Braces and biracks 1/34

Biracks and their applications – Part III Braces and biracks

Přemysl Jedlička with Agata Pilitowska and Anna Zamojska-Dzienio

Department of Mathematics
Faculty of Engineering (former Technical Faculty)
Czech University of Life Sciences (former Czech University of Agriculture) in Prague

Będlewo 27th June 2023

Left braces

Definition (W. Rump)

A set *B* equipped with operations + and \circ is called a *left brace* if

- (B, +) is an abelian group;
- (B, \circ) is a group;
- for all $a, b, c \in B$, we have $a \circ (b + c) = a \circ b + a \circ c a$.

Example

Let (R, +, *) be a radical ring. Let $a \circ b = a + a * b + b$. Then $(B, +, \circ)$ is a left brace.

Example

Let $(R, +, \cdot)$ be a commutative ring and let $n \in nil(R)$. Let a * b = anr. Then (R, +, *) is a commutative radical ring.

Left braces

Definition (W. Rump)

A set B equipped with operations + and \circ is called a *left brace* if

- (B, +) is an abelian group;
- (B, \circ) is a group;
- for all $a, b, c \in B$, we have $a \circ (b + c) = a \circ b + a \circ c a$.

Example

Let (R, +, *) be a radical ring. Let $a \circ b = a + a * b + b$. Then $(B, +, \circ)$ is a left brace.

Example

Let $(R, +, \cdot)$ be a commutative ring and let $n \in nil(R)$. Let a * b = anr. Then (R, +, *) is a commutative radical ring.

Left braces

Definition (W. Rump)

A set B equipped with operations + and \circ is called a *left brace* if

- (B, +) is an abelian group;
- (B, \circ) is a group;
- for all $a, b, c \in B$, we have $a \circ (b + c) = a \circ b + a \circ c a$.

Example

Let (R, +, *) be a radical ring. Let $a \circ b = a + a * b + b$. Then $(B, +, \circ)$ is a left brace.

Example

Let $(R, +, \cdot)$ be a commutative ring and let $n \in nil(R)$. Let a * b = anr. Then (R, +, *) is a commutative radical ring.

Two-sided braces

Definition

A left brace is called *two-sided* if $(a + b) \circ c = a \circ c + b \circ c - c$.

Example

Let o be commutative. Then the left brace is two-sided.

Proposition (W. Rump)

Let $(B, +, \circ)$ be a two-sided brace. Let $a * b = a \circ b - a - b$. Then (R, +, *) is a radical ring.

$$B = \prod_{p \text{ prime}} B_p,$$

where $B_p = \{b \in B \mid \exists m \in \mathbb{N} : p^m b = 0\}$

Two-sided braces

Definition

A left brace is called *two-sided* if $(a + b) \circ c = a \circ c + b \circ c - c$.

Example

Let o be commutative. Then the left brace is two-sided.

Proposition (W. Rump)

Let $(B, +, \circ)$ be a two-sided brace. Let $a * b = a \circ b - a - b$. Then (R, +, *) is a radical ring.

Moreover, if B is finite then

$$B = \prod_{p \ prime} B_p,$$

where $B_p = \{b \in B \mid \exists m \in \mathbb{N} : p^m b = 0\}.$

Semidirect product

Definitions

Let $(A, +_A, \circ_A)$ and $(B, +_B, \circ_B)$ are two left braces. An action of B on A is a homomorphism $\phi : (B, \circ_B) \to \operatorname{Aut}(A)$.

The *semidirect product* $A \rtimes_{\Phi} B$ is defined as follows:

$$(a_1, b_1) + (a_2, b_2) = (a_1 +_A a_2, b_1 +_B b_2),$$

 $(a_1, b_1) \circ (b_2, b_2) = (a_1 \circ_A \phi(b_1)(a_2), b_1 \circ_B b_2)$

Homomorphism λ

Proposition

Let $(B, +, \circ)$ be a left brace. The mapping $\lambda : B \to B^B$ defined by

$$\lambda_a(b) = a \circ b - a$$

is a group homomorphism $(B, \circ) \to \operatorname{Aut}(B, +)$.

Proof

$$\lambda_a(b+c) = \lambda_a(b) + \lambda_a(c)$$
$$\lambda_a^{-1}(b) = a^{-1} \circ (a+b)$$
$$\lambda_{a \circ b}(c) = \lambda_a \lambda_b(c)$$

Homomorphism λ

Proposition

Let $(B, +, \circ)$ be a left brace. The mapping $\lambda : B \to B^B$ defined by

$$\lambda_a(b) = a \circ b - a$$

is a group homomorphism $(B, \circ) \to \operatorname{Aut}(B, +)$.

