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Left braces

Definition (W. Rump)

A set B equipped with operations + and ◦ is called a left brace if
(B,+) is an abelian group;
(B, ◦) is a group;
for all a, b, c ∈ B, we have a ◦ (b + c) = a ◦ b + a ◦ c − a.

Example

Let (R,+, ∗) be a radical ring. Let a ◦ b = a + a ∗ b + b. Then
(B,+, ◦) is a left brace.

Example

Let (R,+, ·) be a commutative ring and let n ∈ nil(R). Let
a ∗ b = anr. Then (R,+, ∗) is a commutative radical ring.
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Two-sided braces

Definition
A left brace is called two-sided if (a + b) ◦ c = a ◦ c + b ◦ c − c.

Example

Let ◦ be commutative. Then the left brace is two-sided.

Proposition (W. Rump)

Let (B,+, ◦) be a two-sided brace. Let a ∗ b = a ◦ b − a − b. Then
(R,+, ∗) is a radical ring.
Moreover, if B is finite then

B =
∏

p prime

Bp,

where Bp = {b ∈ B | ∃m ∈ N : pmb = 0}.
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Semidirect product

Definitions
Let (A,+A, ◦A) and (B,+B, ◦B) are two left braces. An action of B
on A is a homomorphism ϕ : (B, ◦B) → Aut(A).

The semidirect product A ⋊ϕ B is defined as follows:

(a1, b1) + (a2, b2) = (a1 +A a2, b1 +B b2),
(a1, b1) ◦ (b2, b2) = (a1 ◦A ϕ(b1)(a2), b1 ◦B b2)
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Homomorphism λ

Proposition

Let (B,+, ◦) be a left brace. The mapping λ : B → BB defined by

λa(b) = a ◦ b − a

is a group homomorphism (B, ◦) → Aut(B,+).

Proof.

λa(b + c) = λa(b) + λa(c)

λ−1
a (b) = a−1 ◦ (a + b)

λa◦b(c) = λaλb(c)
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Cohomology

Observation
Let (B,+, ◦) be a left brace. The action λ turns (B,+) into a left
(B, ◦)-module such that the identity is a 1-cocycle.

On the other hand, if we have a group G, a left G-module M and a
bijective 1-cocycle ϕ : G → M then, by defining

a + b = ϕ−1(ϕ(a) + ϕ(b))

we obtain a left brace.
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Ideals in left braces

Definition
A subset I of a left brace (B,+, ◦) is called an ideal if I is a
subgroup of (B,+), I is a normal subgroup of (B, ◦) and λa(I) ⊆ I,
for each a ∈ B.

Observation
Ideals of left braces correspond to homomorphism pre-images
of 0. On the other hand, every endomorphism is determined by
its kernel.
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Socle

Definition
The set

Soc(B) = {s ∈ B | s + a = s ◦ a}

is an ideal of B called the socle.

Observation
Soc(B) = Ker λ.

Observation
If ◦ is commutative then Soc(B,+, ◦) = Ann(B,+, ∗).
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Yang–Baxter equation

Definition
Let V be a vector space. A homomorphism R : V ⊗ V → V ⊗ V is
called a solution of Yang–Baxter equation if it satisfies

(R ⊗ idV)(idV ⊗ R)(R ⊗ idV) = (idV ⊗ R)(R ⊗ idV)(idV ⊗ R).

R

R

R

R

R

R

=
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Biracks

Definition
An algebra (B, ◁, ▷) is called a birack if

(X, ◁) is a left quasigroup,
(X, ▷) is a right quasigroup,
the mapping r : (x, y) 7→ (x ◁ y, x ▷ y) is bijective,
the mapping r satisfies

(r × idX)(idX × r)(r × idX) = (idX × r)(r × idX)(idX × r).

