Biracks and their applications - Part III Braces and biracks

Přemysl Jedlička

with Agata Pilitowska and Anna Zamojska-Dzienio

Department of Mathematics
Faculty of Engineering (former Technical Faculty)

Czech University of Life Sciences (former Czech University of Agriculture) in Prague

Będlewo $27^{\text {th }}$ June 2023
Faculty of
Engineering

Left braces

Definition (W. Rump)

A set B equipped with operations + and \circ is called a left brace if

- $(B,+)$ is an abelian group;
- (B, \circ) is a group;
- for all $a, b, c \in B$, we have $a \circ(b+c)=a \circ b+a \circ c-a$.

Example
 Let $(R,+, *)$ be a radical ring. Let $a \circ b=a+a * b+b$. Then ($B,+, \circ$) is a left brace.

Left braces

Definition (W. Rump)

A set B equipped with operations + and \circ is called a left brace if

- $(B,+)$ is an abelian group;
- (B, \circ) is a group;
- for all $a, b, c \in B$, we have $a \circ(b+c)=a \circ b+a \circ c-a$.

Example

Let $(R,+, *)$ be a radical ring. Let $a \circ b=a+a * b+b$. Then $(B,+, \circ)$ is a left brace.

Example
Let $(R,+, \cdot)$ be a commutative ring and let $n \in \operatorname{nil}(R)$. Let
$a * b=a n r$. Then $(R,+, *)$ is a commutative radical ring.

Left braces

Definition (W. Rump)

A set B equipped with operations + and \circ is called a left brace if

- $(B,+)$ is an abelian group;
- (B, \circ) is a group;
- for all $a, b, c \in B$, we have $a \circ(b+c)=a \circ b+a \circ c-a$.

Example

Let $(R,+, *)$ be a radical ring. Let $a \circ b=a+a * b+b$. Then $(B,+, \circ)$ is a left brace.

Example

Let $(R,+, \cdot)$ be a commutative ring and let $n \in \operatorname{nil}(R)$. Let $a * b=a n r$. Then $(R,+, *)$ is a commutative radical ring.

Two-sided braces

Definition

A left brace is called two-sided if $(a+b) \circ c=a \circ c+b \circ c-c$.

Example

Let o be commutative. Then the left brace is two-sided.

```
Proposition (W. Rump)
let (B,+,o) be a two-sided brace. Let }a*b=a\circb-a-b\mathrm{ . Then
(R,+,*) is a radical ring.
Moreover, if B is finite then
```


where $B_{p}=\left\{b \in B \mid \exists m \in \mathbb{N}: p^{m} b=0\right\}$.

Two-sided braces

Definition

A left brace is called two-sided if $(a+b) \circ c=a \circ c+b \circ c-c$.

Example

Let o be commutative. Then the left brace is two-sided.

Proposition (W. Rump)

Let $(B,+, \circ)$ be a two-sided brace. Let $a * b=a \circ b-a-b$. Then $(R,+, *)$ is a radical ring.
Moreover, if B is finite then

$$
B=\prod_{p \text { prime }} B_{p}
$$

where $B_{p}=\left\{b \in B \mid \exists m \in \mathbb{N}: p^{m} b=0\right\}$.

Semidirect product

Definitions

Let $\left(A,+_{A}, \circ_{A}\right)$ and $\left(B,+_{B}, \circ_{B}\right)$ are two left braces. An action of B on A is a homomorphism $\phi:\left(B, \circ_{B}\right) \rightarrow \operatorname{Aut}(A)$.

The semidirect product $A \rtimes_{\phi} B$ is defined as follows:

$$
\begin{aligned}
\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right) & =\left(a_{1}+_{A} a_{2}, b_{1}+_{B} b_{2}\right) \\
\left(a_{1}, b_{1}\right) \circ\left(b_{2}, b_{2}\right) & =\left(a_{1} \circ_{A} \phi\left(b_{1}\right)\left(a_{2}\right), b_{1} \circ_{B} b_{2}\right)
\end{aligned}
$$

Homomorphism λ

Proposition

Let $(B,+, \circ)$ be a left brace. The mapping $\lambda: B \rightarrow B^{B}$ defined by

$$
\lambda_{a}(b)=a \circ b-a
$$

is a group homomorphism $(B, \circ) \rightarrow \operatorname{Aut}(B,+)$.

Proof.

$$
\begin{aligned}
\lambda_{a}(b+c) & =\lambda_{a}(b)+\lambda_{a}(c) \\
\lambda_{a}^{-1}(b) & =a^{-1} \circ(a+b) \\
\lambda_{a \circ b}(c) & =\lambda_{a} \lambda_{b}(c)
\end{aligned}
$$

Homomorphism λ

Proposition

Let $(B,+, \circ)$ be a left brace. The mapping $\lambda: B \rightarrow B^{B}$ defined by

$$
\lambda_{a}(b)=a \circ b-a
$$

is a group homomorphism $(B, \circ) \rightarrow \operatorname{Aut}(B,+)$.

Proof.

$$
\begin{aligned}
\lambda_{a}(b+c) & =\lambda_{a}(b)+\lambda_{a}(c) \\
\lambda_{a}^{-1}(b) & =a^{-1} \circ(a+b) \\
\lambda_{a \circ b}(c) & =\lambda_{a} \lambda_{b}(c)
\end{aligned}
$$

Cohomology

Observation

Let $(B,+, \circ)$ be a left brace. The action λ turns $(B,+)$ into a left (B, \circ)-module such that the identity is a 1 -cocycle.

On the other hand, if we have a group G, a left G-module M and a bijective 1-cocycle $\phi: G \rightarrow M$ then, by defining

$$
a+b=\phi^{-1}(\phi(a)+\phi(b))
$$

we obtain a left brace.

Ideals in left braces

Definition

A subset I of a left brace $(B,+, \circ)$ is called an ideal if I is a subgroup of $(B,+), I$ is a normal subgroup of (B, \circ) and $\lambda_{a}(I) \subseteq I$, for each $a \in B$.

Observation
Ideals of left braces correspond to homomorphism pre-images of 0 . On the other hand, every endomorphism is determined by its kernel.

Ideals in left braces

Definition

A subset I of a left brace $(B,+, \circ)$ is called an ideal if I is a subgroup of $(B,+), I$ is a normal subgroup of (B, \circ) and $\lambda_{a}(I) \subseteq I$, for each $a \in B$.

Observation

Ideals of left braces correspond to homomorphism pre-images of 0 . On the other hand, every endomorphism is determined by its kernel.

Socle

Definition

The set

$$
\operatorname{Soc}(B)=\{s \in B \mid s+a=s \circ a\}
$$

is an ideal of B called the socle.

Observation

$\operatorname{Soc}(B)=\operatorname{Ker} \lambda$.

Observation
If \circ is commutative then $\operatorname{Soc}(B,+, \circ)=\operatorname{Ann}(B$

Socle

Definition

The set

$$
\operatorname{Soc}(B)=\{s \in B \mid s+a=s \circ a\}
$$

is an ideal of B called the socle.

Observation
$\operatorname{Soc}(B)=\operatorname{Ker} \lambda$.

Observation
If \circ is commutative then $\operatorname{Soc}(B,+, \circ)=\operatorname{Ann}(B$,

Socle

Definition

The set

$$
\operatorname{Soc}(B)=\{s \in B \mid s+a=s \circ a\}
$$

is an ideal of B called the socle.
Observation
$\operatorname{Soc}(B)=\operatorname{Ker} \lambda$.

Observation

If \circ is commutative then $\operatorname{Soc}(B,+, \circ)=\operatorname{Ann}(B,+, *)$.

