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ABSTRACT

In this paper, we adjust the Yang—Baxter operators constructed by Jones for the
HOMFLYPT polynomial. Then we compute the second homology for this family of
Yang—Baxter operators. It has the potential to yield 2-cocycle invariants for links.
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1. Introduction

The Yang-Baxter equation® was first introduced independently in a study of many
body quantum system by Yang [I8] and statistical mechanics by Baxter [I]. Since
the discovery of the Jones polynomial [§] in 1984, solutions to the Yang-Baxter
equation have become important for knot theory. In particular, Jones [8] and Turaev
[16] built a machinery to construct link invariants using Yang-Baxter operators and
the family of Yang-Baxter operators from the representation of A! series lead to si,,
polynomial invariants whose “limit” is the HOMFLYPT polynomial [7] [14]. Racks
and quandles give special examples of Yang-Baxter operators. Homology theory

*Corresponding author.
2The name Yang—Baxter equation was coined by Ludvig Faddeev.
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of racks and quandles were introduced in [3], [6]. Carter, Elhamdadi and Saito [2]
defined a (co)homology theory for set-theoretic Yang—Baxter operators generalizing
this homology. Homological and homotopical invariants of links using set-theoretic
Yang-Baxter operators were studied in [2H4] [TT}, 12} [19]. The homology theory of
general Yang-Baxter operators were developed by Lebed [I0] and Przytycki [13]
independently and this homology theory is equivalent to the one defined in [2]
when restricted to the set-theoretic Yang—Baxter operators [15]. In the first part of
this paper, we give a detailed proof that after modifying the Yang—Baxter matrix
obtained from A! series to be column unital, they are still Yang-Baxter operators.
Furthermore, this new family of operators also lead to the sl,,, polynomial invariants
[17], which is implicit in [§]. The homology can be defined for any column unital
Yang-Baxter operators, see [I3]. In the second part of the paper, we compute the
second homology of the column unital Yang-Baxter operators corresponding to si,,
link invariants denoted by R(,,) (see Theorem B.3).

2. Column Unital Yang—Baxter Operators

Inspired by statistical mechanics, Jones constructed the Yang—Baxter operators
leading to the Jones and HOMFLYPT polynomials, see [9} [16] for more information
on the use of Yang—Baxter operators in knot theory.

Definition 2.1. Let k£ be a commutative ring and V' be a k-module. If a k-linear
map, R: V®V — V ®V, satisfies the following equation called the Yang-Baxter
equation:

(RoIdy)o(Idy ® R)o (R®1Idy) = (Idy ® R) o (R®Idy) o (Idy ® R),
then we say R is a pre-Yang—Baxter operator. If, in addition, R is invertible, then

we say R is a Yang—Baxter operator.

Definition 2.2. Let k = Z[q,q '], m be a positive integer, and V,,, be the free
k-module generated by the set X,,, = {v1,...,v,,} with ordering v, < v if and
only if a < b. Express a k-linear operator R : V,,, @ V,;, — V;,, @ V;, by R(v, @ vp) =
D i<ed<m R%v. ® vg. Jones’ Yang-Baxter operator on level m is given by the
following coefficients:

—q ifa=b=c=d;
1 ifd=a#b=c¢
R = .
g t'—q ifc=a<b=d;
0 otherwise,
where a, b, ¢, d are integers satisfying 1 < a,b,c,d < m.
In this section, we give a detailed proof that the family of column unital oper-
ators defined in Theorem are Yang-Baxter operators. These operators are
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obtained from the Jones’ Yang—Baxter operators by dividing each column by the
1

sum of elements in the column and substitution y> = T g

Theorem 2.3. Let k = Z[y,y~ 1], m be a positive integer, and V,, be the free k-
module generated by the set X,, = {v1,...,vm} with ordering v, < vy if and only
if a < b. Then the k-linear operator Ry : Vin @ Vi — Vi, @ Vi, given by the
coefficients
1 ifd=a>b=c
b Y ifd=a<b=c
1—y? ifc=a<b=d;
0 otherwise,
where a,b, c,d are integers satisfying 1 < a,b,c,d < m, is a Yang—Bazter operator
for each m > 1.
It follows directly that the inverse of these operators is

1 ifd=a<b=c

b y 2 ifd=a>b=c¢
1—y ifc=a>0b=d;
0 otherwise,

where a, b, c,d are integers satisfying 1 < a,b,c,d < m.