Definition

A birack is called involutive if r2 = idX2 .
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Involutive biracks associated to left braces

Proposition

Let (B,+, ◦) be a left brace. If we define ◁ and ▷ as

a ◁ b = λa(b)

a ▷ b = λ−1
λa(b)(a)

then (B, ◁, ▷) is an involutive birack.

Proof.
λλa(b)λλ−1

λa(b)(a)) = λλa(b)◦λ−1
λa(b)(a) = λλa(b)◦(λa(b))−1◦(λa(b)+a) =

λ(a◦b)−a+a = λa◦b = λaλb
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Nilpotency of left braces

Definition
Let (B,+, ◦) be a left brace. We define

B0 = B,
Bi+1 = Bi/Soc(Bi), for i ⩾ 0.

We say that B is nilpotent of class k if k is the least integer such
that |Bk| = 1.

Theorem (W. Rump)

A left brace (B,+, ◦) is nilpotent of class k if and only if its
associated birack has multipermutation level k

Proof.

x ∼ y ⇔ λx = λy ⇔ λx◦y−1 = id ⇔ x ◦ y−1 ∈ Soc(B)
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Structure group

Definition
Let (X, ◁, ▷) be a finite involutive birack. The infinite group with
the presentation

GX = ⟨X | x ◦ y = (x ◁ y) ◦ (x ▷ y)⟩

is called the structure group of the birack X.

Theorem (P. Etingof, T. Schedler, A. Soloviev)

Let (X, ◁, ▷) be a finite involutive birack. Then there exists a
unique free abelian group operation + on the set GX such that
(GX ,+, ◦) is a left brace and λx(y) = x ◁ y, for all x, y ∈ X.
In particular, (X, ◁, ▷) embeds into the birack associated to GX .
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Representation of the structure group

Theorem (E. Acri, R. Lutowski, L. Vendramin)

Let X be an involutive birack of size n ∈ N. Then GX embeds into
GL(n + 1,Z).

Suppose X = {x1, x2, . . . , xn}.
For each a ∈ GX , let Aa be the permutation matrix of the
permutation λa|X and let c⃗a be such that a =

∑
(ca)ixi.

We associate to a the matrix
(

Aa c⃗T
a

0⃗ 1

)
∈ GL(n + 1,Z)

Proof.

Use λa(b) =
∑

(Aa · c⃗T
b )ixi and a ◦ b = a + λa(b).
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Projection to the multiplication group

Definition
Let (X, r) be an involutive birack. The group

Mlt(X) = ⟨Lx | x ∈ X⟩ = ⟨Lx, Rx | x ∈ X⟩,

where Lx(y) = x ◁ y and Rx(y) = y ▷ x, is called the multiplication
group or the permutation group or the Yang-Baxter group
of (X, ◁, ▷).

Let π : GX → Mlt(X) send x to Lx. This mapping extends to a
homomorphism of groups since LxLy = Lx◁yLx▷y.
λx restricted to X is equal to Lx.
λx1◦x2◦···◦xk restricted to X is equal to Lx1Lx2 · · · Lxk .
λa restricted to X is equal to π(a).
a ∈ Ker λ ⇐⇒ λa is the identity ⇐⇒ λa is the identity on X ⇐⇒
π(a) is the identity ⇐⇒ a ∈ Kerπ
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Multiplication left brace

Definition
The multiplication left brace is the quotient left brace GX/Soc(GX).

Observation
Since Soc(GX) = Ker λ, the quotient can be viewed as the
projection π of GX onto Mlt(X). Hence it is usual to consider
GX/Soc(GX) ∼= Mlt(X).

π(x) = Lx
Since λx(y) = Lx(y), we have π(λx(y)) = π(Lx(y)) = LLx(y).
Since λ is a homomorphism we have π(λa(y)) = Lπ(a)(y).
Now a + x = a ◦ (a−1 ◦ (a + x)) = a ◦ λ−1

a (x) and hence
π(a + x) = π(a)Lπ(a)−1(x).
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Socle vs. retract

Theorem
Let (B,+, ◦) be a left brace and let (B, ◁, ▷) be its associated
birack. Let X be a subset of B closed on λ that generates (B,+).
Then Ret(X) = {x + Soc(B) | x ∈ X} ⊆ B/Soc(B).