Yang-Baxter equation

Definition

Let V be a vector space. A homomorphism $R: V \otimes V \rightarrow V \otimes V$ is called a solution of Yang-Baxter equation if it satisfies

$$
\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes R\right)\left(R \otimes \mathrm{id}_{V}\right)=\left(\mathrm{id}_{V} \otimes R\right)\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes R\right)
$$

Biracks

Definition

An algebra $(B, \triangleleft, \triangleright)$ is called a birack if

- (X, \triangleleft) is a left quasigroup,
- (X, \triangleright) is a right quasigroup,
- the mapping $r:(x, y) \mapsto(x \triangleleft y, x \triangleright y)$ is bijective,
- the mapping r satisfies

$$
\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)=\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)
$$

Definition

A birack is called involutive if $r^{2}=\mathrm{id}_{x^{2}}$.

Biracks

Definition

An algebra $(B, \triangleleft, \triangleright)$ is called a birack if

- (X, \triangleleft) is a left quasigroup,
- (X, \triangleright) is a right quasigroup,
- the mapping $r:(x, y) \mapsto(x \triangleleft y, x \triangleright y)$ is bijective,
- the mapping r satisfies

$$
\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)=\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)
$$

Definition

A birack is called involutive if $r^{2}=\mathrm{id}_{X^{2}}$.

Involutive biracks associated to left braces

Proposition

Let $(B,+, \circ)$ be a left brace. If we define \triangleleft and \triangleright as

$$
\begin{aligned}
& a \triangleleft b=\lambda_{a}(b) \\
& a \triangleright b=\lambda_{\lambda_{a}(b)}^{-1}(a)
\end{aligned}
$$

then $(B, \triangleleft, \triangleright)$ is an involutive birack.

Proof.

Involutive biracks associated to left braces

Proposition

Let $(B,+, \circ)$ be a left brace. If we define \triangleleft and \triangleright as

$$
\begin{aligned}
& a \triangleleft b=\lambda_{a}(b) \\
& a \triangleright b=\lambda_{\lambda_{a}(b)}^{-1}(a)
\end{aligned}
$$

then $(B, \triangleleft, \triangleright)$ is an involutive birack.

Proof.
$\lambda_{\lambda_{a}(b)} \lambda_{\left.\lambda_{\lambda_{a}(b)}^{-1}(a)\right)}=\lambda_{\lambda_{a}(b) \circ \lambda_{\lambda_{a}(b)}^{-1}(a)}=\lambda_{\lambda_{a}(b) \circ\left(\lambda_{a}(b)\right)^{-1} \circ\left(\lambda_{a}(b)+a\right)}=$
$\lambda_{(a \circ b)-a+a}=\lambda_{a \circ b}=\lambda_{a} \lambda_{b}$

Nilpotency of left braces

Definition

Let $(B,+, o)$ be a left brace. We define

- $B_{0}=B$,
- $B_{i+1}=B_{i} / \operatorname{Soc}\left(B_{i}\right)$, for $i \geqslant 0$.

We say that B is nilpotent of class k if k is the least integer such that $\left|B_{k}\right|=1$.

Theorem (W. Rump)
A left brace $(B,+, 0)$ is nilpotent of class k if and only if its
associated birack has multipermutation level k

Proof.

\square

Nilpotency of left braces

Definition

Let $(B,+, o)$ be a left brace. We define

- $B_{0}=B$,
- $B_{i+1}=B_{i} / \operatorname{Soc}\left(B_{i}\right)$, for $i \geqslant 0$.

We say that B is nilpotent of class k if k is the least integer such that $\left|B_{k}\right|=1$.

Theorem (W. Rump)

A left brace $(B,+, \circ)$ is nilpotent of class k if and only if its associated birack has multipermutation level k

Proof.

Nilpotency of left braces

Definition

Let $(B,+, o)$ be a left brace. We define

- $B_{0}=B$,
- $B_{i+1}=B_{i} / \operatorname{Soc}\left(B_{i}\right)$, for $i \geqslant 0$.

We say that B is nilpotent of class k if k is the least integer such that $\left|B_{k}\right|=1$.

Theorem (W. Rump)

A left brace $(B,+, \circ)$ is nilpotent of class k if and only if its associated birack has multipermutation level k

Proof.

$$
x \sim y \Leftrightarrow \lambda_{x}=\lambda_{y} \Leftrightarrow \lambda_{x \circ y^{-1}}=\mathrm{id} \Leftrightarrow x \circ y^{-1} \in \operatorname{Soc}(B)
$$

Structure group

Definition

Let $(X, \triangleleft, \triangleright)$ be a finite involutive birack. The infinite group with the presentation

$$
G_{X}=\langle X \mid x \circ y=(x \triangleleft y) \circ(x \triangleright y)\rangle
$$

is called the structure group of the birack X.
\square
Let $(X, \triangleleft, \triangleright)$ be a finite involutive birack. Then there exists a unique free abelian group operation + on the set G_{X} such that $\left(G_{X},+, \circ\right)$ is a left brace and $\lambda_{x}(y)=x \triangleleft y$, for all $x, y \in X$. In particular, $(X, \triangleleft, \triangleright)$ embeds into the birack associated to G_{X}

Structure group

Definition

Let $(X, \triangleleft, \triangleright)$ be a finite involutive birack. The infinite group with the presentation

$$
G_{X}=\langle X \mid x \circ y=(x \triangleleft y) \circ(x \triangleright y)\rangle
$$

is called the structure group of the birack X.

Theorem (P. Etingof, T. Schedler, A. Soloviev)

Let $(X, \triangleleft, \triangleright)$ be a finite involutive birack. Then there exists a unique free abelian group operation + on the set G_{X} such that $\left(G_{X},+, \circ\right)$ is a left brace and $\lambda_{x}(y)=x \triangleleft y$, for all $x, y \in X$. In particular, $(X, \triangleleft, \triangleright)$ embeds into the birack associated to G_{X}.

Representation of the structure group

Theorem (E. Acri, R. Lutowski, L. Vendramin)
Let X be an involutive birack of size $n \in \mathbb{N}$. Then G_{X} embeds into $\mathbf{G L}(n+1, \mathbb{Z})$.

Suppose $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
For each $a \in G_{X}$, let A_{a} be the permutation matrix of the permutation $\lambda_{a} \mid x$ and let \vec{c}_{a} be such that $a=\sum\left(c_{a}\right)_{i} x_{i}$. We associate to a the matrix

Proof
\square

Representation of the structure group

Theorem (E. Acri, R. Lutowski, L. Vendramin)

Let X be an involutive birack of size $n \in \mathbb{N}$. Then G_{X} embeds into
$\mathbf{G L}(n+1, \mathbb{Z})$.
Suppose $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
For each $a \in G_{X}$, let A_{a} be the permutation matrix of the permutation $\left.\lambda_{a}\right|_{X}$ and let \vec{c}_{a} be such that $a=\sum\left(c_{a}\right)_{i} x_{i}$.
We associate to a the matrix $\left(\begin{array}{cc}A_{a} & \vec{c}_{a}^{T} \\ \overrightarrow{0} & 1\end{array}\right) \in \mathbf{G L}(n+1, \mathbb{Z})$
Proof.

Representation of the structure group

Theorem (E. Acri, R. Lutowski, L. Vendramin)

Let X be an involutive birack of size $n \in \mathbb{N}$. Then G_{X} embeds into
$\mathrm{GL}(n+1, \mathbb{Z})$.
Suppose $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
For each $a \in G_{X}$, let A_{a} be the permutation matrix of the permutation $\left.\lambda_{a}\right|_{X}$ and let \vec{c}_{a} be such that $a=\sum\left(c_{a}\right)_{i} x_{i}$.
We associate to a the matrix $\left(\begin{array}{cc}A_{a} & \vec{c}_{a}^{T} \\ \overrightarrow{0} & 1\end{array}\right) \in \mathbf{G L}(n+1, \mathbb{Z})$

Proof.

Use $\lambda_{a}(b)=\sum\left(A_{a} \cdot \vec{c}_{b}^{T}\right)_{i} x_{i}$ and $a \circ b=a+\lambda_{a}(b)$.