Before the proof of Theorem 23] we set up some notations and give Proposition
24 Throughout the paper, we will write R, V, X for Ry, Vim), X(m) defined in
Theorem 23] respectively. In any statement, whenever we use R, V, X, it implies
the statement is true for Ry, Vim), X(m), Ym = 2,3,.... We will use integers
1 <a,b,¢c < m to represent the basis elements v, vy, v. and (a,b, ¢) for the tensor
product v, ® vy @ ve.

Proposition 2.4. R(a,a) = (a,a) agrees with the formulas R(a,b) = (1 —
y*)(a,b) + y*(b,a) when a < b, R(a,b) = (b,a) when a > b by substituting b = a.

Proof. R(a,a) = (a,a) = (1 —y?)(a,a) + y*(a, a). O
Now, we prove Theorem 23]

Proof. For m = 1, the Yang—Baxter equation hold trivially.

We consider the cases of m > 2.

Let a < b < ¢ for a,b,c € X(;), then by Proposition 2.4 we need to check in
total six cases for the Yang-Baxter equation, which are (a,b,c); (b, a,c); (a,c,b);
(b,c,a); (¢,a,b); (¢,b,a) € X?m). We start from the case of (a, b, ¢). From the left-
hand side of the Yang-Baxter equation, computing terms by terms, we get the
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N

N

/abc\
2

(b,c,a) (b,a,c) (a,c,b) (a,b,c)
(¢,b,a) (b,¢,a) (a,b,¢) (c,a,b) (a,¢,b) (b,a,c) (a,b,c)

Fig. 1. Computational tree for the left-hand side of the Yang-Baxter equation of (a, b, ¢).

following (see Fig. [):
(R®Idy)o (Idy ® R) o (R ® Idy)(a,b, c)
= (R®1dy) o (Idy @ R)(32(b,a,c) + (1 —y?)(a, b, c)),
(R®1dy) o (Idy @ R)(y*(b,a,c))
= (R@1dv)(y*y*(b,c,a) + (1 - y*)y*(b,a,c)),
(R 1dv)(y*y* (b, ¢,a)) = y*y*y*(c,b,a) + (1 — y*)y*y* (b, ¢, a),
(Re1dv)((1 = y*)y?(b,a,0) = (1 = y*)y*(a, b, c)
and
(R®1dy) o (Idy ® R)((1 —y*)(a,b,c))
= (R@1dv)(y*(1 — y*)(a, ¢, b) + (1 = y*)(1 = y*)(a, b, ¢)),
(R®1dv)(y*(1 - y*)(a, ¢, b))
=y*y* (1 = y*) (e, a,0) + (1= v)y* (1 = v?)(a, ¢, b),
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N

N

N

/abc\

(a, (a,b,c)
,a,b) (a,c,b) (b,a,c) (a,b,c)
1 / y?
(¢c,b,a) (c,a,b) (a,b,c) (b,¢,a) (b,a,c)(a,c,b) (a,b,¢)

Fig. 2. Computational tree for the right-hand side of the Yang—Baxter equation of (a, b, c)

(R®1dyv)((1 - y*) (1 —y*)(a,b.c))
=y (1 - y*)(1 =y (ba,0) + (1 - y*) (1~ y*)(1 —y*)(a, b ).