Proof.

$$\lambda_a(b+c) = \lambda_a(b) + \lambda_a(c)$$
$$\lambda_a^{-1}(b) = a^{-1} \circ (a+b)$$
$$\lambda_{a\circ b}(c) = \lambda_a \lambda_b(c)$$

Cohomology

Observation

Let $(B, +, \circ)$ be a left brace. The action λ turns (B, +) into a left (B, \circ) -module such that the identity is a 1-cocycle.

On the other hand, if we have a group G, a left G-module M and a bijective 1-cocycle $\varphi: G \to M$ then, by defining

$$a + b = \phi^{-1}(\phi(a) + \phi(b))$$

we obtain a left brace.

Ideals in left braces

Definition

A subset I of a left brace $(B, +, \circ)$ is called an *ideal* if I is a subgroup of (B, +), I is a normal subgroup of (B, \circ) and $\lambda_a(I) \subseteq I$, for each $a \in B$.

Observation

Ideals of left braces correspond to homomorphism pre-images of 0. On the other hand, every endomorphism is determined by its kernel

Ideals in left braces

Definition

A subset I of a left brace $(B, +, \circ)$ is called an *ideal* if I is a subgroup of (B, +), I is a normal subgroup of (B, \circ) and $\lambda_a(I) \subseteq I$, for each $a \in B$.

Observation

Ideals of left braces correspond to homomorphism pre-images of 0. On the other hand, every endomorphism is determined by its kernel.

Socle

Definition

The set

$$Soc(B) = \{ s \in B \mid s + a = s \circ a \}$$

is an ideal of B called the socle.

Observation

 $Soc(B) = Ker \lambda$

Observation

If \circ is commutative then $Soc(B, +, \circ) = Ann(B, +, *)$.

Socle

Definition

The set

$$Soc(B) = \{ s \in B \mid s + a = s \circ a \}$$

is an ideal of B called the socle.

Observation

 $Soc(B) = Ker \lambda.$

Observation

If \circ is commutative then $Soc(B, +, \circ) = Ann(B, +, *)$.

Socle

Definition

The set

$$Soc(B) = \{ s \in B \mid s + a = s \circ a \}$$

is an ideal of B called the socle.

Observation

 $Soc(B) = Ker \lambda.$

Observation

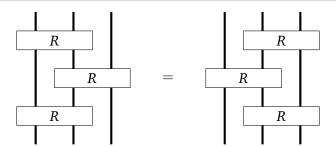
If \circ is commutative then $Soc(B, +, \circ) = Ann(B, +, *)$.

Yang-Baxter equation

Definition

Let *V* be a vector space. A homomorphism $R: V \otimes V \to V \otimes V$ is called a *solution of Yang–Baxter equation* if it satisfies

$$(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V) = (\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R).$$



Biracks

Definition

An algebra $(B, \triangleleft, \triangleright)$ is called a *birack* if

- (X, \triangleleft) is a left quasigroup,
- (X, \triangleright) is a right quasigroup,
- the mapping $r:(x,y)\mapsto (x\triangleleft y,x\triangleright y)$ is bijective,
- the mapping *r* satisfies

$$(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r).$$

Definition

A birack is called involutive if $r^2 = id_{X^2}$

Biracks

Definition

An algebra $(B, \triangleleft, \triangleright)$ is called a *birack* if

- (X, \triangleleft) is a left quasigroup,
- (X, \triangleright) is a right quasigroup,
- the mapping $r:(x,y)\mapsto (x\triangleleft y,x\triangleright y)$ is bijective,
- the mapping *r* satisfies

$$(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r).$$

Definition

A birack is called *involutive* if $r^2 = id_{X^2}$.

Involutive biracks associated to left braces

Proposition

Let $(B, +, \circ)$ be a left brace. If we define \triangleleft and \triangleright as

$$a \triangleleft b = \lambda_a(b)$$

 $a \triangleright b = \lambda_{\lambda_a(b)}^{-1}(a)$

then $(B, \triangleleft, \triangleright)$ is an involutive birack.

Proof.

$$\lambda_{\lambda_a(b)}\lambda_{\lambda_{a(b)}(a))}^{-1} = \lambda_{\lambda_a(b)\circ\lambda_{\lambda_a(b)}(a)}^{-1} = \lambda_{\lambda_a(b)\circ(\lambda_a(b))^{-1}\circ(\lambda_a(b)+a)} = \lambda_{(a\circ b)-a+a} = \lambda_{a\circ b} = \lambda_a\lambda_b$$

Involutive biracks associated to left braces

Proposition

Let $(B, +, \circ)$ be a left brace. If we define \triangleleft and \triangleright as

$$a \triangleleft b = \lambda_a(b)$$

 $a \triangleright b = \lambda_{\lambda_a(b)}^{-1}(a)$

then $(B, \triangleleft, \triangleright)$ is an involutive birack.