Projection to the multiplication group

Definition

Let (X, r) be an involutive birack. The group

$$
\operatorname{Mlt}(X)=\left\langle L_{x} \mid x \in X\right\rangle=\left\langle L_{x}, \mathbf{R}_{x} \mid x \in X\right\rangle
$$

where $L_{x}(y)=x \triangleleft y$ and $\mathbf{R}_{x}(y)=y \triangleright x$, is called the multiplication group or the permutation group or the Yang-Baxter group of $(X, \triangleleft, \triangleright)$.

Let $\pi: G_{X} \rightarrow \operatorname{Mlt}(X)$ send x to L_{x}. This mapping extends to a
homomorphism of groups since $L_{x} L_{y}=L_{x \triangleleft y} L_{x \triangleright y}$.
λ_{x} restricted to X is equal to L_{x}.
$\lambda_{x_{1} \circ x_{2} \circ \cdots \circ x_{k}}$ restricted to X is equal to $L_{x_{1}} L_{x_{2}} \cdots L_{x_{k}}$.
λ_{a} restricted to X is equal to $\pi(a)$.
$a \in \operatorname{Ker} \lambda \Longleftrightarrow \lambda_{a}$ is the identity $\Longleftrightarrow \lambda_{a}$ is the identity on $X \Longleftrightarrow$
$\pi(a)$ is the identity $\Longleftrightarrow a \in \operatorname{Ker} \pi$

Projection to the multiplication group

Definition

Let (X, r) be an involutive birack. The group

$$
\operatorname{Mlt}(X)=\left\langle L_{x} \mid x \in X\right\rangle=\left\langle L_{x}, \mathbf{R}_{x} \mid x \in X\right\rangle
$$

where $L_{x}(y)=x \triangleleft y$ and $\mathbf{R}_{x}(y)=y \triangleright x$, is called the multiplication group or the permutation group or the Yang-Baxter group of $(X, \triangleleft, \triangleright)$.

Let $\pi: G_{X} \rightarrow \operatorname{Mlt}(X)$ send x to L_{x}. This mapping extends to a homomorphism of groups since $L_{x} L_{y}=L_{x \triangleleft y} L_{x \triangleright y}$.
λ_{x} restricted to X is equal to L_{x}.
$\lambda_{x_{1} \circ x_{2} \circ \cdots \circ x_{k}}$ restricted to X is equal to $L_{x_{1}} L_{x_{2}}$.
λ_{a} restricted to X is equal to $\pi(a)$.
$a \in \operatorname{Ker} \lambda \Longleftrightarrow \lambda_{a}$ is the identity $\Longleftrightarrow \lambda_{a}$ is the identity on $X \Longleftrightarrow$
$\pi(a)$ is the identity $\Longleftrightarrow a \in \operatorname{Ker} \pi$

Projection to the multiplication group

Definition

Let (X, r) be an involutive birack. The group

$$
\operatorname{Mlt}(X)=\left\langle L_{x} \mid x \in X\right\rangle=\left\langle L_{x}, \mathbf{R}_{x} \mid x \in X\right\rangle
$$

where $L_{x}(y)=x \triangleleft y$ and $\mathbf{R}_{x}(y)=y \triangleright x$, is called the multiplication group or the permutation group or the Yang-Baxter group of $(X, \triangleleft, \triangleright)$.

Let $\pi: G_{X} \rightarrow \operatorname{Mlt}(X)$ send x to L_{x}. This mapping extends to a homomorphism of groups since $L_{x} L_{y}=L_{x \triangleleft y} L_{x \triangleright y}$. λ_{x} restricted to X is equal to L_{x}.

$\pi(a)$ is the identitv $\Longleftrightarrow a \in \operatorname{Ker} \pi$

Projection to the multiplication group

Definition

Let (X, r) be an involutive birack. The group

$$
\operatorname{Mlt}(X)=\left\langle L_{x} \mid x \in X\right\rangle=\left\langle L_{x}, \mathbf{R}_{x} \mid x \in X\right\rangle
$$

where $L_{x}(y)=x \triangleleft y$ and $\mathbf{R}_{x}(y)=y \triangleright x$, is called the multiplication group or the permutation group or the Yang-Baxter group of $(X, \triangleleft, \triangleright)$.

Let $\pi: G_{X} \rightarrow \operatorname{Mlt}(X)$ send x to L_{x}. This mapping extends to a homomorphism of groups since $L_{x} L_{y}=L_{x \triangleleft y} L_{x \triangleright y}$. λ_{x} restricted to X is equal to L_{x}.
$\lambda_{x_{1} \circ x_{2} \circ \cdots \circ x_{k}}$ restricted to X is equal to $L_{x_{1}} L_{x_{2}} \cdots L_{x_{k}}$.
λ_{a} restricted to X is equal to $\pi(a)$.
$a \in \operatorname{Ker} \lambda \Longleftrightarrow \lambda_{a}$ is the identity $\Longleftrightarrow \lambda_{a}$ is the identity on $X \Longleftrightarrow$
$\pi(a)$ is the identity $\Longleftrightarrow a \in \operatorname{Ker} \pi$

Projection to the multiplication group

Definition

Let (X, r) be an involutive birack. The group

$$
\operatorname{Mlt}(X)=\left\langle L_{x} \mid x \in X\right\rangle=\left\langle L_{x}, \mathbf{R}_{x} \mid x \in X\right\rangle
$$

where $L_{x}(y)=x \triangleleft y$ and $\mathbf{R}_{x}(y)=y \triangleright x$, is called the multiplication group or the permutation group or the Yang-Baxter group of $(X, \triangleleft, \triangleright)$.

Let $\pi: G_{X} \rightarrow \operatorname{Mlt}(X)$ send x to L_{x}. This mapping extends to a homomorphism of groups since $L_{x} L_{y}=L_{x \triangleleft y} L_{x \triangleright y}$. λ_{x} restricted to X is equal to L_{x}.
$\lambda_{x_{1} \circ x_{2} \circ \cdots \circ x_{k}}$ restricted to X is equal to $L_{x_{1}} L_{x_{2}} \cdots L_{x_{k}}$.
λ_{a} restricted to X is equal to $\pi(a)$.
$a \in \operatorname{Ker} \lambda \Longleftrightarrow \lambda_{a}$ is the identity $\Longleftrightarrow \lambda_{a}$ is the identity on $X \Longleftrightarrow$
$\pi(a)$ is the identity $\Longleftrightarrow a \in \operatorname{Ker} \pi$

Projection to the multiplication group

Definition

Let (X, r) be an involutive birack. The group

$$
\operatorname{Mlt}(X)=\left\langle L_{x} \mid x \in X\right\rangle=\left\langle L_{x}, \mathbf{R}_{x} \mid x \in X\right\rangle
$$

where $L_{x}(y)=x \triangleleft y$ and $\mathbf{R}_{x}(y)=y \triangleright x$, is called the multiplication group or the permutation group or the Yang-Baxter group of $(X, \triangleleft, \triangleright)$.

Let $\pi: G_{X} \rightarrow \operatorname{Mlt}(X)$ send x to L_{x}. This mapping extends to a homomorphism of groups since $L_{x} L_{y}=L_{x \triangleleft y} L_{x \triangleright y}$. λ_{x} restricted to X is equal to L_{x}.
$\lambda_{x_{1} \circ x_{2} \circ \cdots \circ x_{k}}$ restricted to X is equal to $L_{x_{1}} L_{x_{2}} \cdots L_{x_{k}}$.
λ_{a} restricted to X is equal to $\pi(a)$.
$a \in \operatorname{Ker} \lambda \Longleftrightarrow \lambda_{a}$ is the identity $\Longleftrightarrow \lambda_{a}$ is the identity on $X \Longleftrightarrow$ $\pi(a)$ is the identity $\Longleftrightarrow a \in \operatorname{Ker} \pi$

Multiplication left brace

Definition

The multiplication left brace is the quotient left brace $G_{X} / \operatorname{Soc}\left(G_{X}\right)$.