Similarly, we deal with the right-hand side of the Yang-Baxter equation, com-
puting terms by terms, we get the following (see Fig. [2):

(Idy ® R) o (R®1dy) o (Idy ® R)(a,b,c) = (Idy ® R) o (R® Idy)(y*(a,c,b) +
(1 - y2)(a’ bv C)),

(Idy ® R) o (R® Idv)(y*(a, ¢, b)) = Idy @ R)(y*y*(c, a,b) + (1 — y*)y*(a, ¢, b)),
(Idv @ R)(y*y*(c,a,b)) = y*y*y* (e, b,a) + (1 = y*)(1 — y*)y*(c, a,b),
(Idv @ R)((1 = y*)y*(a.¢,b)) = (1 = y*)y*(a, b, c)
and
(Idy © R) o (R Idy)((1 - 4)(a, b, )
=1Idv ® R)(y*(1 — y*) (b, a,¢) + (1 = y*)(1 — y*)(a, b, 0)),
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Idy @ R)(y*(1 - y?)(b,a,¢))
=y2 (1 = )b c,a) + (1 = y*)y* (1 = y*) (b, a, 0),
Idy @ R)((1 - ¢*)(1 = y*)(a,b,¢))
=2 (1= ") (1 = y*)(a,¢,0) + (1 = y*)(1 = y*)(1 = y*)(a,b,¢).

Both expressions are equal, thus prove Yang-Baxter equation holds for (a, b, ¢). The
other cases can be checked directly in a similar way. O

Remark 2.5. From our proof and Figs. [l and 2] we can conclude more:

(R®Idy) o (Idy @ R) o (R®1dy)(a,b,c)
= [[y*y*y*(c,b,a) + (1 = y*)y?y* (b, ¢, a)] + [(1 = y?)y*(a, b, ¢)]]
+y* (1 = y*) (e a,b) + (1= 9y (1 — y*)(a, ¢, b)]
+ 1 = y*) (1 =) (b,a,0) + (1= y*)(1 = y*)(1 = y*)(a, b, 0)],
(Idy ® R) o (R® Idy) o (Idy ® R)(a, b, )
= [[v?y*y*(c,b,0) + (1 = v*)(1 = 4*)y?(c, a,0)] + [(1 = *)y*(a, b, )]
+[y** (1 =) (b,¢,0) + (1 = y*)y?(1 = y*) (b, a, )]

+2 (1= y*)(1 =y (a,e.b) + (1= y*) (1 = y*) (1 — y*)(a, b, 0)]].

Terms in the sum correspond to the leaves of the computational tree.
Square brackets group terms according the structure of the tree (see Figs. [II
and [2]).

Important observation is that if we transform the result of the left-hand side of
(a,b,c) by first switching the position of a and ¢ and then reversing the order of
the triple, we obtain exactly the result of right-hand side of (a, b, ¢) square bracket-
wisely. This observation can actually reduce the number of cases to check, which is
important for us to compute the higher level homology in the future.

As mentioned before, the family of Yang-Baxter operators, R(,,), has the prop-
erty that summation of elements in each column of the matrix presentation equals
to 1. They are obtained from the Yang—Baxter operators leading to the Jones and
HOMFLYPT polynomials [8,[T6] by normalizing each column. However, normalizing
columns of Yang—Baxter operators do not always produce Yang—Baxter operators
in general.

Counterexample 2.6. The following Yang-Baxter operator leading to the Kauff-
man two-variable polynomial (see [I0] for details) with substitution m =4, v = —1
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is a counterexample:
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This matrix as a k-linear operator from V @ V to V ® V, with k = Z[q, ¢ ]
and V = k{vy,v9,v3,v4} the free k-module generated by four elements, is a Yang—
Baxter operator with the standard basis in tensor product of V' ® V. However, if
we divide the elements of each column by the summation of the elements in the
corresponding column, it is no longer a Yang-Baxter operator. We have checked
this by using Mathematica directly.