Proof.

$$\lambda_{\lambda_a(b)}\lambda_{\lambda_{a(b)}(a))}^{-1} = \lambda_{\lambda_a(b)\circ\lambda_{\lambda_a(b)}(a)}^{-1} = \lambda_{\lambda_a(b)\circ(\lambda_a(b))^{-1}\circ(\lambda_a(b)+a)} = \lambda_{(a\circ b)-a+a} = \lambda_{a\circ b} = \lambda_a\lambda_b$$

Nilpotency of left braces

Definition

Let $(B, +, \circ)$ be a left brace. We define

- $B_0 = B$,
- $B_{i+1} = B_i / \text{Soc}(B_i)$, for $i \ge 0$.

We say that *B* is *nilpotent* of class *k* if *k* is the least integer such that $|B_k| = 1$.

Theorem (W. Rump)

A left brace $(B, +, \circ)$ is nilpotent of class k if and only if its associated birack has multipermutation level k

Proof

$$x \sim y \iff \lambda_x = \lambda_y \iff \lambda_{x \circ y^{-1}} = \mathrm{id} \iff x \circ y^{-1} \in \mathrm{Soc}(B)$$

Nilpotency of left braces

Definition

Let $(B, +, \circ)$ be a left brace. We define

- $B_0 = B$,
- $B_{i+1} = B_i / Soc(B_i)$, for $i \ge 0$.

We say that *B* is *nilpotent* of class *k* if *k* is the least integer such that $|B_k| = 1$.

Theorem (W. Rump)

A left brace $(B, +, \circ)$ is nilpotent of class k if and only if its associated birack has multipermutation level k

Proof.

$$x \sim y \Leftrightarrow \lambda_x = \lambda_y \Leftrightarrow \lambda_{x \circ y^{-1}} = \mathrm{id} \Leftrightarrow x \circ y^{-1} \in \mathrm{Soc}(B)$$

Nilpotency of left braces

Definition

Let $(B, +, \circ)$ be a left brace. We define

- $B_0 = B$,
- $B_{i+1} = B_i/\operatorname{Soc}(B_i)$, for $i \geqslant 0$.

We say that *B* is *nilpotent* of class *k* if *k* is the least integer such that $|B_k| = 1$.

Theorem (W. Rump)

A left brace $(B, +, \circ)$ is nilpotent of class k if and only if its associated birack has multipermutation level k

Proof.

$$x \sim y \iff \lambda_x = \lambda_y \iff \lambda_{x \circ y^{-1}} = \mathrm{id} \iff x \circ y^{-1} \in \mathrm{Soc}(B)$$

Structure group

Definition

Let $(X, \triangleleft, \triangleright)$ be a finite involutive birack. The infinite group with the presentation

$$G_X = \langle X \mid x \circ y = (x \triangleleft y) \circ (x \triangleright y) \rangle$$

is called the *structure* group of the birack *X*.

Theorem (P. Etingof, T. Schedler, A. Soloviev)

Let $(X, \triangleleft, \triangleright)$ be a finite involutive birack. Then there exists a unique free abelian group operation + on the set G_X such that $(G_X, +, \circ)$ is a left brace and $\lambda_X(y) = x \triangleleft y$, for all $x, y \in X$. In particular, $(X, \triangleleft, \triangleright)$ embeds into the birack associated to G_X .

Structure group

Definition

Let $(X, \triangleleft, \triangleright)$ be a finite involutive birack. The infinite group with the presentation

$$G_X = \langle X \mid x \circ y = (x \triangleleft y) \circ (x \triangleright y) \rangle$$

is called the *structure* group of the birack *X*.

Theorem (P. Etingof, T. Schedler, A. Soloviev)

Let $(X, \triangleleft, \triangleright)$ be a finite involutive birack. Then there exists a unique free abelian group operation + on the set G_X such that $(G_X, +, \circ)$ is a left brace and $\lambda_x(y) = x \triangleleft y$, for all $x, y \in X$. In particular, $(X, \triangleleft, \triangleright)$ embeds into the birack associated to G_X .

Representation of the structure group

Theorem (E. Acri, R. Lutowski, L. Vendramin)

Let X be an involutive birack of size $n \in \mathbb{N}$. Then G_X embeds into $GL(n+1,\mathbb{Z})$.

