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Braces and biracks

Left braces

Left braces

Definition (W. Rump)
A set B equipped with operations + and o is called a left brace if

@ (B, +) is an abelian group;
@ (B, o) is a group;
e foralla,b,c € B,wehaveao (b+c)=aob+aoc—a.
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Left braces

Definition (W. Rump)

A set B equipped with operations + and o is called a left brace if
@ (B,+) is an abelian group;
@ (B, o) is a group;
o foralla,b,c € B,wehaveao (b+c)=aob+aoc—a.

Let (R, +, ) be a radical ring. Letaob =a+axb +b. Then
(B, +, o) is a left brace.
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Left braces

Definition (W. Rump)

A set B equipped with operations + and o is called a left brace if
@ (B,+) is an abelian group;
@ (B, o) is a group;
o foralla,b,c € B,wehaveao (b+c)=aob+aoc—a.

Let (R, +, ) be a radical ring. Letaob =a+axb +b. Then
(B, +, 0) is a left brace.

A

Let (R, +, -) be a commutative ring and let n € nil(R). Let
a*b =anr. Then (R, +, %) is a commutative radical ring.

A
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Left braces

Two-sided braces

Definition
A left brace is called two-sided if (a +b)oc =aoc+boc—c.

Let o be commutative. Then the left brace is two-sided.
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Two-sided braces

Definition
A left brace is called two-sided if (a +b)oc =aoc+boc—c.

Let o be commutative. Then the left brace is two-sided.

Proposition (W. Rump)
Let (B, +, o) be a two-sided brace. letaxb =aob—a—b. Then
(R, +, *) is a radical ring.
Moreover, if B is finite then
B= [] B,
p prime

where B, ={b € B| 3m € N: p™b = 0}.
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Semidirect product

Definitions
Let (A, +4,04) and (B, +p, og) are two left braces. An action of B
on A is a homomorphism ¢ : (B, og) — Aut(A).

The semidirect product A x4, B is defined as follows:

(a1, b1) + (a2, b2) = (a1 +a az, by +pb2),
(a1,b1) o (bg, b2) = (aj oa d(b1)(az), by op b2)
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Left braces

Homomorphism A

Let (B, +, o) be a left brace. The mapping A : B — B defined by
Aa(b) =aob—a

is a group homomorphism (B, o) — Aut(B, +).




Braces and biracks

Left braces

Homomorphism A

Let (B, +, o) be a left brace. The mapping A : B — B defined by
Aa(b) =aob—a

is a group homomorphism (B, o) — Aut(B, +).

.
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Left braces

Cohomology

Observation

Let (B, +, o) be a left brace. The action A turns (B, +) into a left
(B, o)-module such that the identity is a 1-cocycle.

On the other hand, if we have a group G, a left G-module M and a
bijective 1-cocycle ¢ : G — M then, by defining

a+b=0¢ ' (b(a)+ d(b))

we obtain a left brace.
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Left braces

Ideals in left braces

Definition
A subset I of a left brace (B, +, o) is called an ideal if I is a
subgroup of (B, +), I is a normal subgroup of (B, o) and A,(I) C I,
for each a € B.
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Left braces

Ideals in left braces

Definition

A subset I of a left brace (B, +, o) is called an ideal if I is a
subgroup of (B, +), I is a normal subgroup of (B, o) and A,(I) C I,
for each a € B.

Observation

Ideals of left braces correspond to homomorphism pre-images
of 0. On the other hand, every endomorphism is determined by
its kernel.
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Left braces

Socle

The set
Soc(B)={s€B|s+a=soa}

is an ideal of B called the socle.
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Socle

Definition
The set

Soc(B)={s€B|s+a=soa}

is an ideal of B called the socle.

Observation
Soc(B) = Ker A.
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Left braces

Socle

Definition
The set

Soc(B)={s€B|s+a=soa}

is an ideal of B called the socle.

Observation
Soc(B) = Ker A.

Observation

If o is commutative then Soc(B, +,0) = Ann(B, +, *).




