((x0, . . . , xi−1) ∗2 xi, xi+1, . . . , xn)))

= a21(((x0, . . . , xi−1) ∗1 xi+1) ∗1 (xi ∗1 xi+1), xi+2, . . . , xn)

− (((x0, . . . , xi−1) ∗1 xi) ∗1 xi+1, xi+2, . . . , xn))

+ a22(((x0, . . . , xi−1) ∗2 xi+1) ∗2 (xi ∗2 xi+1), xi+2, . . . , xn)

− (((x0, . . . , xi−1) ∗2 xi) ∗2 xi+1, xi+2, . . . , xn))

+ a1a2(((x0, . . . , xi−1) ∗1 xi+1) ∗2 (xi ∗1 xi+1), xi+2, . . . , xn)

+ a1a2(((x0, . . . , xi−1) ∗2 xi+1) ∗1 (xi ∗2 xi+1), xi+2, . . . , xn)

− a1a2(((x0, . . . , xi−1) ∗1 xi) ∗2 xi+1, xi+2, . . . , xn))

− a1a2(((x0, . . . , xi−1) ∗2 xi) ∗1 xi+1, xi+2, . . . , xn))

which is equal to zero by the weak distributivity property. This completes
our proof of (i); (ii) and (iii) follow from this directly.

There is some justification for studying the concept of chronological-
distributivity or weak distributivity, as every semigroup A (with the prop-
erty: xa = xb, for every x, implies a = b) can be embedded as a chrono-
logical-distributive semigroup in Bin(A) (compare Proposition 2.11):

Proposition 7.2.

(i) For f : X → X we define ∗f by a ∗f b = f(a). We have ∗f∗g = ∗gf as
a ∗f ∗gb = (a ∗f b) ∗g b = g(f(a)) = a ∗gf b.

(ii) For any pair of functions f, g : X → X the pair (∗f , ∗g) is time dis-
tributive; namely we have:
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(a ∗f b) ∗g c = g(f(a)),

(a ∗f c) ∗g ((a ∗f c) = g(a ∗f c) = g(f(a)).

(iii) Any semigroup A with the property that if xa = xb for every x then
a = b, is a chronological-distributive subsemigroup of Bin(A).

(iv) Any commutative semigroup A with the property that if xa = xb for any
x then a = b, is a distributive subsemigroup of Bin(A).

Proof. The proof is a simple application of ideas from Proposition 2.11.

7.1. From distributivity to associativity

We observed that to linearly combine two self-distributive operations into
a new operation we need weak distributivity. We can ask the similar question
for associative operations, say ∗α and ∗β on X. For ∂(a,b) = a∂α + b∂β, is
it a boundary operation? We consider group or Hochschild homology. A
sufficient condition is that ∂α∂β = −∂β∂α. This allows us not only to
create linear combinations of boundary operations but also to create a chain
bicomplex using ∂α horizontally and ∂β vertically. The condition ∂α∂β =
−∂β∂α follows from:

(a ∗α b) ∗β c+ (a ∗β b) ∗α c = a ∗β (b ∗α c) + a ∗α (b ∗β c).

I do not know a good name for this so I will call it weak associativity
(following the terminology from the distributive case), as it is a combination
of associativity (a ∗α b) ∗β c = a ∗α (b ∗β c), and chronological associativity
(that is: (a ∗α b) ∗β c = a ∗β (b ∗α c)).

Of course weak associativity follows from each, associativity and chrono-
logical-associativity, separately.

a* b1a* b1

ca b a b c

1(a* b)*  c2

b* c

a* (b* c)1

21

2
1 2

1 1

ca b a b c

1(a* b)*  c2

1b* c

a* (b* c)12
2 2

Chronological associativity  associativity

2

Checking for n = 3 and group homology:

Let ∗α and ∗β be two associative operations on a set X. We have:

(∂β∂α + ∂α∂β)(x1, x2, x3)

= ∂β((x2, x3)− (x1 ∗α x2, x3) + (x1, x2 ∗α x3)− (x1, x2))

+ ∂α((x2, x3)− (x1 ∗β x2, x3) + (x1, x2 ∗β x3)− (x1, x2))
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= x3 − x2 ∗β x3 + x2 − x3 + (x1 ∗α x2) ∗β x3 − x1 ∗α x2

+ x2 ∗α x3 − x1 ∗β (x2 ∗α x3) + x1 − x2 + x1 ∗β x2 − x1

+ x3 − x2 ∗α x3 + x2 − x3 + (x1 ∗β x2) ∗α x3 − x1 ∗β x2

+ x2 ∗β x3 − x1 ∗α (x2 ∗β x3) + x1 − x2 + x1 ∗α x2 − x1

= (x1 ∗α x2) ∗β x3 − x1 ∗β (x2 ∗α x3)

+ (x1 ∗β x2) ∗α x3 − x1 ∗α (x2 ∗β x3)

which is equal to zero iff weak associativity holds.

8. Techniques to study multi-term distributive homology

8.1. The remarkable map f : Xn+1 → Xn+1; f(x0, x1, . . . , xn−1, xn) =
(x0 ∗ x1 ∗ · · · ∗ xn, x1 ∗ · · · ∗ xn, . . . , xn−1 ∗ xn, xn)

I noticed this very interesting map only in September 2010, but it looks
similar to the well known change of coordinates in homology of groups.

Let ∗0 denote the trivial right action on X (i.e. a∗0 b = a), and let opera-
tions ∗, ∗1, ∗2, · · · ∗k be elements of a distributive submonoid of Bin(X), that
is, they are right self-distributive operations on a set X which are distributive
with respect to another.11

11Historical note: The concept of a monoid of operations on a set X, Bin(X), can
be found in a classical literature, e.g. [R-S], however a multi-term distributive homology
which followed, while motivated by rack and quandle homology, was only conceived in
July 2010 at the end of my visit to Gdansk and before Knots in Poland III. Seeds of the
concepts were in the paper [N-P-4] and the following:

Observation 8.1.

(i) If ∗ : X ×X is a right self-distributive binary operation on X then

∗k = ∗ ∗ · · · ∗
︸ ︷︷ ︸

k-times

: X ×X → X,

is also self-distributive.
(ii) If ∗1 and ∗2 are right self-distributive operations that are also right distributive with

respect to each other then the composition ∗1∗2 is right self-distributive.
(iii) ∗0 defined by a ∗0 b = a is right distributive with respect to any other operation

(a ∗ b) ∗0 c = (a ∗0 c) ∗ (b ∗0 c) and (a ∗0 b) ∗ c = (a ∗ c) ∗0 (b ∗ c).
(iv) If two binary operations ∗1 and ∗2 are distributive with respect to each other then

∂
(∗2)∂

(∗1) = −∂
(∗1)∂

(∗2).