Proof.
x ∼ y ⇐⇒ λx = λy on X ⇐⇒ λx = λy on B ⇐⇒
λxλ

−1
y = id ⇐⇒ x ◦ y−1 ∈ Ker λ ⇐⇒ x ◦ y−1 ∈ Soc(B)

[x]∼ ◁ [y]∼ = [λx(y)]∼ = λx(y) + Soc(B)

[x ′]∼ ◁ [y ′]∼ = [λx ′(y ′)]∼ = λx ′(y ′) + Soc(B) =
λx(y + s) + Soc(B) = λx(y) + λx(s) + Soc(B) = λx(y) + Soc(B)
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Corollaries of the retract

Corollary

∼ is a congruence for every finite involutive birack.

Proof.
Since X embeds into GX , Ret(X) embeds into Mlt(X).

Corollary

If X is finite and Mlt(X) is abelian then X is multipermutation.

Proof.
Ret(X) embeds into Mlt(X). Since (Mlt(X), ◦) is abelian,
(Mlt(X),+, ∗) is a radical ring. All finite commutative radical rings
are nilpotent. Hence Ret(X) is multipermutation.
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Indecomposable involutive biracks

Definition
We say that an involutive birack (X, ◁, ▷) is indecomposable if the
group Mlt(X) is transitive.

Theorem (W. Rump, reformulated by M. Castelli)

Let (B,+, ◦) and let g ∈ B be such that the orbit of g under the
action λ generates the left brace B. If we define

a ◁ b = λa(g) ◦ b

then (B, ◁, ▷) is an indecomposable involutive birack with its
mutiplication left brace isomorphic to B.

Moreover, every indecomposable involutive birack can be
obtained this way.
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Invariants of isomorphisms

Theorem (W. Rump)

Let k be a power of prime and let (B,+, ◦) be a left brace of size k
with (B, ◦) cyclic. Then (B,+) is cyclic if and only if k ̸= 4.

Theorem (P. J., A. P., A. Z.-D.)

A complete set of invariants for finite indecomposable involutive
biracks with cyclic multiplication groups are

k ∈ N,
n ∈ N such that,

n divides k,
every prime p divides n whenever p divides k,
if 8 divides k then 4 divides n,

g ∈ {1, . . . , gcd(n, k/n)} coprime to k.
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Skew left braces

Definition (L. Guarnieri, L. Vendramin)

A set B equipped with operations + and ◦ is called a skew left
brace if

(B,+) is a group;
(B, ◦) is a group;
for all a, b, c ∈ B, we have a ◦ (b + c) = a ◦ b − a + a ◦ c.

Example

Let (B,+) be a group. Then (B,+,+op) is a skew left brace.
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Biracks associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let (B,+, ◦) be a skew left brace. The mapping λ : B → SB
defined by λa(b) = −a+ a ◦ b is a homomorphism B → Aut(B,+).

Proposition (D. Bachiller)

Let (B,+, ◦) be a skew left brace. The mapping ρ : B → SB
defined by ρb(a) = (λa(b))−1 ◦ a ◦ b is an anti-homomorphism,
that means ρa◦b = ρbρa.

Proposition (L. Guarnieri, L. Vendramin)

Let (B,+, ◦) be a left brace. If we define

a ◁ b = λa(b), a ▷ b = ρb(a)

then (B, ◁, ▷) is a birack.
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Holomorph

Definition
Let G be a group. The holomorph of a group is the group
G ⋊ Aut(G) with the operation

(g,α) · (h,β) = (gα(h),αβ).

A subgroup H ⩽ Hol(G) is called regular if, for each g ∈ G, there
exists a unique ϕg ∈ Aut(G) such that (g,ϕg) ∈ H.