Braces and biracks

Involutive biracks

Yang—Baxter equation

Definition

Let V be a vector space. A homomorphismR:V®V - V®Vis
called a solution of Yang—Baxter equation if it satisfies

(R®1idy)(idv ® R)(R ® idy) = (idv ® R)(R ® idy) (idy ® R).
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Biracks

An algebra (B, <,>) is called a birack if
@ (X, <) is a left quasigroup,
@ (X,r) is a right quasigroup,
o the mappingr: (x,y) — (x<y,x>Yy) is bijective,
@ the mapping r satisfies

(r x idy) (idx x r)(r x idx) = (idx x r)(r x idx)(idx x r). )
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Biracks

An algebra (B, <,>) is called a birack if
@ (X, <) is a left quasigroup,
@ (X,r) is a right quasigroup,
o the mappingr: (x,y) — (x<y,x>Yy) is bijective,
@ the mapping r satisfies

(r x idy) (idx x r)(r x idx) = (idx x r)(r x idx)(idx x r). )

Definition

A birack is called involutive if r? = idy..
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Involutive biracks associated to left braces

Proposition

Let (B, +, o) be a left brace. If we define < and 1> as

a<b =M\ (b)
arb= ?\;al(b) (a)

then (B, <,>) is an involutive birack.
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Involutive biracks associated to left braces

Proposition

Let (B, +, o) be a left brace. If we define < and 1> as

a<b =M\ (b)
arb= ?\;al(b) (a)

then (B, <,>) is an involutive birack.

&

Ma®)Mri1,) (@) = MaBrorsdy, (@) = Ma(B)o(Ra(b)) Lo (Aa(b)+a) =
A(aob)faJra = )\aob = Aaxb O

A
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Involutive biracks

Nilpotency of left braces

Definition
Let (B, +, o) be a left brace. We define
@ By =3B,
@ B;.1 = B;/Soc(B;), fori > 0.
We say that B is nilpotent of class k if k is the least integer such
that [B| = 1. |
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Involutive biracks

Nilpotency of left braces

Definition
Let (B, +, o) be a left brace. We define
@ By =3B,
@ B;.1 = B;/Soc(B;), fori > 0.
We say that B is nilpotent of class k if k is the least integer such
that [B| = 1.

\,

Theorem (W. Rump)

A left brace (B, +, o) is nilpotent of class k if and only if its
associated birack has multipermutation level k

A

.
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Involutive biracks

Nilpotency of left braces

Definition
Let (B, +, o) be a left brace. We define
@ By =3B,
@ B;.1 = B;/Soc(B;), fori > 0.
We say that B is nilpotent of class k if k is the least integer such
that |Bi| = 1.

\,

Theorem (W. Rump)

A left brace (B, +, o) is nilpotent of class k if and only if its
associated birack has multipermutation level k

A

X~y & M=A & A1 =id & xoy~! € Soc(B)
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Structure group and multiplication brace

Structure group

Definition
Let (X, <,>) be a finite involutive birack. The infinite group with
the presentation

Gx =X |xoy=(x<ay)o(xpy))

is called the structure group of the birack X.
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Structure group and multiplication brace

Structure group

Definition
Let (X, <,>) be a finite involutive birack. The infinite group with
the presentation

Gx =X |xoy=(x<ay)o(xpy))

is called the structure group of the birack X.

.

Theorem (P. Etingof, T. Schedler, A. Soloviev)

Let (X, <,>) be a finite involutive birack. Then there exists a
unique free abelian group operation + on the set Gx such that
(Gx, 4, 0) is a left brace and A(y) =x <y, for all x,y € X.

In particular, (X,<,>) embeds into the birack associated to Gx.

€
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Structure group and multiplication brace

Representation of the structure group

Theorem (E. Acri, R. Lutowski, L. Vendramin)

Let X be an involutive birack of size n € N. Then Gx embeds into
GL(n+1,7).
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Structure group and multiplication brace

Representation of the structure group

Theorem (E. Acri, R. Lutowski, L. Vendramin)

Let X be an involutive birack of size n € N. Then Gx embeds into
GL(n+1,7).