Observation

Since $\operatorname{Soc}\left(G_{X}\right)=\operatorname{Ker} \lambda$, the quotient can be viewed as the projection π of G_{X} onto $\operatorname{Mlt}(X)$. Hence it is usual to consider $G_{X} / \operatorname{Soc}\left(G_{X}\right) \cong \operatorname{Mlt}(X)$.
$\pi(x)=L_{x}$
Since $\lambda_{x}(y)=L_{x}(y)$, we have $\pi\left(\lambda_{x}(y)\right)=\pi\left(L_{x}(y)\right)=L_{L_{x}(y)}$.
Since λ is a homomorphism we have $\pi\left(\lambda_{a}(y)\right)=L_{\pi(a)(y)}$
Now $a+x=a \circ\left(a^{-1} \circ(a+x)\right)=a \circ \lambda_{a}^{-1}(x)$ and hence
$\pi(a+x)=\pi(a) L_{\pi(a)^{-1}(x)}$.

Multiplication left brace

Definition

The multiplication left brace is the quotient left brace $G_{X} / \operatorname{Soc}\left(G_{X}\right)$.

Observation

Since $\operatorname{Soc}\left(G_{X}\right)=\operatorname{Ker} \lambda$, the quotient can be viewed as the projection π of G_{X} onto $\operatorname{Mlt}(X)$. Hence it is usual to consider $G_{X} / \operatorname{Soc}\left(G_{X}\right) \cong \operatorname{Mlt}(X)$.

Multiplication left brace

Definition

The multiplication left brace is the quotient left brace $G_{X} / \operatorname{Soc}\left(G_{X}\right)$.

Observation

Since $\operatorname{Soc}\left(G_{X}\right)=\operatorname{Ker} \lambda$, the quotient can be viewed as the projection π of G_{X} onto $\operatorname{Mlt}(X)$. Hence it is usual to consider $G_{X} / \operatorname{Soc}\left(G_{X}\right) \cong \operatorname{Mlt}(X)$.
$\pi(x)=L_{x}$
Since $\lambda_{x}(y)=L_{x}(y)$, we have $\pi\left(\lambda_{x}(y)\right)=\pi\left(L_{x}(y)\right)=L_{L_{x}(y)}$.
Since λ is a homomorphism we have $\pi\left(\lambda_{a}(y)\right)=L_{\pi(a)(y)}$ Now $a+x=a \circ\left(a^{-1} \circ(a+x)\right)=a \circ \lambda_{a}^{-1}(x)$ and hence $\pi(a+x)=\pi(a) L_{\pi(a)^{-1}(x)}$

Multiplication left brace

Definition

The multiplication left brace is the quotient left brace $G_{X} / \operatorname{Soc}\left(G_{X}\right)$.

Observation

Since $\operatorname{Soc}\left(G_{X}\right)=\operatorname{Ker} \lambda$, the quotient can be viewed as the projection π of G_{X} onto $\operatorname{Mlt}(X)$. Hence it is usual to consider $G_{X} / \operatorname{Soc}\left(G_{X}\right) \cong \operatorname{Mlt}(X)$.
$\pi(x)=L_{x}$
Since $\lambda_{x}(y)=L_{x}(y)$, we have $\pi\left(\lambda_{x}(y)\right)=\pi\left(L_{x}(y)\right)=L_{L_{x}(y)}$.
Since λ is a homomorphism we have $\pi\left(\lambda_{a}(y)\right)=L_{\pi(a)(y)}$
Now $a+x=a \circ\left(a^{-1} \circ(a+x)\right)=a \circ \lambda_{a}^{-1}(x)$ and hence
$\pi(a+x)=\pi(a) L_{\pi(a)-1(x)}$.

Multiplication left brace

Definition

The multiplication left brace is the quotient left brace $G_{X} / \operatorname{Soc}\left(G_{X}\right)$.

Observation

Since $\operatorname{Soc}\left(G_{X}\right)=\operatorname{Ker} \lambda$, the quotient can be viewed as the projection π of G_{X} onto $\operatorname{Mlt}(X)$. Hence it is usual to consider $G_{X} / \operatorname{Soc}\left(G_{X}\right) \cong \operatorname{Mlt}(X)$.
$\pi(x)=L_{x}$
Since $\lambda_{x}(y)=L_{x}(y)$, we have $\pi\left(\lambda_{x}(y)\right)=\pi\left(L_{x}(y)\right)=L_{L_{x}(y)}$.
Since λ is a homomorphism we have $\pi\left(\lambda_{a}(y)\right)=L_{\pi(a)(y)}$.
Now $a+x=a \circ\left(a^{-1} \circ(a+x)\right)=a \circ \lambda_{a}^{-1}(x)$ and hence
$\pi(a+x)=\pi(a) L_{\pi(a)^{-1}(x)}$.

Multiplication left brace

Definition

The multiplication left brace is the quotient left brace $G_{X} / \operatorname{Soc}\left(G_{X}\right)$.

Observation

Since $\operatorname{Soc}\left(G_{X}\right)=\operatorname{Ker} \lambda$, the quotient can be viewed as the projection π of G_{X} onto $\operatorname{Mlt}(X)$. Hence it is usual to consider $G_{X} / \operatorname{Soc}\left(G_{X}\right) \cong \operatorname{Mlt}(X)$.
$\pi(x)=L_{x}$
Since $\lambda_{x}(y)=L_{x}(y)$, we have $\pi\left(\lambda_{x}(y)\right)=\pi\left(L_{x}(y)\right)=L_{L_{x}(y)}$. Since λ is a homomorphism we have $\pi\left(\lambda_{a}(y)\right)=L_{\pi(a)(y)}$. Now $a+x=a \circ\left(a^{-1} \circ(a+x)\right)=a \circ \lambda_{a}^{-1}(x)$ and hence $\pi(a+x)=\pi(a) L_{\pi(a)^{-1}(x)}$.

Socle vs. retract

Theorem

Let $(B,+, \circ)$ be a left brace and let $(B, \triangleleft, \triangleright)$ be its associated birack. Let X be a subset of B closed on λ that generates $(B,+)$. Then $\operatorname{Ret}(X)=\{x+\operatorname{Soc}(B) \mid x \in X\} \subseteq B / \operatorname{Soc}(B)$.

Socle vs. retract

Theorem

Let $(B,+, \circ)$ be a left brace and let $(B, \triangleleft, \triangleright)$ be its associated birack. Let X be a subset of B closed on λ that generates $(B,+)$. Then $\operatorname{Ret}(X)=\{x+\operatorname{Soc}(B) \mid x \in X\} \subseteq B / \operatorname{Soc}(B)$.

Proof.

$$
\begin{aligned}
& x \sim y \quad \Longleftrightarrow \quad \lambda_{x}=\lambda_{y} \text { on } X \quad \Longleftrightarrow \quad \lambda_{x}=\lambda_{y} \text { on } B \\
& \lambda_{x} \lambda_{y}^{-1}=\mathrm{id} \quad \Longleftrightarrow \quad x \circ y^{-1} \in \operatorname{Ker} \lambda \quad \Longleftrightarrow \quad x \circ y^{-1} \in \operatorname{Soc}(B)
\end{aligned}
$$

$$
[x]_{\sim} \triangleleft[y]_{\sim}=\left[\lambda_{x}(y)\right]_{\sim}=\lambda_{x}(y)+\operatorname{Soc}(B)
$$

Socle vs. retract

Theorem

Let $(B,+, \circ)$ be a left brace and let $(B, \triangleleft, \triangleright)$ be its associated birack. Let X be a subset of B closed on λ that generates $(B,+)$. Then $\operatorname{Ret}(X)=\{x+\operatorname{Soc}(B) \mid x \in X\} \subseteq B / \operatorname{Soc}(B)$.