3. Computation of Homology for Yang—Baxter Operators Leading
to HOMFLYPT Polynomial

In this section, we are interested in the second homology of R(,,. First, we recall
the definition of Yang—Baxter homology for column unital operators. Let k& be a
commutative ring, V' = kX be the free k-module generated by basis in X, and let
the chain modules be C,,(R) = V®". The boundary homomorphism 9,, : C,,(R) —
Cr—1(R) is given as follows:

a’ﬂ = Z<_1)Z<d£n - dzrn)
=1

The face maps dﬁn and d;,, are illustrated in Fig. Bl where going from top to
bottom, and whenever we meet a crossing we apply the Yang—Baxter operator R
and we delete the first tensor factor or the last tensor factor at the bottom for dli’n
and dJ ,,, respectively. See [I3, [I3] for details.

Consider pre-Yang-Baxter operators R: V ®V — V ®V given on the basis X2
by

R(a,b) = > R¥, - (c.d)

c,d

2141014-7
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ith 7'Ath

dl

i,n

d;

i,n

Fig. 3. Face maps.

with column unital condition, that is ., Ri’db = 1 for every (a,b) € X2 Now
C1(R) =V and Co(R) = V®? and
2

d2(a,b) =Y (~1)'(df(a,b) — df (a,b))

=1

=) =Y Ry — [ Y R - (a)

c,d c,d
= (a)+ (b) = D _R¥5((0) + (d))
c,d

and
3

s(a,b,c) =Y _(=1)"(di(a,b,c) — dj (a,b,c)).

i=1
Now we go back to analysis of the chain complex for the column unital matrices
Ry in Theorem 2.3 Recall that
1 ifd=a>b=c;
b y? ifd=a<b=c¢
Red =V 2 dtecachod
0 otherwise,

In particular, for m = 2 we have the matrix

1 0 0 0 1 0 0 0

0 1—-92 1 0 0 0 y 2 0
Ry = A=

0 y? 0 0 01 1—-y2 0

0 0 0 1 0 0 0 1

In Lemma B3Il we prove that the second boundary map is trivial.

2141014-8
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Lemma 3.1. For the family of column wunital Yang—Bazter operators in
Theorem 23] 95 = 0 and

Hy(R) = Cl(R(m)) =V
and

kerdy = Ca(R(m)) = V&2

Proof. We check now that dz(a,b) = 0 for any pair a,b € X2. The main reason
for 0 = 0 is that if {a,b} # {c,d} then Ri’db = 0 and the column unital property.
That is for a,b € X:

> RZ5(c.d) = R¥}(a,b) + Ry (b,a) with RYy + Ry? =1,
c,d

s0 B(a,b) = (a) + (b) — (R + Ryt)((a) + (b)) = 0.
Thus

Hi(R()) = C1(Rimy) =V
and

kerdy = Co (R(m)) =V O

To compute Ha(R(,)), we need to understand imds. The following lemma will
be used later in computation.

Lemma 3.2. For the column unital Yang—Baxter operators in Theorem 23 we
have

(1) 93(vm,a1,a2) =0 and O5(ay,az,v1) =0 for all a1,ay € X, where as before v,
1s the largest element and vy is the smallest element in X;

(2) 05(a1,a2,a3) =0 if either ax > a; for alli =1,2,3 oras < a; forallj =1,2,3,
for all ay,a9,a3 € X.

Proof. Part (1) follows from Lemma Bl 95(vy,,a1,az2) = [di — d}](vm, a1, az) —
Um ® O2(ay,az), by Lemma Bl 03(vpm,a1,a2) = [d — dj](vm,a1,az). Note that
R(ay,as) = (az,a1) whenever a; > ag, 03(vm,a1,a) = [di — dj](vm,a1,a2) =
(a1, a2) — (a1,a2) = 0. Similarly, 93(a1, az,v1) = 0.

Part (2) follows from part (1) by considering the subchain complex given by the
subspace {v1,va,...,a1} of Vi, or {ag...,am—1,am} of Vi, respectively. O

2141014-9
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The main result of this section is as follows. Notice that the ring k can be either
Zly*] or Z[y].

Theorem 3.3. Let R be a unital Yang—Bazter operator giving HOMFLYPT poly-
nomial on level m in Theorem 23] then

m
2

Hy(R) = ) @ (k/(1 - y2) () @ (k/(l - w)m .