Suppose X = {x1,x2,...,Xn}.
For each a € Gy, let A; be the permutation matrix of the

permutation Aq|x and let ¢; be such thata = > (cq)ix;.
_,{I’

A
We associate to a the matrix (6‘1 Cf) €GL(n+1,7)
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Representation of the structure group

Theorem (E. Acri, R. Lutowski, L. Vendramin)

Let X be an involutive birack of size n € N. Then Gx embeds into
GL(n +1,7).

Suppose X = {x1,x2,...,Xn}.
For each a € Gy, let A; be the permutation matrix of the

permutation Aq|x and let ¢; be such thata = > (cq)ix;.
_,{I’

A
We associate to a the matrix (6‘1 Cf) €GL(n+1,7)

Use Aq(b) = Y (Aq- ¢l )ix; and ao b = a + Aq(D).
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Projection to the multiplication group

Definition
Let (X, r) be an involutive birack. The group

MIt(X) = (Ly | x € X) = (Ly, Ry | x € X),

where Ly (y) = x <y and Ry (y) =y >x, is called the multiplication
group or the permutation group or the Yang-Baxter group
of (X,<,>).
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Projection to the multiplication group

Definition

Let (X, r) be an involutive birack. The group
Mlt(X) = (Ly | x € X) = (Ly, R¢ | x € X),

where Ly (y) = x <y and Ry (y) =y >x, is called the multiplication
group or the permutation group or the Yang-Baxter group
of (X,<,>).

Let 7t : Gx — Mlt(X) send x to Ly. This mapping extends to a
homomorphism of groups since LyLy = LyayLxyy.
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Projection to the multiplication group

Definition

Let (X, r) be an involutive birack. The group
Mlt(X) = (Ly | x € X) = (Ly, R¢ | x € X),

where Ly (y) = x <y and Ry (y) =y >x, is called the multiplication
group or the permutation group or the Yang-Baxter group
of (X,<,>).

Let 7t : Gx — Mlt(X) send x to Ly. This mapping extends to a
homomorphism of groups since LyLy = LyayLxyy.
Ax restricted to X is equal to Ly.
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Projection to the multiplication group

Let (X, r) be an involutive birack. The group

MIt(X) = (Ly | x € X) = (Ly, Ry | x € X),

where Ly (y) = x <y and Ry (y) =y >x, is called the multiplication
group or the permutation group or the Yang-Baxter group
of (X,<,>).

Let 7t : Gx — Mlt(X) send x to Ly. This mapping extends to a
homomorphism of groups since LyLy = LyayLxyy.

Ax restricted to X is equal to Ly.

Ax;ox0---0x, Testricted to X is equal to Ly Ly, - - - Ly, .
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Projection to the multiplication group

Let (X, r) be an involutive birack. The group

MIt(X) = (Ly | x € X) = (Ly, Ry | x € X),

where Ly (y) = x <y and Ry (y) =y >x, is called the multiplication
group or the permutation group or the Yang-Baxter group
of (X,<,>).

Let 7t : Gx — Mlt(X) send x to Ly. This mapping extends to a
homomorphism of groups since LyLy = LyayLxyy.
Ax restricted to X is equal to Ly.

Ax;ox0---0x, Testricted to X is equal to Ly Ly, - - - Ly, .
Aq restricted to X is equal to 7t(a).
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Structure group and multiplication brace

Projection to the multiplication group

Let (X, r) be an involutive birack. The group

MIt(X) = (Ly | x € X) = (Ly, Ry | x € X),

where Ly (y) = x <y and Ry (y) =y >x, is called the multiplication
group or the permutation group or the Yang-Baxter group
of (X,<,>).

Let 7t : Gx — Mlt(X) send x to Ly. This mapping extends to a
homomorphism of groups since LyLy = LyayLxyy.
Ax restricted to X is equal to Ly.