Proof.

$$
\begin{aligned}
& x \sim y \quad \Longleftrightarrow \quad \lambda_{x}=\lambda_{y} \text { on } X \quad \Longleftrightarrow \quad \lambda_{x}=\lambda_{y} \text { on } B \Longleftrightarrow \\
& \lambda_{x} \lambda_{y}^{-1}=\mathrm{id} \Longleftrightarrow x \circ y^{-1} \in \operatorname{Ker} \lambda \quad \Longleftrightarrow \quad x \circ y^{-1} \in \operatorname{Soc}(B) \\
& {[x]_{\sim} \triangleleft[y]_{\sim}=\left[\lambda_{x}(y)\right]_{\sim}=\lambda_{x}(y)+\operatorname{Soc}(B)}
\end{aligned}
$$

Socle vs. retract

Theorem

Let $(B,+, \circ)$ be a left brace and let $(B, \triangleleft, \triangleright)$ be its associated birack. Let X be a subset of B closed on λ that generates $(B,+)$. Then $\operatorname{Ret}(X)=\{x+\operatorname{Soc}(B) \mid x \in X\} \subseteq B / \operatorname{Soc}(B)$.

Proof.

$$
\begin{aligned}
& x \sim y \Longleftrightarrow \lambda_{x}=\lambda_{y} \text { on } X \Longleftrightarrow \lambda_{x}=\lambda_{y} \text { on } B \Longleftrightarrow \\
& \lambda_{x} \lambda_{y}^{-1}=\mathrm{id} \Longleftrightarrow{ }^{-1} \Longleftrightarrow \\
& {[x]_{\sim} \triangleleft[y]_{\sim}=\left[\lambda_{x}(y)\right]_{\sim}=\lambda_{x}(y)+\operatorname{Soc}(B)} \\
& {\left[x^{\prime}\right]_{\sim} \triangleleft\left[y^{\prime}\right]_{\sim}=\left[\lambda_{x^{\prime}}\left(y^{\prime}\right)\right]_{\sim}=\lambda_{x^{\prime}}\left(y^{\prime}\right)+\operatorname{Soc}(B)=} \\
& \lambda_{x}(y+s)+\operatorname{Soc}(B)=\lambda_{x}(y)+\lambda_{x}(s)+\operatorname{Soc}(B)=\lambda_{x}(y)+\operatorname{Soc}(B)
\end{aligned}
$$

Corollaries of the retract

Corollary

~ is a congruence for every finite involutive birack.

Proof.

Since X embeds into $G_{X}, \operatorname{Ret}(X)$ embeds into $\operatorname{Mlt}(X)$.

Corollary

If X is finite and $\operatorname{Mlt}(X)$ is abelian then X is multipermutation.

Proof

$\operatorname{Ret}(X)$ embeds into $\operatorname{Mlt}(X)$. Since $(\operatorname{Mlt}(X), o)$ is abelian, $(\operatorname{Mlt}(X),+, *)$ is a radical ring. All finite commutative radical rings are nilpotent. Hence $\operatorname{Ret}(X)$ is multipermutation.

Corollaries of the retract

Corollary

~ is a congruence for every finite involutive birack.

Proof.

Since X embeds into $G_{X}, \operatorname{Ret}(X)$ embeds into $\operatorname{Mlt}(X)$.

Corollary
If X is finite and $\operatorname{Mlt}(X)$ is abelian then X is multipermutation.

Proof:

$\operatorname{Ret}(X)$ embeds into $\operatorname{Mlt}(X)$. Since $(\operatorname{Mlt}(X), \circ)$ is abelian, $(\operatorname{Mlt}(X),+, *)$ is a radical ring. All finite commutative radical rings are nilpotent. Hence $\operatorname{Ret}(X)$ is multipermutation.

Corollaries of the retract

Corollary

~ is a congruence for every finite involutive birack.

Proof.

Since X embeds into $G_{X}, \operatorname{Ret}(X)$ embeds into $\operatorname{Mlt}(X)$.

Corollary

If X is finite and $\operatorname{Mlt}(X)$ is abelian then X is multipermutation.

Proof.
 $\operatorname{Ret}(X)$ embeds into $\operatorname{Mlt}(X)$. Since $(\operatorname{Mlt}(X), o)$ is abelian, $(\operatorname{Mlt}(X),+, *)$ is a radical ring. All finite commutative radical rings are nilpotent. Hence $\operatorname{Ret}(X)$ is multipermutation.

Corollaries of the retract

Corollary

~ is a congruence for every finite involutive birack.

Proof.

Since X embeds into $G_{X}, \operatorname{Ret}(X)$ embeds into $\operatorname{Mlt}(X)$.

Corollary

If X is finite and $\operatorname{Mlt}(X)$ is abelian then X is multipermutation.

Proof.

$\operatorname{Ret}(X)$ embeds into $\operatorname{Mlt}(X)$. Since $(\operatorname{Mlt}(X), \circ)$ is abelian, $(\operatorname{Mlt}(X),+, *)$ is a radical ring. All finite commutative radical rings are nilpotent. Hence $\operatorname{Ret}(X)$ is multipermutation.

Indecomposable involutive biracks

Definition

We say that an involutive birack $(X, \triangleleft, \triangleright)$ is indecomposable if the group $\operatorname{Mlt}(X)$ is transitive.

Theorem (W. Rump, reformulated by M. Castelli)

Let $(B,+, \circ)$ and let $g \in B$ be such that the orbit of g under the action λ generates the left brace B. If we define

$$
a \triangleleft b=\lambda_{a}(g) \circ b
$$

then $(B, \triangleleft, \triangleright)$ is an indecomposable involutive birack with its mutiplication left brace isomorphic to B.

Moreover, every indecomposable involutive birack can be obtained this way.

Invariants of isomorphisms

Theorem (W. Rump)

Let k be a power of prime and let $(B,+, \circ)$ be a left brace of size k with (B, \circ) cyclic. Then $(B,+)$ is cyclic if and only if $k \neq 4$.

Theorem (P. J., A. P., A. Z.-D.)

A complete set of invariants for finite indecomposable involutive biracks with cyclic multiplication groups are

- $n \in \mathbb{N}$ such that,
- n divides k,
- every prime p divides n whenever p divides k, - if 8 divides k then 4 divides n,

Invariants of isomorphisms

Theorem (W. Rump)

Let k be a power of prime and let $(B,+, o)$ be a left brace of size k with (B, \circ) cyclic. Then $(B,+)$ is cyclic if and only if $k \neq 4$.

Theorem (P. J., A. P., A. Z.-D.)

A complete set of invariants for finite indecomposable involutive biracks with cyclic multiplication groups are

- $k \in \mathbb{N}$,
- $n \in \mathbb{N}$ such that,
- n divides k,
- every prime p divides n whenever p divides k,
- if 8 divides k then 4 divides n,
- $g \in\{1, \ldots, \operatorname{gcd}(n, k / n)\}$ coprime to k.

Skew left braces

Definition (L. Guarnieri, L. Vendramin)

A set B equipped with operations + and \circ is called a skew left brace if

- $(B,+)$ is a group;
- (B, o) is a group;
- for all $a, b, c \in B$, we have $a \circ(b+c)=a \circ b-a+a \circ c$.

Example

Let $(B,+)$ be a group. Then $\left(B,+,+_{\text {op }}\right)$ is a skew left brace.

Skew left braces

Definition (L. Guarnieri, L. Vendramin)

A set B equipped with operations + and \circ is called a skew left brace if

- $(B,+)$ is a group;
- (B, \circ) is a group;
- for all $a, b, c \in B$, we have $a \circ(b+c)=a \circ b-a+a \circ c$.

Example

Let $(B,+)$ be a group. Then $\left(B,+,+_{o p}\right)$ is a skew left brace.

Biracks associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let $(B,+, \circ)$ be a skew left brace. The mapping $\lambda: B \rightarrow \mathfrak{S}_{B}$ defined by $\lambda_{a}(b)=-a+a \circ b$ is a homomorphism $B \rightarrow \operatorname{Aut}(B,+)$.