Theorem (L. Guarnieri, L. Vendramin)

There is a 1-1 correspondence between skew left braces and
regular subgroups of holomorphs.

Proof.
b, λb ↭ (b,ϕb)
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Ideals in skew left braces

Definition
A subset I of a skew left brace (B,+, ◦) is called an ideal if I is a
normal subgroup of (B,+), I is a normal subgroup of (B, ◦) and
λa(I) ⊆ I, for each a ∈ B.

Definition
The set

Soc(B) = {s ∈ B | ∀a ∈ B a + s = s + a = s ◦ a}

is an ideal of B called the socle.

Proposition (D. Bachiller)

Soc(B) = Ker λ ∩ Ker ρ
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Nilpotency of left braces

Definition
Let (B,+, ◦) be a skew left brace. We define

B0 = B,
Bi+1 = Bi/Soc(Bi), for i ⩾ 0.

We say that B is socle-nilpotent of class k if k is the least integer
such that |Bk| = 1.

Theorem (D. Bachiller)
A skew left brace (B,+, ◦) is socle-nilpotent of class k if and only
if its associated birack has multipermutation level k.
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Central nilpotency

Definition (I. Colazzo, F. Catino, P. Stefanelli)

The annihilator or the center of a skew left brace is the ideal

{c ∈ B | ∀a ∈ B c + a = a + c = c ◦ a = a ◦ c}

or simply Z(B,+) ∩ Z(B, ◦) ∩ Ker λ.

Definitions (M. Bonatto, P. J.)

Upper central series:

Z0(B) = 0, Zn = {c ∈ B | ∀a ∈ B a ∗ c, c ∗ a, [a, c]+ ∈ Zn−1(B)},

Lower central series:

Γ0(I) = I, Γn(I) = ⟨Γn−1(I) ∗ B, B ∗ Γn−1(I), [Γn−1(I), B]+⟩+,

where x ∗ y = −x + (x ◦ y) − y.



Braces and biracks 26 / 34
Skew left braces

Central nilpotency

Definition (I. Colazzo, F. Catino, P. Stefanelli)

The annihilator or the center of a skew left brace is the ideal

{c ∈ B | ∀a ∈ B c + a = a + c = c ◦ a = a ◦ c}

or simply Z(B,+) ∩ Z(B, ◦) ∩ Ker λ.

Definitions (M. Bonatto, P. J.)

Upper central series:

Z0(B) = 0, Zn = {c ∈ B | ∀a ∈ B a ∗ c, c ∗ a, [a, c]+ ∈ Zn−1(B)},

Lower central series:

Γ0(I) = I, Γn(I) = ⟨Γn−1(I) ∗ B, B ∗ Γn−1(I), [Γn−1(I), B]+⟩+,

where x ∗ y = −x + (x ◦ y) − y.



Braces and biracks 27 / 34
Skew left braces

Commutator in skew braces

Theorem (D. Bourn, A. Facchini, M. Pompili)

The commutator of two ideals I and J in a skew brace (B,+, ◦) is
the smallest ideal generated by [I, J]+, [I, J]◦ and I ∗ J.

Corollary

Zn(B)/Zn−1(B) = Z(B/Zn−1(B))
Γn(I) = [Γn−1(I), B]
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Opposite skew left braces

Proposition

Let (B, ◁, ▷) be a birack and let r(x, y) = (x ◁ y, x ▷ y). Then
r−1 : (x, y) 7→ (x ◁̂ y, x ▷̂ y) is a birack.

Definition (A. Koch, P. J. Truman)

Let (B,+, ◦) be a skew left brace. Then (B,+op, ◦) is a skew left
brace called the opposite skew left brace.

Theorem (A. Koch, P. J. Truman)

The birack associated to (B,+op, ◦) is inverse to the birack
associated to (B,+, ◦).