Ax;ox0---0x, Testricted to X is equal to Ly Ly, - - - Ly, .
Aq restricted to X is equal to 7t(a).

a € Ker A <= A, is the identity <= A, is the identity on X <=
7t(a) is the identity <= a € Kermnt
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Structure group and multiplication brace

Multiplication left brace

Definition

The multiplication left brace is the quotient left brace Gx/Soc(Gx).
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Multiplication left brace

Definition
The multiplication left brace is the quotient left brace Gx/Soc(Gx).

Observation
Since Soc(Gx) = Ker A, the quotient can be viewed as the
projection Tt of Gx onto Mlt(X). Hence it is usual to consider

Gx/Soc(Gx) = Mlt(X).
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Multiplication left brace

Definition
The multiplication left brace is the quotient left brace Gx/Soc(Gx).

Observation

Since Soc(Gx) = Ker A, the quotient can be viewed as the
projection Tt of Gx onto Mlt(X). Hence it is usual to consider
Gx/Soc(Gx) = Mlt(X).

7(x) = Ly
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Multiplication left brace

Definition
The multiplication left brace is the quotient left brace Gx/Soc(Gx).

Observation

Since Soc(Gx) = Ker A, the quotient can be viewed as the
projection Tt of Gx onto Mlt(X). Hence it is usual to consider
Gx/Soc(Gx) = Mlt(X).

7(x) = Ly
Since A (y) = Ly (y), we have mt(Ac(y)) = nt(Lx(y)) = L, ()
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Multiplication left brace

Definition
The multiplication left brace is the quotient left brace Gx/Soc(Gx).

Observation

Since Soc(Gx) = Ker A, the quotient can be viewed as the
projection Tt of Gx onto Mlt(X). Hence it is usual to consider
Gx/Soc(Gx) = Mlt(X).

7(x) = Ly

Since A (y) = Ly (y), we have mt(Ac(y)) = nt(Lx(y)) = L, ()
Since A is a homomorphism we have 7t(Aq(y)) = Ly(a)(y)-
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Multiplication left brace

Definition
The multiplication left brace is the quotient left brace Gx/Soc(Gx).

Observation

Since Soc(Gx) = Ker A, the quotient can be viewed as the
projection Tt of Gx onto Mlt(X). Hence it is usual to consider
Gx/Soc(Gx) = Mlt(X).

7(x) = Ly

Since A (y) = Ly (y), we have mt(Ac(y)) = nt(Lx(y)) = L, ()
Since A is a homomorphism we have 7t(Aq(y)) = Ly(a)(y)-
Now a+x=ao(a to(a+x))=aoA;(x)and hence
mi(a +x) = m(a)L(q)1(x)-
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Structure group and multiplication brace

Socle vs. retract

Let (B, +, o) be a left brace and let (B, <,>) be its associated
birack. Let X be a subset of B closed on A that generates (B, +).
Then Ret(X) = {x + Soc(B) | x € X} C B/Soc(B).
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Structure group and multiplication brace

Socle vs. retract

Let (B, +, o) be a left brace and let (B, <,>) be its associated
birack. Let X be a subset of B closed on A that generates (B, +).
Then Ret(X) = {x + Soc(B) | x € X} C B/Soc(B).

A

X~y <<= MA=AonX <+= MA=Ao0nB
M1=id <= xoy 'eKerA <= xoy !eSoc(B)

.
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Structure group and multiplication brace

Socle vs. retract

Let (B, +, o) be a left brace and let (B, <,>) be its associated
birack. Let X be a subset of B closed on A that generates (B, +).
Then Ret(X) = {x + Soc(B) | x € X} C B/Soc(B).

A

X~y <<= MA=AonX <+= MA=Ao0nB
M1=id <= xoy 'eKerA <= xoy !eSoc(B)

b~ <yl = A )]~ = Ac(y) + Soc(B)

.
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Socle vs. retract

Let (B, +, o) be a left brace and let (B, <,>) be its associated
birack. Let X be a subset of B closed on A that generates (B, +).
Then Ret(X) = {x + Soc(B) | x € X} C B/Soc(B).