Proposition (D. Bachiller)

Let $(B,+, \circ)$ be a skew left brace. The mapping $\rho: B \rightarrow \mathfrak{S}_{B}$ defined by $\rho_{b}(a)=\left(\lambda_{a}(b)\right)^{-1} \circ a \circ b$ is an anti-homomorphism, that means $\rho_{a \circ b}=\rho_{b} \rho_{a}$.

Proposition (L. Guarnieri, L. Vendramin)

Let $(B,+, \circ)$ be a left brace. If we define

$$
a \triangleleft b=\lambda_{a}(b), \quad a \triangleright b=\rho_{b}(a)
$$

\square

Biracks associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let $(B,+, \circ)$ be a skew left brace. The mapping $\lambda: B \rightarrow \mathfrak{S}_{B}$ defined by $\lambda_{a}(b)=-a+a \circ b$ is a homomorphism $B \rightarrow \operatorname{Aut}(B,+)$.

Proposition (D. Bachiller)

Let $(B,+, \circ)$ be a skew left brace. The mapping $\rho: B \rightarrow \mathfrak{S}_{B}$ defined by $\rho_{b}(a)=\left(\lambda_{a}(b)\right)^{-1} \circ a \circ b$ is an anti-homomorphism, that means $\rho_{a \circ b}=\rho_{b} \rho_{a}$.

Proposition (L. Guarnieri, L. Vendramin)

Let $(B,+, o)$ be a left brace. If we define

$$
a \triangleleft b=\lambda_{a}(b), \quad a \triangleright b=\rho_{b}(a)
$$

Biracks associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let $(B,+, \circ)$ be a skew left brace. The mapping $\lambda: B \rightarrow \mathfrak{S}_{B}$ defined by $\lambda_{a}(b)=-a+a \circ b$ is a homomorphism $B \rightarrow \operatorname{Aut}(B,+)$.

Proposition (D. Bachiller)

Let $(B,+, \circ)$ be a skew left brace. The mapping $\rho: B \rightarrow \mathfrak{S}_{B}$ defined by $\rho_{b}(a)=\left(\lambda_{a}(b)\right)^{-1} \circ a \circ b$ is an anti-homomorphism, that means $\rho_{a \circ b}=\rho_{b} \rho_{a}$.

Proposition (L. Guarnieri, L. Vendramin)

Let $(B,+, o)$ be a left brace. If we define

$$
a \triangleleft b=\lambda_{a}(b), \quad a \triangleright b=\rho_{b}(a)
$$

then $(B, \triangleleft, \triangleright)$ is a birack.

Holomorph

Definition

Let G be a group. The holomorph of a group is the group
$G \rtimes \operatorname{Aut}(G)$ with the operation

$$
(g, \alpha) \cdot(h, \beta)=(g \alpha(h), \alpha \beta) .
$$

A subgroup $H \leqslant \operatorname{Hol}(G)$ is called regular if, for each $g \in G$, there exists a unique $\phi_{g} \in \operatorname{Aut}(G)$ such that $\left(g, \phi_{g}\right) \in H$.

Theorem (L. Guarnieri, L. Vendramin)
There is a 1-1 correspondence between skew left braces and
regular subgroups of holomorphs.

Proof:

$b, \lambda_{b} \longleftrightarrow\left(b, \phi_{b}\right)$

Holomorph

Definition

Let G be a group. The holomorph of a group is the group $G \rtimes \operatorname{Aut}(G)$ with the operation

$$
(g, \alpha) \cdot(h, \beta)=(g \alpha(h), \alpha \beta) .
$$

A subgroup $H \leqslant \operatorname{Hol}(G)$ is called regular if, for each $g \in G$, there exists a unique $\phi_{g} \in \operatorname{Aut}(G)$ such that $\left(g, \phi_{g}\right) \in H$.

Theorem (L. Guarnieri, L. Vendramin)

There is a 1-1 correspondence between skew left braces and regular subgroups of holomorphs.

Holomorph

Definition

Let G be a group. The holomorph of a group is the group $G \rtimes \operatorname{Aut}(G)$ with the operation

$$
(g, \alpha) \cdot(h, \beta)=(g \alpha(h), \alpha \beta) .
$$

A subgroup $H \leqslant \operatorname{Hol}(G)$ is called regular if, for each $g \in G$, there exists a unique $\phi_{g} \in \operatorname{Aut}(G)$ such that $\left(g, \phi_{g}\right) \in H$.

Theorem (L. Guarnieri, L. Vendramin)

There is a 1-1 correspondence between skew left braces and regular subgroups of holomorphs.

Proof.

$b, \lambda_{b} \longleftrightarrow\left(b, \phi_{b}\right)$

Ideals in skew left braces

Definition

A subset I of a skew left brace $(B,+, 0)$ is called an ideal if I is a normal subgroup of $(B,+), I$ is a normal subgroup of (B, \circ) and $\lambda_{a}(I) \subseteq I$, for each $a \in B$.

Definition

The set
$\operatorname{Soc}(B)=\{s \in B \mid \forall a \in B a+s=s+a=s \circ a\}$

is an ideal of B called the socle.

Proposition (D. Bachiller)

$\operatorname{Soc}(B)=\operatorname{Ker} \lambda \cap \operatorname{Ker} \rho$

Ideals in skew left braces

Definition

A subset I of a skew left brace $(B,+, 0)$ is called an ideal if I is a normal subgroup of $(B,+), I$ is a normal subgroup of (B, \circ) and $\lambda_{a}(I) \subseteq I$, for each $a \in B$.

Definition

The set

$$
\operatorname{Soc}(B)=\{s \in B \mid \forall a \in B a+s=s+a=s \circ a\}
$$

is an ideal of B called the socle.

Proposition (D. Bachiller)
$\operatorname{Soc}(B)=\operatorname{Ker} \lambda \cap \operatorname{Ker} \rho$

Ideals in skew left braces

Definition

A subset I of a skew left brace $(B,+, \circ)$ is called an ideal if I is a normal subgroup of $(B,+), I$ is a normal subgroup of (B, \circ) and $\lambda_{a}(I) \subseteq I$, for each $a \in B$.

Definition

The set

$$
\operatorname{Soc}(B)=\{s \in B \mid \forall a \in B a+s=s+a=s \circ a\}
$$

is an ideal of B called the socle.
Proposition (D. Bachiller)
$\operatorname{Soc}(B)=\operatorname{Ker} \lambda \cap \operatorname{Ker} \rho$

Nilpotency of left braces

Definition

Let $(B,+, \circ)$ be a skew left brace. We define

- $B_{0}=B$,
- $B_{i+1}=B_{i} / \operatorname{Soc}\left(B_{i}\right)$, for $i \geqslant 0$.

We say that B is socle-nilpotent of class k if k is the least integer such that $\left|B_{k}\right|=1$.

Theorem (D. Bachiller)

A skew left brace ($B,+, \circ$) is socle-nilpotent of class k if and only
if its associated birack has multipermutation level k.

Nilpotency of left braces

Definition

Let $(B,+, \circ)$ be a skew left brace. We define

- $B_{0}=B$,
- $B_{i+1}=B_{i} / \operatorname{Soc}\left(B_{i}\right)$, for $i \geqslant 0$.

We say that B is socle-nilpotent of class k if k is the least integer such that $\left|B_{k}\right|=1$.

Theorem (D. Bachiller)

A skew left brace $(B,+, \circ)$ is socle-nilpotent of class k if and only if its associated birack has multipermutation level k.

Central nilpotency

Definition (I. Colazzo, F. Catino, P. Stefanelli)

The annihilator or the center of a skew left brace is the ideal

$$
\{c \in B \mid \forall a \in B \quad c+a=a+c=c \circ a=a \circ c\}
$$

or simply $Z(B,+) \cap Z(B, \circ) \cap \operatorname{Ker} \lambda$.

Definitions (M. Bonatto, P. J.)