Proof. First, we compute 05. Let a < b < ¢, we need to consider 13 cases, which
are

(a,b,¢); (b,c,a); (¢,a,b); (bya,c); (a,e,b); (¢,b,a); (a,a,b); (b,b,a);
(a,0,0); (b,a,a); (a,b,a); (ba,b); (a,a,a)
By Lemma B2l we have 03(b,c,a) = 05(c,a,b) = 03(c,b,a) = 05(b,b,a) =
05(b,a,a) = 03(a,b,a) = d5(b,a,b) = d3(a,a,a) = 0.

05 provides non-trivial relations in the homology for the 5 remaining cases (how-
ever, they are not all linearly independent). Let us demonstrate the calculation of
ds(a, b, c).

We make calculation easy by considering graphical interpretation of face maps
ds, starting from the defining formula

05 = dy +dy + dy — (di + dy + d).

ab c a bc ab c a bc ab c a bc

st~ :;k&\+i%gd; K‘f%i _ﬂx“\

From these diagrams we compute (keeping the terms in the same order as in
the figure):

ds(a,b,¢) = (b,c) + (y*(a,¢) + (1 — y*)(a, b))
+(y*(a,0) + y* (1 = y*) (e, b) + (1 = y*)y?(a,¢) + (1 = 4?)*(b, ¢))
—(a,0) = (y*(a,¢) + (1 = y*)(b, )
— (' (b, 0) + y* (1 = y?)(b,a) + (1 = y*)yP(a, ¢) + (1 — y*)*(a, D))

= (1= y)((b,0) = (a,b) +4*((c,0) — (b, a))).

The longest calculations are those of d§ and df. In the next picture we illustrate
how to compute quickly d:

2141014-10
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(a,b) (c,b) (a,c) (b,c)

Figure 3 d§ = y*(a,b) + y2(1 — y?)(c,b) + (1 — y®)y%(a,¢) + (1 — y?)2(b, c).

The computation for df is similar. We can also use the symmetry that is ¢ and
¢ switch roles and (z,y) goes to (y,x). Thus we get d} = y*(b, c) +y%(1 —4?)(b,a) +
(1 —y*)y*(a.c) + (1 —y*)*(a,b).

With some efforts, we get the following non-trivial differentials of elements with
three distinct letters:

ds(a,b,¢) = (1 y*)((b,e) — (a,b) + y2((c.b) — (b,a))),
ds(a,e.b) = (1 y2)((b,0) — (a,¢) + 42((c,b) — (c,a))),
d5(b.a.c) = (1 - y*)((a,¢) — (a,b) +5>((c.a) — (b,a))).
They are not independent as:
83(a,b,¢) — d3(a, ¢, b) — ds(b,a,c) = 0.
Also, by Proposition 24}, we have
ds(a,a,0) = (1 - y*)((a,b) — (a.0) + y*((b, @) — (a,a))),
Ds(a,b,) = (1 - y2)((,5) — (a,0) + y*((5,0) — (b, ))-

From the following two equations, we see that the relations given by 03 are generated
by the images of (a,a,b) and (a, b, b) as follows:

93(a,b,¢) = (1 = y*)((b,¢) = (a,b) +y*((c,b) — (b,a))) = Ds(b, b, ¢) + D3(a, b, b)
and
33(b,a,¢) = (1 = y*)((a,¢) = (a,0) + y*((¢;a) = (b,a))) = D3(a, a,¢) — D3(a, a,b).
Let us summarize the structure of the image 95(C5). It is generated by
s (vi, v, v5) = (1= y*)((vi,v5) = (vi, v5) + 42 (v, 05) — (v3, 03)) for i < j

2141014-11
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and
B3 ((vi, vi, v5) + (vi,v5,v;)) = (L= y*)((vg,v5) — (vi, 7)) for i < j.

We notice quickly that 95((vi,vi,v;) + (vi,v;,v,)) is generated by m — 1 elements
(vj,v5) — (v1,v1) with m > j > 1.