A

X~y <<= MA=AonX <+= MA=Ao0nB
M1=id <= xoy 'eKerA <= xoy !eSoc(B)

~d [y]~ = [Axb’)L = }\x(.)’) —+ SOC(B)

A1~ =M Y)] = A (y') + Soc(B
Ac(y +8) + Soc(B) = Ac(y) + Ax(s) + Soc(B ) Ax(¥) + Soc(B) D)
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Corollaries of the retract

~ is a congruence for every finite involutive birack.
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Corollaries of the retract

~ is a congruence for every finite involutive birack.

Since X embeds into Gy, Ret(X) embeds into Mlt(X).
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Structure group and multiplication brace

Corollaries of the retract

~ is a congruence for every finite involutive birack.

Since X embeds into Gy, Ret(X) embeds into Mlt(X).

If X is finite and Mlt(X) is abelian then X is multipermutation.
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Structure group and multiplication brace

Corollaries of the retract

~ is a congruence for every finite involutive birack.

Since X embeds into Gx, Ret(X) embeds into MIt(X). O

If X is finite and Mlt(X) is abelian then X is multipermutation.

Ret(X) embeds into Mlt(X). Since (MIt(X), o) is abelian,
(MIt(X), 4, %) is a radical ring. All finite commutative radical rings
are nilpotent. Hence Ret(X) is multipermutation. Ol
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Structure group and multiplication brace

Indecomposable involutive biracks

Definition
We say that an involutive birack (X, <, ) is indecomposable if the
group Mlt(X) is transitive.

€

Theorem (W. Rump, reformulated by M. Castelli)

Let (B, +,0) and let g € B be such that the orbit of g under the
action A generates the left brace B. If we define

a<db =N (g)ob

then (B, <,>) is an indecomposable involutive birack with its
mutiplication left brace isomorphic to B.

Moreover, every indecomposable involutive birack can be
obtained this way.

.
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Structure group and multiplication brace

Invariants of isomorphisms

Theorem (W. Rump)

Let k be a power of prime and let (B, +, o) be a left brace of size k
with (B, o) cyclic. Then (B,+) is cyclic if and only if k # 4.
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Invariants of isomorphisms

Theorem (W. Rump)

Let k be a power of prime and let (B, +, o) be a left brace of size k
with (B, o) cyclic. Then (B,+) is cyclic if and only if k # 4.

v

Theorem (P.]., A.P., A.Z.-D.)
A complete set of invariants for finite indecomposable involutive
biracks with cyclic multiplication groups are

e keN,

@ n € N such that,

o n divides k,
e every prime p divides n whenever p divides k,
o if 8 divides k then 4 divides n,

e ge{l,...,gcd(n, k/n)} coprime to k.

.
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Skew left braces

Definition (L. Guarnieri, L. Vendramin)

A set B equipped with operations + and o is called a skew left
brace if

@ (B,+) is a group;
@ (B, o) is a group;
o foralla,b,c € B,wehaveao (b+c)=aob—a-+aoc.
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Skew left braces

Definition (L. Guarnieri, L. Vendramin)

A set B equipped with operations + and o is called a skew left
brace if

@ (B,+) is a group;
@ (B, o) is a group;

o foralla,b,c € B,wehaveao (b+c)=aob—a-+aoc.

Let (B, +) be a group. Then (B, +, +p) is a skew left brace.
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Skew left braces

Biracks associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let (B, +, o) be a skew left brace. The mapping A : B — Gpg
defined by Aq(b) = —a+aob is a homomorphism B — Aut(B, —i—).J
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Skew left braces

Biracks associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let (B, +, o) be a skew left brace. The mapping A : B — Gpg
defined by Aq(b) = —a+aob is a homomorphism B — Aut(

B, +).

v

Proposition (D. Bachiller)

Let (B, +, o) be a skew left brace The mapping p: B — Sp
defined by pp(a) = (Aq(b)) "t o a o b is an anti-homomorphism,
that means pgop = PpPa-

€

.
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Skew left braces

Biracks associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let (B, +, o) be a skew left brace. The mapping A : B — Gpg
defined by Aq(b) = —a+aob is a homomorphism B — Aut(

B, +).

v

Proposition (D. Bachiller)

Let (B, +, o) be a skew left brace The mapping p : B — Gp
defined by pp(a) = (Aq(b)) "t o a o b is an anti-homomorphism,
that means pgop = PpPa-

€

Proposition (L. Guarnieri, L. Vendramin)

Let (B, +, o) be a left brace. If we define
a<b = A (b), a>b =pyla)

then (B, <,>) is a birack.