Upper central series:

Lower central series:

Central nilpotency

Definition (I. Colazzo, F. Catino, P. Stefanelli)

The annihilator or the center of a skew left brace is the ideal

$$
\{c \in B \mid \forall a \in B \quad c+a=a+c=c \circ a=a \circ c\}
$$

or simply $Z(B,+) \cap Z(B, \circ) \cap \operatorname{Ker} \lambda$.

Definitions (M. Bonatto, P. J.)

Upper central series:

$$
Z_{0}(B)=0, \quad Z_{n}=\left\{c \in B \mid \forall a \in B \quad a * c, c * a,[a, c]_{+} \in Z_{n-1}(B)\right\},
$$

Lower central series:

$$
\Gamma_{0}(I)=I, \quad \Gamma_{n}(I)=\left\langle\Gamma_{n-1}(I) * B, B * \Gamma_{n-1}(I),\left[\Gamma_{n-1}(I), B\right]_{+}\right\rangle_{+},
$$

where $x * y=-x+(x \circ y)-y$.

Commutator in skew braces

Theorem (D. Bourn, A. Facchini, M. Pompili)
The commutator of two ideals I and J in a skew brace $(B,+, \circ)$ is the smallest ideal generated by $[I, J]_{+},[I, J]_{\circ}$ and $I * J$.

Corollary

$$
\begin{aligned}
Z_{n}(B) / Z_{n-1}(B) & =Z\left(B / Z_{n-1}(B)\right) \\
\Gamma_{n}(I) & =\left[\Gamma_{n-1}(I), B\right]
\end{aligned}
$$

Commutator in skew braces

Theorem (D. Bourn, A. Facchini, M. Pompili)

The commutator of two ideals I and J in a skew brace $(B,+, \circ)$ is the smallest ideal generated by $[I, J]_{+},[I, J]_{\circ}$ and $I * J$.

Corollary

$$
\begin{aligned}
Z_{n}(B) / Z_{n-1}(B) & =Z\left(B / Z_{n-1}(B)\right) \\
\Gamma_{n}(I) & =\left[\Gamma_{n-1}(I), B\right]
\end{aligned}
$$

Opposite skew left braces

Proposition

Let $(B, \triangleleft, \triangleright)$ be a birack and let $r(x, y)=(x \triangleleft y, x \triangleright y)$. Then $r^{-1}:(x, y) \mapsto(x \hat{\triangleleft} y, x \hat{\triangleright} y)$ is a birack.

Definition (A. Koch, P. J. Truman)

Let $(B,+, \circ)$ be a skew left brace. Then $\left(B,+_{o p}, \circ\right)$ is a skew left brace called the opposite skew left brace.

Theorem (A. Koch, P. J. Truman)
The birack associated to $\left(B,+_{o p}, \circ\right)$ is inverse to the birack associated to $(B,+, 0)$.

Corollary
$\hat{\lambda}_{a}(b)=(a \circ b)-a, \quad \hat{\rho}_{b}(a)=\left(\hat{\lambda}_{a}(b)\right)^{-1} \circ a \circ b$.

Opposite skew left braces

Proposition

Let $(B, \triangleleft, \triangleright)$ be a birack and let $r(x, y)=(x \triangleleft y, x \triangleright y)$. Then $r^{-1}:(x, y) \mapsto(x \hat{\triangleleft} y, x \hat{\triangleright} y)$ is a birack.

Definition (A. Koch, P. J. Truman)

Let $(B,+, \circ)$ be a skew left brace. Then $\left(B,{ }_{o p}, \circ\right)$ is a skew left brace called the opposite skew left brace.

Theorem (A. Koch, P. J. Truman)
 The birack associated to $\left(B,+_{o p}, 0\right)$ is inverse to the birack associated to $(B,+, 0)$.

Corollary
$\hat{\lambda}_{a}(b)=(a \circ b)-a$,

Opposite skew left braces

Proposition

Let $(B, \triangleleft, \triangleright)$ be a birack and let $r(x, y)=(x \triangleleft y, x \triangleright y)$. Then $r^{-1}:(x, y) \mapsto(x \triangleleft y, x \wedge y)$ is a birack.

Definition (A. Koch, P. J. Truman)

Let $(B,+, \circ)$ be a skew left brace. Then $\left(B,+_{o p}, \circ\right)$ is a skew left brace called the opposite skew left brace.

Theorem (A. Koch, P. J. Truman)

The birack associated to $\left(B,+_{o p}, \circ\right.$) is inverse to the birack associated to ($B,+, \circ$).

Opposite skew left braces

Proposition

Let $(B, \triangleleft, \triangleright)$ be a birack and let $r(x, y)=(x \triangleleft y, x \triangleright y)$. Then $r^{-1}:(x, y) \mapsto(x \hat{\triangleleft} y, x \hat{\triangleright} y)$ is a birack.

Definition (A. Koch, P. J. Truman)

Let $(B,+, \circ)$ be a skew left brace. Then $\left(B,{ }_{o p}, \circ\right)$ is a skew left brace called the opposite skew left brace.

Theorem (A. Koch, P. J. Truman)

The birack associated to $\left(B,+_{o p}, \circ\right)$ is inverse to the birack associated to $(B,+, \circ)$.

Corollary

$$
\hat{\lambda}_{a}(b)=(a \circ b)-a, \quad \hat{\rho}_{b}(a)=\left(\hat{\lambda}_{a}(b)\right)^{-1} \circ a \circ b
$$

Structure group

Definition

Let $(X, \triangleleft, \triangleright)$ be a finite birack. The infinite group with the presentation

$$
G_{X}=\langle X \mid x \circ y=(x \triangleleft y) \circ(x \triangleright y)\rangle
$$

is called the structure group of the birack X.

Theorem

Let $(X, \triangleleft, \triangleright)$ be a birack. Let

Then there exists a bijection $\phi: A_{X} \rightarrow G_{X}$ such that $\phi(x)=x$ and $\phi(a) \circ \phi(b+c)=\phi\left(\phi^{-1}(\phi(a) \circ \phi(b))-a+\phi^{-1}(\phi(a) \circ \phi(c))\right)$.

Structure group

Definition

Let $(X, \triangleleft, \triangleright)$ be a finite birack. The infinite group with the presentation

$$
G_{X}=\langle X \mid x \circ y=(x \triangleleft y) \circ(x \triangleright y)\rangle
$$

is called the structure group of the birack X.

Theorem

Let $(X, \triangleleft, \triangleright)$ be a birack. Let

$$
A_{X}=\left\langle X \mid x+y=y+\left(y \triangleleft\left(y \backslash_{\triangleleft} x\right)\right)\right\rangle
$$

Then there exists a bijection $\phi: A_{X} \rightarrow G_{X}$ such that $\phi(x)=x$ and

$$
\phi(a) \circ \phi(b+c)=\phi\left(\phi^{-1}(\phi(a) \circ \phi(b))-a+\phi^{-1}(\phi(a) \circ \phi(c))\right) .
$$

Injective biracks

Theorem

Let $(X, \triangleleft, \triangleright)$ be a birack and let G_{X} be its structure group. If we define

$$
\iota:(X, \triangleleft, \triangleright) \rightarrow\left(G_{X}, \triangleleft, \triangleright\right), \quad x \mapsto x,
$$

then t is a homomorphism of biracks.

Corollary

Suppose $\iota(x)=\iota(y)$ then $x \sim y$.

Definition
We say that a birack is injective if t is injective.

Observation
Every involutive birack is injective.

Injective biracks

Theorem

Let $(X, \triangleleft, \triangleright)$ be a birack and let G_{X} be its structure group. If we define

$$
\iota:(X, \triangleleft, \triangleright) \rightarrow\left(G_{X}, \triangleleft, \triangleright\right), \quad x \mapsto x,
$$

then t is a homomorphism of biracks.

Corollary

Suppose $\iota(x)=\iota(y)$ then $x \sim y$.

Definition

We say that a birack is injective if L is injective.

Observation
Every involutive birack is injective.