(v) If ∗1 and ∗2 are self-distributive and distributive with respect to each other then
∂(a1,a2) = a1∂

(∗1) + a2∂
(∗2) leads to a chain complex (i.e. ∂(a1,a2)∂(a1,a2) = 0).
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Let f = f (∗) : RXn → RXn be given by12 :

f(x0, x1, . . . , xn−1, xn) = (x0 ∗ x1 ∗ · · · ∗ xn, x1 ∗ · · · ∗ xn, . . . , xn−1 ∗ xn, xn)

and ∂(∗)(x0, x1, . . . , xn−1, xn) =
∑n

i=0(−1)i(x0∗xi, . . . , xi−1∗xi, xi+1, . . . , xn)

then f (∗)∂(∗2) = ∂(∗1)f (∗) where ∗2 = ∗∗1 (recall that the composition of op-
erations is: a(∗∗1)b = (a ∗ b) ∗1 b), as the following calculation demonstrates:

f (∗)∂(∗2)(x0, . . . , xn)

=

n
∑

i=0

(−1)i(x0∗· · ·∗xi−1∗2xi∗xi+1∗· · ·∗xn, xi−1∗2xi∗xi+1∗· · ·∗xn, xi+1∗. . .

∗xn, . . . , xn)

and

∂(∗1)f (∗)(x1, . . . , xn)

=

n
∑

i=1

(−1)i(x0 ∗ · · · ∗ xi−1 ∗ xi ∗1 xi ∗ xi+1 ∗ · · · ∗ xn, xi−1 ∗ xi ∗1 xi ∗ xi+1 ∗ . . .

∗xn, xi+1 ∗ · · · ∗ xn, . . . , xn).

Here are interesting applications/special cases:

Corollary 8.2.

(i) Consider the multi-term boundary operation ∂(a1,...,an) =
∑k

i=1 ai∂
(∗i),

then f (∗) is a chain map from the chain complex on ZXn+1 with a
composite boundary operation

∗ ◦ ∂(a1,...,an) def
=

k
∑

i=1

ai∂
(∗∗i) to (ZXn+1, ∂(a1,...,an)).

Thus if ∗ is invertible (like in a rack) then this chain map is invertible
and induces an isomorphism of homology. In particular:

(ii) If ∂(∗) is a one-term operation with invertible ∗ then it has the same
homology as ∂(∗0) which is acyclic. Here let us stress that we proved
acyclicity for one-term homology for racks (for one-term homology we
can prove acyclicity in a more general case: it suffices to assume that
there is b such that ∗b is a bijection (as usually ∗b(a) = a ∗ b)). (See
Theorem 6.6 for examples of shelves that are not racks and with a chain
complex that is not acyclic).

12We use a standard convention for products in non-associative algebras, called the
left normed convention, that is, whenever parentheses are omitted in a product of elements
a1, a2, . . . , an of X then a1 ∗ a2 ∗ . . . ∗ an = ((. . . ((a1 ∗ a2) ∗ a3) ∗ . . .) ∗ an−1) ∗ an (left
association), for example, a ∗ b ∗ c = (a ∗ b) ∗ c).
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(iii) In classical (two-term) rack homology (∂ = ∂(∗0)−∂(∗)) the above result
gives an isomorphism with the chain complex ∂̄ = ∂(∗̄) − ∂(∗0) which
describes the classical homology of the dual complex (∗̄ in place of ∗)13.

(iv) More generally, we can consider any two-term complex with a boundary
operation a1∂

(∗1) + a2∂
(∗2) and for an invertible ∗1 we get an isomor-

phic complex with a1∂
(∗0) + a2∂

(∗̄1∗2). This can be interpreted as saying
that any 2-term homology of racks is equivalent to the twisted homology
[CES-1] ∂T = t∂0 − ∂1 (noninvertible a2 gives slightly more possibili-
ties).
Notice that, on the way from the twisted homology of (X; ∗) and its dual
(X; ∗̄), we also invert t.

8.2. Splitting multi-term distributive homology into degenerate

and normalized parts

For a quandle (X; ∗) and its chain complex (Cn, ∂
R), Carter, Kamada,

and Saito at al. [Car, CJKLS, CKS] considered the degenerate subcom-
plex and its quotient which they call quandle chain complex. Litherland and
Nelson [L-N] proved that this complex splits. Their result extends to multi-
spindle (X; ∗1, . . . , ∗k) (that is, a multi-shelf with every operation idempo-
tent). Our proof follows that given in [N-P-2].

Consider a multi-spindle (X; ∗1, . . . , ∗k) and its chain complex Cn(X) =

ZXn+1, ∂(a1,...,ak) =
∑k

i=1 ai∂
(∗i). Recall that we deal with a weak simplicial

module (Cn, di, si) with di = d
(a1,...,ak)
i =

∑k
i=1 aid

(∗i)
i and si(x0, . . . xn) =

(x0, . . . , xi−1, xi, xi, xi+1, . . . , xn). Thus, we know, in general, that CD
n =

span(s0Cn−1, s1Cn−1, . . . , sn−1Cn−1) is a subchaincomplexof (Cn, ∂
(a1,...,ak)).

This complex is usually not acyclic but it always splits. Let CNorm = C/CD

be the quotient complex, called the normalized complex of a multi-spindle.

Theorem 8.3.

(i) Consider the short exact sequence of chain complexes:

0 → CD
n (X) → Cn(X) → CNorm

n (X) → 0.

Then this complex splits with a split map α : CNorm(X) → Cn(X) given
by the formula:

α(x0, x1, x2, . . . , xn) = (x0, x1 − x0, x2 − x1, . . . , xn − xn−1).

13The observation that rack or quandle homology are the same for (X; ∗) for (X; ∗̄)
was proven first by S. Kamada and was known to the authors of [FRS].
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We will the use multilinear convention as in [N-P-2], e.g.

α(x0, x1, x2) = (x0, x1 − x0, x2 − x1)

= (x0, x1, x2)− (x0, x0, x2)− (x0, x1, x1) + (x0, x0, x1).

(ii) Hn(X) = HD
n (X)⊕HNorm

n (X).

Proof. (i) First observe that α is well defined since α(si(x0, . . . , xn−1)) =
(x0, . . . , xi − xi, . . . , xn−1) = 0, so α(CD

n ) = 0. We also have βα = IdCNorm ,
because (α− Id)(Cn) ⊂ CD

n and β(CD
n ) = 0. This shows that α splits {Cn}

as a graded group. To show this split of a chain complex we should show
that α is a chain map, that is, ∂(a1,...,ak)α = α∂(a1,...,ak). Of course it suffices
to prove the relation ∂(∗i)α = α∂(∗i) for any i. This follows from Lemma 8.4
below. Part (ii) follows directly from (i).