Braces and biracks

Skew left braces

Holomorph

Definition
Let G be a group. The holomorph of a group is the group
G x Aut(G) with the operation
(g ) (h, B) = (ga(h), ap).
A subgroup H < Hol(G) is called regular if, for each g € G, there
exists a unique ¢g € Aut(G) such that (g, ¢g) € H.
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Holomorph

Definition
Let G be a group. The holomorph of a group is the group
G x Aut(G) with the operation

(g o) - (R, B) = (gex(h), &B).

A subgroup H < Hol(G) is called regular if, for each g € G, there
exists a unique ¢g € Aut(G) such that (g, ¢g) € H.

\,

Theorem (L. Guarnieri, L. Vendramin)

There is a 1-1 correspondence between skew left braces and
regular subgroups of holomorphs.

A

\
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Holomorph

Definition

Let G be a group. The holomorph of a group is the group
G x Aut(G) with the operation

(g &) - (h, B) = (gx(h), xB).

A subgroup H < Hol(G) is called regular if, for each g € G, there
exists a unique ¢g € Aut(G) such that (g, ¢g) € H.

Theorem (L. Guarnieri, L. Vendramin)

There is a 1-1 correspondence between skew left braces and
regular subgroups of holomorphs.

b, Ay «~ (b, dp)
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Ideals in skew left braces

Definition
A subset I of a skew left brace (B, +, o) is called an ideal if I is a
normal subgroup of (B, +), I is a normal subgroup of (B, o) and

A«(I) C I, for each a € B. )
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Ideals in skew left braces

Definition

A subset I of a skew left brace (B, +, o) is called an ideal if I is a
normal subgroup of (B, +), I is a normal subgroup of (B, o) and
A«(I) C I, for each a € B.

Definition
The set

Soc(B)={se€B|VaeBa+s=s+a=soa}

is an ideal of B called the socle.
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Skew left braces

Ideals in skew left braces

Definition

A subset I of a skew left brace (B, +, o) is called an ideal if I is a
normal subgroup of (B, +), I is a normal subgroup of (B, o) and
A«(I) C I, for each a € B.

Definition
The set

Soc(B)={se€B|VaeBa+s=s+a=soa}

is an ideal of B called the socle.

Proposition (D. Bachiller)

Soc(B) = Ker A N Ker p
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Nilpotency of left braces

Definition
Let (B, +, o) be a skew left brace. We define
@ By =B,
@ B;.1 = B;/Soc(B;), fori > 0.
We say that B is socle-nilpotent of class k if k is the least integer
such that [Bi| = 1.
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Nilpotency of left braces

Definition
Let (B, +, o) be a skew left brace. We define
@ By =B,
@ B;.1 = B;/Soc(B;), fori > 0.
We say that B is socle-nilpotent of class k if k is the least integer
such that [Bi| = 1.

.

Theorem (D. Bachiller)

A skew left brace (B, +, o) is socle-nilpotent of class k if and only
if its associated birack has multipermutation level k.

.
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Skew left braces

Central nilpotency

Definition (I. Colazzo, F. Catino, P. Stefanelli)

The annihilator or the center of a skew left brace is the ideal
{ceB|VaeB c+a=a+c=coa=aoc}

or simply Z(B, +) N Z(B, o) N KerA.
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Central nilpotency

Definition (I. Colazzo, F. Catino, P. Stefanelli)
The annihilator or the center of a skew left brace is the ideal

{ceB|VaeB c+a=a+c=coa=aoc}

or simply Z(B, +) N Z(B, o) N KerA.