Consider the following new basis of kX? consisting of three groups of basis
elements:

Xo = {(v1,v1), (vj,v;) for i < j} that is (2) + 1 elements,

X1 = {(vi,v;) — (vi,v;) + y*((vj,v:) — (vi,v;)) for i < j} that is <7;) elements,

X2 = {(vj,vj) — (v1,v1) with m > j > 1} that is m — 1 elements.

Clearly, Xo U X; U X, form a basis of kX?2.
We look now at relations: in our basis, the matrix of relations is diagonal with
0 for elements in Xo, (1 — y?) for elements in X; and (1 — y*) for elements in Xo.
Thus not only we proved that
Ha(R) = k() @ (b/(1 = )2 & (k/(1 = )",
but we also found a basis of Co = kX? realizing the decomposition into cyclic
submodules. |

From Theorem [3.3] we can easily see the rank of kerds (R, ).

Corollary 3.4. Rank(kerds(R(n))) = (m+1)(27’;2_3m+2).

Proof. Rank of the kernal 93 is the rank of ('3 minus the number of non-zero
elements in the diagonal relation matrix of ds, which is exactly the numbers of
(1 —%?) and (1 —y*). Thus

Rank(kerds (R(m))) = m® — (Z) A (k. 1)(2m2 “3m+2)

4. Further Computations and Future Work

Here we summarize all data obtained with the help of computer. Because of the
limitation of the computation program, the computation were done over the ring
Q[y]. In [15], we formulated a conjecture about the homology of R(,,) when m = 2
as follows.

Conjecture 4.1 ([15]). When m = 2, H, = K2@k/(1 — y*)* P(k/(1 —
y1))sn—2, where s, = E?:"’ll fi is the partial sum of Fibonacci sequence, where
fi=1=fy and a, is given by 2" =2+ a1 + Sp—3 + ap + Sp—2 With a3 = 0.
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The second Yang—Baxter homology for the HOMFLYPT polynomial

Table 1. Second and third homology for small m.

Hy m=3 m=4 m=>5 m==6 m="7
T (43,2 (7, 6,3) (11, 10, 4) (16, 15, 5) (22, 21, 6)
Hs (4, 12,6) (8,35, 12) (15, 76, 20) (26, 140, 30) (42, 232, 42)

This conjecture is verified upto n < 11 by computer. In the paper [5], there
is a discussion of various aspects of this conjecture. More computation is shown
in Table [l where (z,y, z) represents decomposition into x copies of k, y copies of
k/(1 — y?) torsion and z copies of k/(1 — y*) torsion.

From the first row of the table, we can see that the results match with that of
the formula in Theorem From the second row of the table, we conjecture the
formula for Hjz as follows.

m(8—3m+m?2) (m2-1)(5m—6)

Conjt(actu)re 4.2. H3(Rm)) = k= 5 @k/(1 - yv?) 5 Dk/(1-
y4))m m—1

Remark 4.3. (1) The ranks in Conjecture [£21 sum up to the rank of kerds.

(2) The rank of H3(R(2)) in Conjecture 1] agrees with the rank of H3(R(z)) in
Conjecture .2

Computations and patterns observed so far suggest that there are only two types
of torsion elements k/(1 — y?) and k/(1 — y*). However, this is only checked upto
the strength of the computer program. By analyzing the boundary maps in general,
we hope to gain more information about H,, (R y,)). The first step towards this goal
is the following observation.

Remark 4.4. The factor (1—y?) divides every element in Im(,,). This follows from
the fact that when setting 1 — y2 = 0, df = d. Thus, we have 9y(a1,...,a,) C
(1 — y?)V", where a; € X,,, i = 1,2,...,n. One possible approach to compute
H,(R(y)) is to decompose the boundary map along the factors (1 —y?)". In the
first step, we ignore the branches with factor (1 — %?) in the computational tree,
see Fig. Bl Generally, in the ith step, we ignore the paths in the computational tree
which are going ¢ or more times to the right.
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