Lemma 8.4.

(i) For any spindle (X, ∗) and its related presimplicial module (Cn, di) we
have

diα− αdi = ri−1 + ri, for 0 ≤ i ≤ n,

where r1 = r0 = 0 and for 0 < i < n:

ri = ((x0, x1 − x0, . . . , xi − xi−1) ∗ xi, xi+2 − xi+1, . . . , xn − xn−1)).

In particular, r0 = −(x0, x2 − x1, . . . , xn − xn−1)) and

rn−1 = −(x0, x1 − x0, . . . , xn−1 − xn−2) ∗ xn−1.

(ii) ∂
(∗)
n α− α∂

(∗)
n = 0.

Proof. We check immediately that d0α − αd0 = r0 and that dnα − αdn =
rn−1. Then, for 0 < i < n we compute:

(diα− αdi)(x0, x1, . . . , xn)

= di((x0, x1 − x0, . . . , xn − xn−1)− α((x0, . . . , xi−1) ∗ xi, xi+1, . . . , xn)

= ((x0, x1 − x0, . . . , xi−1 − xi−2) ∗ (xi − xi−1),

xi+1 − xi, xi+2 − xi+1, . . . , xn − xn−1)

− ((x0, x1 − x0, . . . , xi−1 − xi−2) ∗ xi,

xi+1 − xi−1 ∗ xi, xi+2 − xi+1, . . . , xn − xn1)
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= −((x0, x1 − x0, . . . , xi−1 − xi−2) ∗ xi−1,

xi+1 − xi, xi+2 − xi+1, . . . , xn − xn−1)

+ ((x0, x1 − x0, . . . , xi−1 − xi−2) ∗ xi, xi+1 − xi − xi+1 + xi−1 ∗ xi,

xi+2 − xi+1, . . . , xn − xn−1)

= ri−1 + ((x0, x1 − x0, . . . , xi−1 − xi−2) ∗ xi, (xi−1 − xi) ∗ xi,

xi+2 − xi+1, . . . , xn − xn1)

= ri−1 + ri,

as needed.
(ii) follows from (i) as ∂

(∗)
n =

∑n
i=0(−1)idi and

∑n
i=0(−1)i(ri−1 + ri)

= 0.

8.3. Basic properties of multi-term distributive homology

Let (X; ∗1, . . . , ∗k) be a multi-shelf. We say that A ⊂ X is a submulti-
shelf if it is closed under all operations ∗i. In particular, for an element
t ∈ X, the set {t} is a submulti-shelf iff it satisfies the idempotency condition
for any operation (t ∗i t = t). For a submulti-shelf A we have the short

exact sequence of chain complexes (recall that ∂(a1,...,ak) =
∑k

i=1 ai∂
∗i and

to shorten notation we often write Σ =
∑k

i=1 ai):

0 → Cn(A) → Cn(X) → Cn(X,A) → 0, where Cn(X,A) = Cn(X)/Cn(A).

Proposition 8.5.

(i) Assume that for a submulti-shelf A ⊂ X there is an operations-preserv-
ing retraction r : X → A. Then r extends to a (chain complex) split
of the above short exact sequence r̃ : ZXn+1 → ZAn+1. In particular,
Hn(X) = Hn(A)⊕Hn(X,A).

(ii) If {t} ⊂ X is a one element submulti-shelf of X, then X → {t} is
a multi-shelf retraction, thus, by (i) Cn(X, {t}) splits and Hn(X) =
Hn({t})⊕Hn(X, {t}). We think about the homology of {t} as a multi-
shelf homology of a point, and call Hn(X, {t}) a reduced homology.

(iii) Let

Σ = Σk
i=1ai 6= 0, then H(a1,...,an)

n ({t}) =











Z n = 0

0 n > 0 even

ZΣ n is odd

and for Σ = 0, H
(a1,...,an)
n ({t}) = Z for any n.

(iv) Let (X; ∗) be a shelf, (x ∗ t) ∗ t = x ∗ t for every x ∈ X, and X ∗ t be
the orbit of the left action of X on t that is, X ∗ t = {y ∈ X | y =
x ∗ t, for some x ∈ X}. Then rt = ∗t : X → X ∗ t is a retraction; thus,

by (i), H
(∗)
n (X) = H

(∗)
n (X ∗ t)⊕H

(∗)
n (X,X ∗ t).
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(v) Let (X; ∗1, . . . , ∗k) be a multi-shelf. Consider the map ht : Cn → Cn+1

given by ht(x0, . . . , xn) = (x0, . . . , xn, t), and the map ft =
∑k

i=1 ai(∗i)t,

given by ft(x0, . . . , xn) =
∑k

i=1 ai((x0, . . . , xn) ∗i t), then (−1)n+1ht :
Cn → Cn+1 is a chain homotopy between the map ft and the zero map.

(vi) Let (X; ∗1, . . . , ∗k) be a multi-shelf and ∗0 the identity operation of

Bin(X). Let ∂(a0,a1,...,ak) =
∑k

i=0 ai∂
(∗i). Then a0IdX is chain ho-

motopic to −ft = −
∑k

i=1 ai(∗it).
(vii) Let (X, ∗) be a shelf, and consider a rack boundary operation ∂R =

∂(∗0) − ∂(∗), then for any t ∈ X, we have ft = ∗t is chain homotopic
to −IdX and it is a (chain complex) retraction, thus HR

n (X,X ∗ t) = 0
and HR

n (X) = HR
n (X ∗ t) for any t ∈ X such that (x ∗ t) ∗ t = x ∗ t for

every x ∈ X. A generalization of this observation plays an important
role in the computation of the 4-term homology of distributive lattices
in [Pr-Pu].

Proof. (i) If i : A → X is an embedding and ĩ : Cn(A) → Cn(X) its linear
extension to chain complexes, then r̃ĩ = IdA and ∂r̃ = r̃∂, so r̃ is a map
that splits chain complex Cn(X) and (i) of Proposition 8.5 follows.

(ii) It follows from (i) and idempotency t ∗i t = t.
(iii) Cn({t}) = Z with basic element (t, t, . . . , t). The chain complex

reduces to:

· · ·
0
→ Z

×Σ
→ Z

0
→ Z

×Σ
→ Z

0
→ Z

×Σ
→ Z

0
→ Z → 0

and the homology follows immediately.
(iv) This follows from (i).
(v) We have

∂
(a1,...,ak)
n+1 ht − ht∂

(a1,...,ak)
n = (−1)n+1

k
∑

i=1

ai((x0, . . . , x0) ∗i t)

and (v) follows.
(vi) This follows immediately from (v).
(vii) This is a consequence of (vi) but it should be stressed that it is a

tautology for a rack (as then X ∗ t = X for any t). If (X, ∗) is not a rack,
that is, there is t with ∗t not invertible, then we have a reduction in the
computation of rack homology (∂R = ∂(∗0) − ∂(∗)) from X to X ∗ t.