Corollary

λ̂a(b) = (a ◦ b) − a, ρ̂b(a) = (̂λa(b))−1 ◦ a ◦ b.
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Structure group

Definition
Let (X, ◁, ▷) be a finite birack. The infinite group with the
presentation

GX = ⟨X | x ◦ y = (x ◁ y) ◦ (x ▷ y)⟩
is called the structure group of the birack X.

Theorem
Let (X, ◁, ▷) be a birack. Let

AX = ⟨X | x + y = y + (y ◁ (y \◁̂ x))⟩ .

Then there exists a bijection ϕ : AX → GX such that ϕ(x) = x and

ϕ(a) ◦ ϕ(b + c) = ϕ(ϕ−1(ϕ(a) ◦ ϕ(b)) − a + ϕ−1(ϕ(a) ◦ ϕ(c))).
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Injective biracks

Theorem
Let (X, ◁, ▷) be a birack and let GX be its structure group. If we
define

ι : (X, ◁, ▷) → (GX , ◁, ▷), x 7→ x,

then ι is a homomorphism of biracks.

Corollary

Suppose ι(x) = ι(y) then x ∼ y.

Definition
We say that a birack is injective if ι is injective.

Observation
Every involutive birack is injective.
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Bi-skew left braces

Definition (L. Childs)
A skew left brace (B,+, ◦) is called a bi-skew left brace if (B, ◦,+)
is a skew left brace as well.

Theorem (A. Caranti)
A skew left brace (B,+, ◦) is a bi-skew left brace if and only if λ is
an anti-homomorphism of (B,+), i.e. λa+b = λbλa.

Theorem (L. Stefanello, S. Trappeniers)

Let (B,+, ◦) be a skew left brace. Then B is a bi-skew left brace if
and only if

λλ̂a(b) = λb,

for each a, b ∈ B.
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is a skew left brace as well.
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A skew left brace (B,+, ◦) is a bi-skew left brace if and only if λ is
an anti-homomorphism of (B,+), i.e. λa+b = λbλa.
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Distributive biracks

Theorem (P. J., A. Pilitowska)

Let (X,σ, τ) be a birack. TFAE:

LL̂x(y) = Ly,

LRx(y) = Ly,

LxLy = LLx(y)Lx,

L̂x = L−1
x ,

Lx ∈ Aut(X),
for all x, y ∈ X.

Corollary

Let (B,+, ◦) be a skew left
brace. TFAE:

B is a bi-skew left brace,

λa+b = λbλa,

λλ̂a(b) = λb,

λρa(b) = λb,

λaλb = λλa(b)λa,

ρ̂a = λ−1
a ,

λa ∈ Aut(B),
for all a, b ∈ B.
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Equations of 2-reductivity and skew braces

Proposition (P. J., A. Pilitowska)

Let (B,+, ◦) be a skew left brace. Then

λλa(b) = λb if and only if λ is a homomorphism
(B,+) → Aut(B, ◦), that means λa+b = λaλb;

λρa(b) = λb if and only if λ is an anti-homomorphism
(B,+) → Aut(B, ◦), that means λa+b = λbλa;

ρρa(b) = ρb if and only if ρ is a homomorphism (B,+) → SX ,
that means ρa+b = ρaρb;

ρλa(b) = ρb if and only if ρ is an anti-homomorphism
(B,+) → Aut(B, ◦), that means ρa+b = ρbρa.
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Skew left braces and 2-reductivity

Theorem (P. J., A. Pilitowska)

Let (B,+, ◦) be a skew left brace. TFAE

the birack (B, ◁, ▷) is 2-reductive,

λa+b = λb+a = λaλb and ρa+b = ρb+a = ρaρb,

(B, ◁, ▷) has multipermutation level at most 2,

(B,+, ◦) is socle-nilpotent of degree at most 2,

(B,+op, ◦) is socle-nilpotent of degree at most 2.

Proposition (P. J., A. Pilitowska)

Let (X, ◁, ▷) be 2-reductive. Then GX is socle-nilpotent of degree at
most 2.
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