Injective biracks

Theorem

Let $(X, \triangleleft, \triangleright)$ be a birack and let G_{X} be its structure group. If we define

$$
\iota:(X, \triangleleft, \triangleright) \rightarrow\left(G_{X}, \triangleleft, \triangleright\right), \quad x \mapsto x,
$$

then t is a homomorphism of biracks.

Corollary

Suppose $\mathfrak{\imath}(x)=\mathfrak{\imath}(y)$ then $x \sim y$.

Definition

We say that a birack is injective if ι is injective.

Observation
Every involutive birack is injective.

Injective biracks

Theorem

Let $(X, \triangleleft, \triangleright)$ be a birack and let G_{X} be its structure group. If we define

$$
\iota:(X, \triangleleft, \triangleright) \rightarrow\left(G_{X}, \triangleleft, \triangleright\right), \quad x \mapsto x,
$$

then t is a homomorphism of biracks.

Corollary

Suppose $\mathfrak{\imath}(x)=\mathfrak{\imath}(y)$ then $x \sim y$.

Definition

We say that a birack is injective if ι is injective.

Observation

Every involutive birack is injective.

Bi-skew left braces

Definition (L. Childs)

A skew left brace $(B,+, \circ)$ is called a bi-skew left brace if $(B, 0,+)$ is a skew left brace as well.

```
Theorem (A. Caranti)
A skew left brace ( }B,+,0)\mathrm{ is a bi-skew left brace if and only if }\lambda\mathrm{ is
an anti-homomorphism of ( }B,+)\mathrm{ , i.e. }\mp@subsup{\lambda}{a+b}{}=\mp@subsup{\lambda}{b}{}\mp@subsup{\lambda}{a}{}\mathrm{ .
```

Theorem (L. Stefanello, S. Trappeniers)
Let $(B,+, \circ)$ be a skew left brace. Then B is a bi-skew left brace if and only if

$$
\lambda_{\hat{\lambda}_{a}(b)}=\lambda_{b},
$$

for each $a, b \in B$.

Bi-skew left braces

Definition (L. Childs)

A skew left brace $(B,+, \circ)$ is called a bi-skew left brace if $(B, 0,+)$ is a skew left brace as well.

Theorem (A. Caranti)

A skew left brace $(B,+, 0)$ is a bi-skew left brace if and only if λ is an anti-homomorphism of $(B,+)$, i.e. $\lambda_{a+b}=\lambda_{b} \lambda_{a}$.
\square
Theorem (L. Stefanello, S. Trappeniers)
Let $(B,+, \circ)$ be a skew left brace. Then B is a bi-skew left brace if and only if

Bi-skew left braces

Definition (L. Childs)

A skew left brace $(B,+, \circ)$ is called a bi-skew left brace if $(B, 0,+)$ is a skew left brace as well.

Theorem (A. Caranti)

A skew left brace $(B,+, 0)$ is a bi-skew left brace if and only if λ is an anti-homomorphism of $(B,+)$, i.e. $\lambda_{a+b}=\lambda_{b} \lambda_{a}$.

Theorem (L. Stefanello, S. Trappeniers)

Let $(B,+, \circ)$ be a skew left brace. Then B is a bi-skew left brace if and only if

$$
\lambda_{\hat{\lambda}_{a}(b)}=\lambda_{b}
$$

for each $a, b \in B$.

Distributive biracks

Theorem (P. J., A. Pilitowska)
Let (X, σ, τ) be a birack. TFAE:

- $L_{\hat{L}_{x}(y)}=L_{y}$,
- $L_{\mathbf{R}_{x}(y)}=L_{y}$,
- $L_{x} L_{y}=L_{L_{x}(y)} L_{x}$,
- $\hat{L}_{x}=L_{x}^{-1}$,
- $L_{x} \in \operatorname{Aut}(X)$,
for all $x, y \in X$.

Corollary

- B is a bi-skew left brace,

- $\lambda_{a} \in \operatorname{Aut}(B)$,

Distributive biracks

Theorem (P. J., A. Pilitowska)
Let (X, σ, τ) be a birack. TFAE:

- $L_{\hat{L}_{x}(y)}=L_{y}$,
- $L_{\mathbf{R}_{x}(y)}=L_{y}$,
- $L_{x} L_{y}=L_{L_{x}(y)} L_{x}$,
- $\hat{L}_{x}=L_{x}^{-1}$,
- $L_{x} \in \operatorname{Aut}(X)$,
for all $x, y \in X$.

Corollary

Let $(B,+, \circ)$ be a skew left brace. TFAE:

- B is a bi-skew left brace,
- $\lambda_{a+b}=\lambda_{b} \lambda_{a}$,
- $\lambda_{\hat{\lambda}_{a}(b)}=\lambda_{b}$,
- $\lambda_{\rho_{a}(b)}=\lambda_{b}$,
- $\lambda_{a} \lambda_{b}=\lambda_{\lambda_{a}(b)} \lambda_{a}$,
- $\hat{\rho}_{a}=\lambda_{a}^{-1}$,
- $\lambda_{a} \in \operatorname{Aut}(B)$,
for all $a, b \in B$.

Equations of 2-reductivity and skew braces

Proposition (P. J., A. Pilitowska)

Let $(B,+, \circ)$ be a skew left brace. Then

- $\lambda_{\lambda_{a}(b)}=\lambda_{b}$ if and only if λ is a homomorphism $(B,+) \rightarrow \operatorname{Aut}(B, \circ)$, that means $\lambda_{a+b}=\lambda_{a} \lambda_{b}$;
- $\lambda_{\rho_{a}(b)}=\lambda_{b}$ if and only if λ is an anti-homomorphism $(B,+) \rightarrow \operatorname{Aut}(B, \circ)$, that means $\lambda_{a+b}=\lambda_{b} \lambda_{a}$;
- $\rho_{\rho_{a}(b)}=\rho_{b}$ if and only if ρ is a homomorphism $(B,+) \rightarrow \mathfrak{S}_{X}$, that means $\rho_{a+b}=\rho_{a} \rho_{b}$;
- $\rho_{\lambda_{a}(b)}=\rho_{b}$ if and only if ρ is an anti-homomorphism $(B,+) \rightarrow \operatorname{Aut}(B, \circ)$, that means $\rho_{a+b}=\rho_{b} \rho_{a}$.

Skew left braces and 2-reductivity

Theorem (P. J., A. Pilitowska)

Let $(B,+, \circ)$ be a skew left brace. TFAE

- the birack $(B, \triangleleft, \triangleright)$ is 2-reductive,
- $\lambda_{a+b}=\lambda_{b+a}=\lambda_{a} \lambda_{b}$ and $\rho_{a+b}=\rho_{b+a}=\rho_{a} \rho_{b}$,
- $(B, \triangleleft, \triangleright)$ has multipermutation level at most 2 ,
- $(B,+, \circ)$ is socle-nilpotent of degree at most 2 ,
- $\left(B,+_{o p}, \circ\right)$ is socle-nilpotent of degree at most 2 .

Proposition (P. J., A. Pilitowska)

Let $(X, \triangleleft, \triangleright)$ be 2-reductive. Then G_{X} is socle-nilpotent of degree at
most 2.

Skew left braces and 2-reductivity

Theorem (P. J., A. Pilitowska)

Let $(B,+, \circ)$ be a skew left brace. TFAE

- the birack $(B, \triangleleft, \triangleright)$ is 2-reductive,
- $\lambda_{a+b}=\lambda_{b+a}=\lambda_{a} \lambda_{b}$ and $\rho_{a+b}=\rho_{b+a}=\rho_{a} \rho_{b}$,
- $(B, \triangleleft, \triangleright)$ has multipermutation level at most 2 ,
- $(B,+, \circ)$ is socle-nilpotent of degree at most 2 ,
- $\left(B,+_{o p}, \circ\right)$ is socle-nilpotent of degree at most 2 .

Proposition (P. J., A. Pilitowska)

Let $(X, \triangleleft, \triangleright)$ be 2-reductive. Then G_{X} is socle-nilpotent of degree at most 2.