We refer to [Pr-Pu] for some useful generalizations of Proposition 8.5.
We end this section by showing that the reduced early degenerate com-

plex (F0, {t}) = s0(Cn−1)/Cn({t}) splits from the reduced chain com-
plex C(X, {t}) of a multi-spindle (X; ∗1, . . . , ∗n). The second factor
C(X, {t})/(F0, {t}) is called the reduced early normalized chain complex and
denoted by CeN (X, {t}). We also show how F0 = {F 0

n} and {Cn} are related.



854 J. H. Przytycki

Proposition 8.6.

(i) The short exact sequence of multi-spindle chain complexes:

0 → (F 0
n , {t}) → Cn(X, {t}) → CeN

n (X, {t}) → 0

splits with a split map s0p0 : C(X, {t}) → (F0, {t}), where
p0(x0, x1, . . . , xn) = (x1, . . . , xn).

(ii) s0 : Cn−1(X) ⊗ Z∑k
i=1 ak

→ s0Cn−1 ⊗ Z∑k
i=1 ak

yields an isomorphism

on mod(
∑k

i=1 ak) homology.

Proof. Proposition 8.6 follows from Lemma 8.7 (see also [Pr-Pu] for further
developments of these ideas).

Lemma 8.7.

(i) The map s0 : Cn → Cn+1 is a chain homotopy between (
∑k

i=1 ai)s0p0
and the zero map. In particular (

∑k
i=1 ai) annihilates Hn(F

0(X)). Fur-
thermore, s0p0 is a chain that splits the chain complex of Proposition
8.6(i).

(ii) The map p0 : Cn → Cn−1 is a chain homotopy between (
∑k

i=1 ai)p0p0
and the zero map. Furthermore, p0p0 is a chain map.

(iii) If (
∑k

i=1 ai) = 0, then (−1)ns0 and (−1)np0 are chain maps (we write
σ for (−1)ns0). Furthermore, p0s0 = IdCn and s0p0 = IdF 0 . In partic-
ular, σ : Cn → F 0

n+1 is an isomorphism of chain complexes.
(iv) More generally, σ⊗ Id is a chain complex isomorphism Cn(X)⊗ZΣ →

F 0
n+1 ⊗ ZΣ. In particular, Hn(X,ZΣ) is isomorphic to Hn+1(F0,ZΣ).

Proof. (i) We use the fact that d0s0 = d1s0 = (
∑k

i=1 ai)IdCn and that
(Cn, di, si) is a weak simplicial module and, in particular, dis0 = s0di−1 for
i > 1. Thus we have:

∂(a1,...,ak)s0 + s0∂
(a1,...,ak) =

n+1
∑

i=0

(−1)idis0 +
n
∑

i=0

(−1)is0di

= (d0s0 − d1s0) +
n+1
∑

i=2

(−1)idis0 +
n
∑

i=0

(−1)is0di

=

n+1
∑

i=2

(−1)is0di−1 +

n
∑

i=0

(−1)is0di

=
n+1
∑

i=1

(−1)i+1s0di +
n
∑

i=0

(−1)is0di = s0d0

=
(

k
∑

i=1

ai

)

s0p0.
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(
∑k

i=1 ai)s0p0 is a chain map, and because Cn is a complex of free groups,
the map s0p0 is a chain map.

We also can check directly that s0p0 : Cn → Cn is a chain map that is a
(chain) retraction to F 0

n = s0Cn−1. First, s0p0 is the identity on F 0
n ; further

we have:

(d
(∗)
0 s0p0 − s0p0d

(∗)
0 )(x0, x1, x2, . . . , xn)

= (x0, x1, x2, . . . , xn)− (x1, x1, x2 . . . , xn),

(d
(∗)
1 s0p0 − s0p0d

(∗)
1 )(x0, x1, x2, . . . , xn)

= (x0, x1, x2, . . . , xn)− (x1, x1, x2 . . . , xn),

(d
(∗)
i s0p0 − s0p0d

(∗)
i )(x0, x1, x2, . . . , xn) = 0 for i > 1 .

Thus ∂(∗)s0p0 = s0p0∂
(∗) and finally ∂(a1,...,ak)s0p0 = s0p0∂

(a1,...,ak).

(ii) We notice that d0p0 = (
∑k

i=1 ai)p0p0 and dip0 = p0di+1. Thus:

∂(a1,...,ak)p0 + p0∂
(a1,...,ak) = (

∑k
i=1 ai)p0p0 and (ii) follows.

(iii) For
∑k

i=1 ai = 0 we directly see that (−1)ns0 and (−1)np0 are chain
maps.

(iv) We see immediately that s0p0 = IdF0 mod Σ and p0s0 =
IdCn mod Σ.

9. Examples

In this section we illustrate our theory by various calculations of homol-
ogy of multi-spindles. With the exception of racks (e.g. [N-P-2, Nos, Cla])
no calculations were done before. We offer calculations of varying difficul-
ties, starting from two-term homology. In Subsection 9.4 we make a detailed
calculation using the following idea: in the homology of a point, the chain
groups Cn({t}) are one-dimensional which makes the computation easy (see
Proposition 8.5 (iv)). For |X| > 1 the chain groups grow exponentially,
but there is one case when the computation is not difficult, but still illumi-
nating: the case of |X| = 2 and normalized homology, in which Cn(X) is
two-dimensional. For example, it works nicely for the group homology of
Z2 and for the Hochschild homology of Z(Z2) = Z[x]/(x2 − 1), or Z[x]/(x2)
(the underlying ring of Khovanov homology). Here we show the calcula-
tion for a 4-term distributive homology of a 4-spindle (in fact, the maximal
multi-spindle for |X| = 2; see Subsection 9.3 and the 2-element Boolean
algebra B1).

9.1. The case of 2-term homology with ∂(a,d) = a∂(∗0) + d∂(∗∼)

Define ∗∼ : X ×X → X as the left trivial operation, that is a ∗∼ b = b
(we will explain our notation in the section on Boolean algebras).
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Below we consider the homology of the chain complex (C(X); ∂(a,d))
where ∂(a,d) = a∂(∗0) + d∂(∗∼). This generalizes Theorem 6.6 for g = Id
and is further generalized in [Pr-Pu].

Theorem 9.1.