Definitions (M. Bonatto, P.].)
Upper central series:

Zo(B)=0, Z,={ceB|YaeB axccx*a,lacl, €Z, 1(B)},
Lower central series:

lo() =1, Tu(I) = (Th1(I)*B,B* Ty 1(I), Nh—1(I),Bl+)+,
where x xy = —x+ (xoy) —y.
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Skew left braces

Commutator in skew braces

Theorem (D. Bourn, A. Facchini, M. Pompili)

The commutator of two ideals I and J in a skew brace (B, +, o) is
the smallest ideal generated by [I,J], [I,J], and I * J.
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Commutator in skew braces

Theorem (D. Bourn, A. Facchini, M. Pompili)

The commutator of two ideals I and J in a skew brace (B, +, o) is
the smallest ideal generated by [I,J], [I,J], and I * J.

.
Corollary

Zn(B)/Zn—1(B) = Z(B/Zn—1(B))
rn(” = [rn—l(I)/B]

A
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Opposite skew left braces

Proposition

Let (B,<,>) be a birack and let r(x,y) = (x<y,x>y). Then
r~1:(x,y) = (xdy,x8y) is a birack.
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Opposite skew left braces

Proposition

Let (B,<,>) be a birack and let r(x,y) = (x<y,x>y). Then
r~1:(x,y) = (xdy,x8y) is a birack.

A

Definition (A. Koch, P.]. Truman)

Let (B, +, o) be a skew left brace. Then (B, +p, o) is a skew left
brace called the opposite skew left brace.

\,

.

.
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Opposite skew left braces

Proposition

Let (B,<,>) be a birack and let r(x,y) = (x<y,x>y). Then
r~1:(x,y) = (xdy,x8y) is a birack.

A

Definition (A. Koch, P.]. Truman)

Let (B, +, o) be a skew left brace. Then (B, +p, o) is a skew left
brace called the opposite skew left brace.

\,

Theorem (A. Koch, P.J. Truman)

The birack associated to (B, +op, ©) is inverse to the birack
associated to (B, +, o).

A
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Opposite skew left braces

Proposition

Let (B,<,>) be a birack and let r(x,y) = (x<y,x>y). Then
r~1:(x,y) = (xdy,x8y) is a birack.

A

Definition (A. Koch, P.]. Truman)

Let (B, +, o) be a skew left brace. Then (B, +p, o) is a skew left
brace called the opposite skew left brace.

\,

Theorem (A. Koch, P.J. Truman)

The birack associated to (B, +op, ©) is inverse to the birack
associated to (B, +, o).

A
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Skew left braces

Structure group

Definition
Let (X, <,>>) be a finite birack. The infinite group with the
presentation
Gx = (X|xoy=(xay)o (x>y))
is called the structure group of the birack X.
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Skew left braces

Structure group

Definition
Let (X, <,>) be a finite birack. The infinite group with the
presentation

Gx =X |xoy=(x<y)o(x>y))

is called the structure group of the birack X.

A

Let (X, <,>) be a birack. Let

Ax=XI|x+y=y+ a1 \ax))).
Then there exists a bijection ¢ : Ax — Gx such that ¢ (x) = x and

b(a) o p(b+c) = (@~ (d(a) o dp(b)) —a+ b (d(a) o (). |
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Skew left braces

Injective biracks

Let (X, <,>) be a birack and let Gx be its structure group. If we
define
L (X, q,) = (Gx, <, 1), X=X,

then v is a homomorphism of biracks.
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Skew left braces

Injective biracks

Let (X, <,>) be a birack and let Gx be its structure group. If we
define
L (X, q,) = (Gx, <, 1), X=X,

then v is a homomorphism of biracks.

Suppose t(x) = (y) then x ~y.
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Skew left braces

Injective biracks

Let (X, <,>) be a birack and let Gx be its structure group. If we
define
L (X, q,) = (Gx, <, 1), X=X,

then v is a homomorphism of biracks.

Suppose t(x) = (y) then x ~y.

Definition

We say that a birack is injective if  is injective.
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Injective biracks

Let (X, <,>) be a birack and let Gx be its structure group. If we
define
L (X, q,) = (Gx, <, 1), X=X,

then v is a homomorphism of biracks.