(1) The chain complex (Cn(X), ∂(a,d)) splits into three pieces:
(i) Cn({t}), the chain complex of a point (we fix a point t ∈ X),
(ii) F0(X, {t}) = {F 0

n(X, {t})} = {F 0
n/Cn({t})} = {s0Cn−1/Cn({t})},

the reduced early degenerate chain complex, and
(iii) Cn(X, {t})/F 0

n, the reduced early normalized chain complex.
(2) If a+ d 6= 0, then

Hn({t}) =











Z if n = 0

0 if n is even and n > 0

Za+d if n is odd.

If a+ d = 0 then Hn({t}) = Z.
(3) For a finite X, and a or d different from 0 we have:

Hn(F0(X, {t})) =

{

Z
un−1
gcd(a,d) if n is even

Z
un

gcd(a,d)
if n is odd

where un(|X|) = un is defined by: u0 = 1, u1 = |X| − 1, and un +
un−1 = |X|n, that is un = |X|n−un−1 = |X|n−|X|n−1+ · · ·+(−1)n =
|X|n+1+(−1)n

|X|+1 .

(4) For a finite X, and a 6= 0, we have

Hn((X, {t})/F0) = Z
un+1−un+(−1)n

a = Z
(|X|−1)un
a .

(5) If a 6= 0, and a+ d 6= 0 then

Hn(X) =











Z⊕ Z
|X|−1
a if n = 0

Z
un+1−un+1
a ⊕ Z

un−1
gcd(a,d) if n is even and n > 0

Za+d ⊕ Z
un+1−un−1
a ⊕ Z

un

gcd(a,d) if n is odd.

The case of a = 0 was already considered in Corollary 6.7. The case of
a+d = 0 differs only from the general case in the factor Hn({t}) so can
be easily derived from (2)–(4).

Proof. (1) This follows from Propositions 8.5 and 8.6.
(2) This is a special case of Proposition 8.5(iii).
(3) This follows from (4) and Lemma 8.7(iii).
(4) First we notice that ∂(a,d) = a∂(∗0) in our chain group. The result

follows from the fact that for a = 1 we get an acyclic chain complex and
from a careful analysis of the rank of ∂n((C, {t})/F0).

(5) This is the summary of (2)–(4).
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9.2. Example: 3-term distributive homology of a spindle with 1r
and 0r

For any spindle (X, ∗) we have the 3-element distributive set {∗0, ∗, ∗∼};
we check directly:

(x ∗ y) ∗∼ z = z and (x ∗∼ z) ∗ (y ∗∼ z) = z ∗ z = z,

and

(x ∗∼ y) ∗ z = y ∗ z and (x ∗ z) ∗∼ (y ∗ z) = y ∗ z.

Thus we can consider 3-term distributive homology of a multi-spindle
(X; ∗0, ∗, ∗∼) with the boundary operation ∂(a,c,d) = a∂(∗0) + c∂(∗) + d∂(∗∼).
Computation of this homology, in general, is a difficult problem as it con-
tains quandle homology as a special case. However, for ∗ with a right unit
1r (i.e. x ∗ 1r = x), and a right projector 0r (i.e. x ∗ 0r = 0r), the solution
can be obtained in a manner similar to that of Theorem 9.1. Namely, we
have:

Theorem 9.2.

(1) The chain complex (Cn(X), ∂(a,c,d)) splits into three pieces:
(i) Cn({1r}), the chain complex of a point (we fix a point 1r),
(ii) F0(X, {1r}) = {F 0

n/Cn({1r})} = {s0Cn−1/Cn({1r})}, the reduced
chain complex of early degenerate elements, and

(iii) CeN
n (X, {t}) = Cn(X, {1r})/F

0
n , the reduced early normalized chain

complex.
(2) If a+ c+ d 6= 0, then

Hn({t}) =











Z if n = 0

0 if n is even and n > 0

Za+c+d if n is odd.

If a+ c+ d = 0 then Hn({1r}) = Z.
(3) For a finite X, and a, c, or d different from 0, we have:

Hn(s0Cn−1/Cn({1r}) =

{

Z
un−1
gcd(a,c,d) if n is even

Z
un

gcd(a,c,d) if n is odd

where un = un(|X|) = |X|n − |X|n−1 + · · ·+ (−1)n, as in Theorem 9.1.
(4) For a finite X, and a or c different from 0, we have

Hn((X, {1r})/F0) = Z
un+1−un+(−1)n

gcd(a,c) = Z
(|X|−1)un

gcd(a,c) .
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(5) If a or c 6= 0, and a+ c+ d 6= 0 then

Hn(X) =















Z⊕ Z
|X|−1
gcd(a,c) if n = 0

Z
un+1−un+1
gcd(a,c) ⊕ Z

un−1
gcd(a,c,d) if n is even and n > 0

Za+c+d ⊕ Z
un+1−un−1
gcd(a,c)

⊕ Z
un

gcd(a,c,d)
if n is odd.

The case a = c = 0 was already described in Corollary 6.7. The case
a+ c+ d = 0 differs from other cases only at Hn({1r}).

Proof. The proof is a refinement of the proof of Theorem 9.1. We first
consider the chain homotopy h1r to get:

(−1)n+1(∂(a,c,d)h1r − h1r∂
(a,c,d))(x0, . . . , xn)

= a(x0, . . . , xn) + (c+ d)(1r, . . . , .1r),

and the chain homotopy h0r to get:

(−1)n+1(∂(a,c,d)h0r − h0r∂
(a,c,d))(x0, . . . , xn)

= (a+ c)(x0, . . . , xn) + d(0r, . . . , .0r).

From this we conclude that Hn(C, {1r}) is annihilated by gcd(a, c). Further
we proceed like in the proof of Theorem 9.1; see [Pr-Pu] for details.

9.3. Example: 4-term normalized distributive homology of the 2-

element Boolean algebra

Our first interesting example of a distributive monoid is given by a dis-
tributive lattice (e.g. Boolean algebra) (L,∪,∩) because lattice operations
∪ and ∩ form a distributive set. (We refer to [B-D, Gra, Si, Tra] for an
extensive coverage of distributive lattices14 and Boolean algebras). In this
paper, we denote these binary operations by ∗∪ and ∗∩. The distributive
monoid spanned by these operations is a commutative monoid of 4 idempo-
tent elements: ∗0 - identity element, ∗∪, ∗∩, and composition ∗∼ = ∗∩∗∪.
One can present the monoid as:

{∗∪, ∗∩ | ∗∪ ∗∩ = ∗∩∗∪, ∗∪∗∪ = ∗∪, ∗∩∗∩ = ∗∩}.

Notice that ∗∼ is the left trivial operation, a ∗∼ b = b.
Using our 4-element distributive monoid we can consider the 4-term

boundary operation: ∂(a,b,c,d) : Cn(L) → Cn−1(L), where Cn(L) = ZLn+1

and ∂ = ∂(a,b,c,d) = a∂(∗0) + b∂(∗∪) + c∂(∗∩) + d∂(∗∼).
The computation of the four-term distributive homology of L is gener-

ally difficult, but it is done fully in [Pr-Pu]; see Theorem 9.5. For normal-
ized homology we are able to make a very elementary (and illuminating, in
my opinion) calculation in the simplest nontrivial case of B1 = {0, 1}, the

14In our language a distributive lattice is a multi-spindle (L,∪,∩) with commutative
and associative operations, satisfying absorption axioms: (a ∪ b) ∩ b = b = (a ∩ b) ∪ b.
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two element Boolean algebra of subsets of the one element set. This case
is approachable because CNorm

n (B1) is 2-dimensional for any n. Choose
the basis en = (0, 1, 0, 1, 0, . . .), e′n = (1, 0, 1, 0, 1, . . .) of CNorm

n (B1) =
Cn(B1)/C

D
n (B1). To be able to deduce homology, it is enough to write

∂ in this basis. We have to consider the case of n even and odd separately.

9.4. Detailed calculation of the quandle homology of X = B1

∂(∗0)(en) = (−1)nen−1 + e′n−1 = (−1)n∂(∗0)(e′n).

For n even we have en = (0, 1, . . . , 1, 0) and e′n = (1, 0, . . . , 0, 1); then

∂(∗∪)(0, 1, . . . , 1, 0) = (−1)nen−1

∂(∗∪)(1, 0, . . . , 0, 1) = en−1.

For n odd we have en = (0, 1, . . . , 0, 1) and e′n = (1, 0, . . . , 1, 0); then

∂(∗∩)(0, 1, . . . , 1, 0, 1) = (−1)nen−1 + e′n−1

∂(∗∩)(1, 0, . . . , 0, 1, 0) = 0.

∂(∗∼)(en) = ∂(∗∼)(e′n) = 0.

For ∂(a,b,c,d) = a∂∗0 + b∂∗∪ + c∂∗∩ + d∂∗∼ , and for n even

∂(a,b,c,d)(en) = (−1)n(a+ b)en−1 + (a+ c)e′n−1 = (−1)n∂(a,b,c,d)(e′n).

For n odd:

∂(a,b,c,d)(en) = (−1)n(a+ c)en−1 + (a+ c)e′n−1,

∂(a,b,c,d)(e′n) = (a+ b)(en−1 + (−1)ne′n−1).

Therefore, we have the following matrices of relations in CNorm
n /∂(CNorm

n+1 ).
For n even:

(

(−1)n(a+ b) a+ c

a+ b (−1)n(a+ c)

)

For n odd:
(

(−1)n(a+ c) a+ c

a+ b (−1)n(a+ b)

)

From this we get:

Proposition 9.3.

(i) CNorm
n /∂(CNorm

n+1 ) = Z⊕ Zgcd(a+b,a+c).

(ii) For n > 0, ∂(CNorm
n ) = Z, unless a + b = a + c = 0 in which case

∂(CNorm
n ) = 0.
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(iii) For n > 0, HNorm
n (B1) = Zgcd(a+b,a+c), unless a + b = a + c = 0 in

which case HNorm
n (B1) = Z⊕ Z.

HNorm
0 (B1) = CNorm

0 /∂(CNorm
1 ) = Z⊕ Zgcd(a+b,a+c).

In the proof we use the standard but important observations that
(i) rank(Hn) + rank(Im∂n+1) + rank(Im∂n) = Xn, and
(ii) torHn(X) = tor(ZXn+1/Im(∂n+1)).
The degenerate part of the homology is much more difficult. We

started with computer experiments (with the help of Michal Jablonowski
and Krzysztof Putyra) and eventually proved the following:

Theorem 9.4. [Pr-Pu] Assume that a + b + c + d 6= 0 and a + b 6= 0 or
a+ c 6= 0 then rankHD

n (B1) = 0 and

HD
n (B1) =

{

Z
an−1
gcd(a+b,a+c) ⊕ Z

an−1
gcd(a+b,a+c,c+d) if n is even

Za+b+c+d ⊕ Z
an−1
gcd(a+b,a+c) ⊕ Z

an
gcd(a+b,a+c,c+d) if n is odd.

In the formula above an = un(2) (see Theorem 9.1), that is, a0 = a1 = 1,
an + an−1 = 2n, and thus an = 2an−1 + (−1)n = 2n − 2n−1 + · · ·+ (−1)n =
2n+1+(−1)n

3 .

9.5. More about homology for ∂(a,b,c,d) = a∂∗0 + b∂∗∪ + c∂∗∩ + d∂∗∼

Two months after a June seminar talk I gave at Warsaw Technical Uni-
versity, we found a general formula for the four-term distributive homology
of any finite distributive lattice. For b = c = 0 it gives Theorem 9.1. To for-
mulate Theorem 9.5 we need some basic terminology: let L be a distributive
lattice; we say that an element a of L is join-irreducible if for any decompo-
sition a = b∪ c, we have a = b or a = c. Let J(L) be the set of non-minimal
(different from ∅), join-irreducible elements in L and J its cardinality. In
what follows L denotes the cardinality of L. If L is finite, then J is equal to
the length of every maximal chain in L (see Corollary 14 in [Gra]).

Theorem 9.5. [Pr-Pu]. Let L be a finite distributive lattice. Assume for
simplicity that a+ b+ c+ d 6= 0, a+ b or a+ c is not equal to 0, and one of
a, b and c is not equal to 0. Then

H(a,b,c,d)
n (L) = Z⊕ Z

J
gcd(a+b,a+c) ⊕ Z

L−J−1
gcd(a,b,c)

if n = 0,

Z
Jun(2)
gcd(a+b,a+c)⊕Z

un+1(L)−un(L)+1−Jun(2)
gcd(a,b,c) ⊕Z

Jun(2)−J
gcd(a+b,a+c,c+d)⊕Z

un(L)−1−Jun(2)+J
gcd(a,b,c,d)

if n is even, and

Za+b+c+d ⊕ Z
Jun(2)
gcd(a+b,a+c) ⊕ Z

un+1(L)−un(L)−1−Jun(2)
gcd(a,b,c) ⊕ Z

Jun(2)
gcd(a+b,a+c,c+d)

⊕Z
un(L)−Jun(2)
gcd(a,b,c,d)

if n is odd.