Suppose t(x) = (y) then x ~y.

Definition

We say that a birack is injective if  is injective.

Observation

Every involutive birack is injective.
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Bi-skew left braces

Definition (L. Childs)

A skew left brace (B, +, o) is called a bi-skew left brace if (B, o, +)
is a skew left brace as well.
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Bi-skew left braces

Definition (L. Childs)
A skew left brace (B, +, o) is called a bi-skew left brace if (B, o, +)
is a skew left brace as well.

.

Theorem (A. Caranti)
A skew left brace (B, +, o) is a bi-skew left brace if and only if A is
an anti-homomorphism of (B, +), i.e. Agyp = ApAq.

A

.
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Bi-skew left braces

Definition (L. Childs)

A skew left brace (B, +, o) is called a bi-skew left brace if (B, o, +)
is a skew left brace as well.

.

Theorem (A. Caranti)

A skew left brace (B, +, o) is a bi-skew left brace if and only if A is
an anti-homomorphism of (B, +), i.e. Agyp = ApAq.

A

Theorem (L. Stefanello, S. Trappeniers)

Let (B, +, o) be a skew left brace. Then B is a bi-skew left brace if
and only if

AMa(b) = Mo
for each a,b € B.
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Bi-skew left braces

Distributive biracks

Theorem (P.]., A. Pilitowska)
Let (X, o, T) be a birack. TFAE:

® Liy) =Ly

® Ip.) =Ly,

o Lily =L (L,
o Iy =11,

o L, € Aut(X),
for all x,y € X.
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Distributive biracks

o Let (B, +, o) be a skew left
e
Let (X, o, T) be a birack. TFAE: o B is a bi-skew left brace,
° LiX(‘Y) B Ly/ @ Aaib = MpAq,
® L,y =Ly,
o Lily =Ly (L, ® Matt) =N
A © Apa(b) = Mo
° ix :ix tEX) ® AAp = Ax,(b)Aa,
@ Ly u , A _
for all x,y € X. ® Pa=Aa,
! J @ Aq € Aut(B),
for all a,b € B.
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Equations of 2-reductivity and skew braces

Proposition (P.]., A. Pilitowska)
Let (B, +, o) be a skew left brace. Then
@ Ay, (b) = Ay if and only if A is a homomorphism
(B,+) — Aut(B, o), that means Ay p = AgAp;
@ A, () =Ny if and only if A is an anti-homomorphism
(B, +) — Aut(B, o), that means Ay p = A\pAg,
@ py (b) = Py if and only if p is a homomorphism (B, +) — G,
that means pq. = PaPb;
@ P, (p) = P if and only if p is an anti-homomorphism
(B,+) — Aut(B, o), that means pq,p = PpPa-
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Skew left braces and 2-reductivity

Theorem (P.]., A. Pilitowska)

Let (B, +, o) be a skew left brace. TFAE
@ the birack (B, <,>) is 2-reductive,
@ Agib = Abta = AaAp @and pgip = Ppta = PaPb
@ (B, <,>) has multipermutation level at most 2,

@ (B, +,0) is socle-nilpotent of degree at most 2,
@ (B, +op, o) is socle-nilpotent of degree at most 2.
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Skew left braces and 2-reductivity

Theorem (P.]., A. Pilitowska)

Let (B, +, o) be a skew left brace. TFAE
@ the birack (B, <,>) is 2-reductive,
® Agib = Apra = AdMp and pa b = Ppia = PaPb
@ (B, <,>) has multipermutation level at most 2,

@ (B, +,0) is socle-nilpotent of degree at most 2,

@ (B, +op, o) is socle-nilpotent of degree at most 2.

A

Proposition (P.]., A. Pilitowska)

Let (X, <,>) be 2-reductive. Then Gx is socle-nilpotent of degree at
most 2.

v




	Braces and biracks
	Left braces
	Involutive biracks
	Structure group and multiplication brace
	Skew left braces
	Bi-skew left braces
	Skew left braces and 2-reductivity