Distributivity versus associativity 861

9.6. Generalized lattices

Our computation in [Pr-Pu] of the four-term homology of a distributive
lattice can be partially generalized and this justifies an introduction of the
following multi-spindle, in which commutativity or associativity of opera-
tions are not assumed.

Definition 9.6. A generalized lattice (X; ∗1, ∗2) is a set with two binary
operations which satisfy the following three conditions:

(1) Each operation is right self-distributive.
(2) Absorption conditions hold: (a∗1 b)∗2 b = b = (a∗2 b)∗1 b (in particular

each action satisfies the idempotency condition).
(3) (a ∗1 b) ∗1 b = a ∗1 b and (a ∗2 b) ∗2 b = a ∗2 b.

If additionally our operations are right distributive with respect to each
other:

(4) (a ∗1 b) ∗2 c = (a ∗2 c) ∗1 (b ∗2 c) and (a ∗2 b) ∗1 c = (a ∗1 c) ∗2 (b ∗1 c), we
call (X; ∗1, ∗2) a generalized distributive lattice.

We should comment here that absorption implies that ∗1∗2 = ∗2∗1 = ∗∼
and idempotency of each operation a ∗1 a = a = a ∗2 a (we have: ((a ∗1 a) ∗2
a) ∗1 a = a ∗1 a (absorption for b = a, i.e. (a ∗1 a) ∗2 a = a). We also have
((a ∗1 a) ∗2 a) ∗1 a = a (absorption for b = a ∗1 a); thus a ∗1 a = a. The
monoid in Bin(X) generated by (∗1, ∗2) is isomorphic to the four element
monoid from classical (distributive) lattices (Subsection 9.3).

10. Motivation from knot theory

The fundamental result in combinatorial knot theory, envisioned by Max-
well and proved by Reidemeister and Alexander and Briggs around 1927, is
that links in R3 are equivalent (isotopic) if and only if their diagrams are
related by a finite number of local moves (now called Reidemeister moves).
Three Reidemeister moves are illustrated in Figures 10.2–10.4; see [Prz-1,
Prz-2] for an early history of knot theory. Thus, one can think about classical
knot theory as analyzing knot diagrams modulo Reidemeister moves. One
can, naively but successfully, construct knot invariants as follows: choose a
set X with a binary operation ∗ : X×X → X, and consider “colorings” of arcs
of an oriented diagram D (arcs are from undercrossing to undercrossing) by
elements of X so that, at every crossing, the coloring satisfies the condition
from Fig. 10.1. This gives a different condition for a positive and negative
crossing, which can be put together as in Fig. 10.1 (iii) (here only the
overcrossing has to be oriented and, of course, we need an orientation of the
plane of the projection). We interpret the use of the operation ∗ as saying
that an overcrossing is acting on an undercrossing. We define a diagram



862 J. H. Przytycki

invariant colX(D) as a cardinality of a set of all allowed colorings of D, that
is, colX(D) = |{f : arcs(D) → X | f satisfies the rules of Fig. 10.1}|.

a     b

a

b *

a

b *a     b

(i) positive crossing

a     b

a

b *

(ii)  negative crossing (iii)  general case 

Fig. 10.1. local coloring by (X, ∗)

In order to be a link invariant, colX(D) should be invariant under the
Reidemeister moves, which provides motivation for the axioms of a quandle.

(R1) The first Reidemeister move of Figure 10.2 requires the idempotency
a ∗ a = a (left part), and in the case of the right part we need a
unique solution x = a for the equation x ∗ a = a, this follows from the
idempotency and invertibility of ∗.

*a  a=aa a

 x   a=a*

a x

a

R1

Fig. 10.2. colX(R1(D)) = colX(D)

(R2) The second Reidemeister move requires invertibility of ∗. In fact, the
move from Fig. 10.3(i) requires ∗b to be injective (a∗b = a′∗b ⇒ a = a′)
and that of Fig. 10.3(ii) requires ∗b to be bijective (for any a, b there
is the unique x such that a = x ∗ b).

a   b = a’   b* *

b

a a’ x

b

aa=x  b*

R2

(ii)(i)

Fig. 10.3. colX(R2(D)) = colX(D)
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(R3) We illustrate the need for right self-distributivity of ∗ in Figure 10.4,
where we choose all crossings to be positive. If ∗ is also invertible, then
all other choices of orientation follow as well (Proposition 2.4 can be
used then).

*(a   c)

*(a   c)

a

b

c

a

b

c

c

c

R 3

a    b

(a    b)

b   c

*   c*

*
*

*

*

(b   c)

b   c

*

Fig. 10.4. colX(R3(D)) = colX(D)

10.1. Motivation for degenerate chains and quandle homology

Carter, Kamada and Saito at al. noticed in 1998 [CKS, CJKLS] that
if one colors a link diagram D by elements of a given quandle (Q, ∗) as
described above, and then considers a sum over all crossings of D of pairs in
Q2, ±(a, b), according to the following convention:

a

b *a     b

−(a,b) 
a

b *a     b

(a,b) 

Figure 10.5; building the 1-chain for an oriented link diagram and its coloring

then the sum c(D) =
∑

v∈{Crossings} sgn(v)(a(v), b(v)) is not only a 1-chain,

but is a 1-cycle in C1(Q), and its class in the first homology HQ
1 (Q) is in-

variant under Reidemeister moves. We show this carefully, and in particular,
stress the difference (shift) in grading. The history of discovering quandle
homology is surveyed in [Car].

(i) Carter, Kamada, and Saito have considered cocycle invariants, and in
their convention, an element Q2 → Z is a 2-cocycle. For us, however, the
sum constructed above is a 1-cycle, an element of C1(Q) = ZQ2. The
(rack or quandle) boundary operation they consider is ∂R = ∂(∗)−∂(∗0),
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and for ZQ2 we get ∂R(x0, x1) = x0−x0 ∗x1. In our case, if a contribu-
tion of the crossing v is sgn(v)(a, b), then its contribution to ∂R(c(D) is
sgn(v)(x0−x0 ∗x1). Figure 10.5 informs us that the contribution is ex-
actly the difference between the label of an undercrossing at the entrance
minus the label at the exit (when moving according to the orientation).
Thus, obviously, each component contributes zero to ∂R(c(D)), thus
∂R(c(D)) is a 1-cycle.

(ii) The first Reidemeister move introduces (a, a) into the sum, so we have
to declare it to be zero; here the need to consider normalized or quandle
homology arises. Now ∂Q : C/CD → C/CD. The second Reidemeister
move always works as the crossings involved in it have opposite signs,
so the new contribution to w(c) cancels.

(iii) With the third Reidemeister move, we consider the move from Figure
10.4 (it requires some topological manipulation, but it is well known
that it is sufficient). Thus the contributions to c(D) of three crossings
from the top diagram is (b, c) + (a, c) + (a ∗ c, b ∗ c) and of the bottom
diagram is (a, b) + (a ∗ b, c) + (b, c). Now ∂R(a, b, c) = (a, c) − (a, b) −
(a ∗ b, c) + (a ∗ c, b ∗ c), which is exactly c(D) − c(R3(D)). Thus c(D)

and c(R3(D)) are homologous in HR
1 (D) and HQ

1 (D).
(iv) We showed that if (Q, ∗) is any quandle and we choose a quandle col-

oring of D, then c(D) yields an element of HQ
1 (Q) preserved by all

Reidemeister moves. However, if (Q, ∗) is only a rack, then c(D) is an
invariant of R2 and R3 (a so called invariant of regular isotopy), thus

c(D) yields an element of HQ
1 (Q) invariant up to regular isotopy.

(v) One can improve (iv) slightly and make our cycle invariant c(D) more
useful by noting that c(D) yields an invariant of framed isotopy. Here
we observe that we can move a “kink” of the first Reidemeister move
under another arc using R2 and R3 only, and cancel contributions from
“kinks” of the opposite sign, as long as they are in the same component.

The above considerations have been generalized to surfaces in 4-space, or
more generally, to codimension two embeddings; in fact, it was an initial
motivation for Fenn, Rourke, and Sanderson to introduce rack homology
around 1990. There is another remarkable cocycle invariant developed in
[R-S, CKS] for codimension 2 embeddings, coming from shadow colorings by
elements of (X; ∗). It is a 3-cocycle invariant in classical knot theory (we
formulate it below in a homology language and with a dimension shift; thus
we construct a 2-cycle in Cn(X)).

Definition 10.1. [R-S, CKS] Let (X, ∗) be a rack and D an oriented
link diagram. We decorate arcs of D by elements of X as in the previous
definition (Figure 10.1). Additionally, we color regions of R2−D by elements
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of X according to the convention: a
x

x   a*
(the small arrow is added

to record a positive orientation of the projection surface). For a given shadow
coloring we define a 2-cycle c2(D) ∈ CR

2 (X) as the sum over all crossings of
D of terms ±(x, a, b) according to the convention of Figure 10.6:

x   a*

(x   a)  b**

*x   b

*a     b

x   a**x   b

a     b
(x   a)  b**

−(x,a,b) 

x
ab

*

(x,a,b) 

a

b

x

Fig. 10.6. building a 2-chain for an oriented link diagram using a shadow coloring

One can check that c2(D) is a 2-cycle in C2(X). Further, c2(D) is preserved
by the second Reidemeister move (to see the cancellation of contributions
from two new crossings after R2, we should just put together crossings of
Figure 10.6). With a little more effort one shows that c2(R3(D)) − c2(D)
is a boundary (e.g. if we shade regions of Figure 10.4, with the bottom
region labelled by x, then c2(R3(D)) − c2(D) = ∂(x, a, b, c)). Thus c2(D)
and c2(R3(D) are homologous in HR

2 (D). To summarize, the homology class
of c2(D) is a regular isotopy invariant.

If (X, ∗) is a quandle, we can work with quandle homology HQ
2 (X), and

because the contribution of the new crossing in a first Reidemeister move
is a degenerate element, the class of c2(D) in HQ

2 (X) is preserved by all
Reidemeister moves.

If we only care about the third Reidemeister move of Figure 10.4, we
can work with any shelf (X, ∗). The usefulness of working only with some
Reidemeister moves may be debated, but there is already a considerable
body of literature on the topic [CESS].

Remark 10.2. Recall that the map p0 : Cn(X) → Cn−1(X) is given by
p0(x0, x1, . . . , xn) = (x1, . . . , xn) and that, as noted in Lemma 8.7, (−1)n+1p0

is a chain map on (Cn ⊗ ZΣ, ∂
(a1,...,ak)
n ). If Σ =

∑k
i=1 ai = 0, as is the case

for rack homology, then (−1)n+1p0 is a chain map. Our observation is that
p0(c2(D)) = c(D), which follows from the construction, but should have
some interesting consequences. It is true, in general, that for a given n-
dimensional “diagram” D of an n-dimensional manifold in Rn+1, the n-chain
corresponding to a shadow coloring of D is sent by p0 to a coloring of D.
We plan to address the significance of this in [P-R].
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11. Yang-Baxter Homology?

11.1. From self-distributivity to Yang Baxter equation

Let (X; ∗) be a shelf and kX a free module over a commutative ring k with
basis X (we can call kX a linear shelf). Let V = kX, then V ⊗ V = k(V 2)
and the operation ∗ yields a linear map R = R(X;∗) : V ⊗ V → V ⊗ V given
by R(a, b) = (b, a ∗ b). Right self-distributivity of ∗ gives the equation of
linear maps

V ⊗ V ⊗ V → V ⊗ V ⊗ V :

(R⊗ Id)(Id⊗R)(R⊗ Id) = (Id⊗R)(R⊗ Id)(Id⊗R).

In general, the equation of type (1) is called a Yang-Baxter equation and the
map R a Yang-Baxter operator. We also often require that R is invertible.
With relation to this, we notice that if ∗ is invertible then R(X;∗) is invertible

with R−1
(X;∗)(a, b) = (b∗̄a, a).

In our case R(X;∗) permutes the base X × X of V ⊗ V , so it is called
a permutation or a set theoretical Yang-Baxter operator. Our distributive
homology, in particular our rack homology (Cn, ∂

R = ∂(∗) − ∂(∗0)), can
be thought of as the homology of R. It was generalized from the Yang-
Baxter operator coming from a self-distributive ∗ to any permutational Yang-
Baxter operator (coming from biracks or biquandles), [CES-2]. For a general
Yang-Baxter operator, there is no general homology theory (compare [Eis-1,
Eis-2]). The goal/hope is to define homology for any Yang-Baxter operator,
so that the Yang-Baxter operator defining the Jones polynomial leads to a
version of Khovanov homology.

Added in proof: A student in my class, Yosef Berman, informed me
(October 5) that he constructed an embedding of the symmetric group S3 in
Bin(X). Namely, if X = {0, 1, 2, 3, 4, 5} then the subgroup, S3 ⊂ Bin(X)
is generated by binary operations

∗τ =























1 1 3 5 5 3

0 0 4 2 2 4

3 3 5 1 1 5

2 2 0 4 4 0

5 5 1 3 3 1

4 4 2 0 0 2























and ∗σ =























2 4 2 4 2 4

5 3 5 3 5 3

4 0 4 0 4 0

1 5 1 5 1 5

0 2 0 2 0 2

3 1 3 1 3 1























.
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