Suppose $X = \{x_1, x_2, ..., x_n\}.$

For each $a \in G_X$, let A_a be the permutation matrix of the permutation $\lambda_a|_X$ and let \vec{c}_a be such that $a = \sum (c_a)_i x_i$.

We associate to a the matrix $\begin{pmatrix} A_a & \vec{c}_a^T \\ \vec{0} & 1 \end{pmatrix} \in \mathbf{GL}(n+1,\mathbb{Z})$

Proof

Use
$$\lambda_a(b) = \sum (A_a \cdot \overline{c}_b^T)_i x_i$$
 and $a \circ b = a + \lambda_a(b)$.

Representation of the structure group

Theorem (E. Acri, R. Lutowski, L. Vendramin)

Let X be an involutive birack of size $n \in \mathbb{N}$. Then G_X embeds into $GL(n+1,\mathbb{Z})$.

Suppose $X = \{x_1, x_2, ..., x_n\}.$

For each $a \in G_X$, let A_a be the permutation matrix of the permutation $\lambda_a|_X$ and let \vec{c}_a be such that $a = \sum (c_a)_i x_i$.

We associate to
$$a$$
 the matrix $\begin{pmatrix} A_a & \vec{c}_a^T \\ \vec{0} & 1 \end{pmatrix} \in \mathbf{GL}(n+1,\mathbb{Z})$

Proof

Use
$$\lambda_a(b) = \sum (A_a \cdot \vec{c}_b^T)_i x_i$$
 and $a \circ b = a + \lambda_a(b)$

Representation of the structure group

Theorem (E. Acri, R. Lutowski, L. Vendramin)

Let X be an involutive birack of size $n \in \mathbb{N}$. Then G_X embeds into $\mathbf{GL}(n+1,\mathbb{Z})$.

Suppose $X = \{x_1, x_2, ..., x_n\}.$

For each $a \in G_X$, let A_a be the permutation matrix of the permutation $\lambda_a|_X$ and let \vec{c}_a be such that $a = \sum (c_a)_i x_i$.

We associate to a the matrix $\begin{pmatrix} A_a & \vec{c}_a^T \\ \vec{0} & 1 \end{pmatrix} \in \mathbf{GL}(n+1,\mathbb{Z})$

Proof.

Use
$$\lambda_a(b) = \sum (A_a \cdot \vec{c}_b^T)_i x_i$$
 and $a \circ b = a + \lambda_a(b)$.

Definition

Let (X, r) be an involutive birack. The group

$$Mlt(X) = \langle L_x \mid x \in X \rangle = \langle L_x, \mathbf{R}_x \mid x \in X \rangle,$$

where $L_x(y) = x \triangleleft y$ and $\mathbf{R}_x(y) = y \triangleright x$, is called the *multiplication* group or the *permutation group* or the *Yang-Baxter group* of $(X, \triangleleft, \triangleright)$.

Let $\pi: G_X \to \mathrm{Mlt}(X)$ send x to L_x . This mapping extends to a homomorphism of groups since $L_x L_y = L_{x \triangleleft y} L_{x \triangleright y}$.

 λ_X restricted to X is equal to L_X

 $\lambda_{x_1 \circ x_2 \circ \cdots \circ x_k}$ restricted to *X* is equal to $L_{x_1} L_{x_2} \cdots L_{x_k}$.

 λ_a restricted to *X* is equal to $\pi(a)$

Definition

Let (X, r) be an involutive birack. The group

$$Mlt(X) = \langle L_X \mid x \in X \rangle = \langle L_X, \mathbf{R}_X \mid x \in X \rangle,$$

where $L_x(y) = x \triangleleft y$ and $\mathbf{R}_x(y) = y \triangleright x$, is called the *multiplication* group or the *permutation group* or the *Yang-Baxter group* of $(X, \triangleleft, \triangleright)$.

Let $\pi: G_X \to \mathrm{Mlt}(X)$ send x to L_x . This mapping extends to a homomorphism of groups since $L_x L_y = L_{x \lhd y} L_{x \rhd y}$.

 λ_X restricted to X is equal to L_X

 $\lambda_{x_1 \circ x_2 \circ \cdots \circ x_k}$ restricted to *X* is equal to $L_{x_1} L_{x_2} \cdots L_{x_k}$.

 λ_a restricted to *X* is equal to $\pi(a)$.

Definition

Let (X, r) be an involutive birack. The group

$$Mlt(X) = \langle L_X \mid x \in X \rangle = \langle L_X, \mathbf{R}_X \mid x \in X \rangle,$$

where $L_x(y) = x \triangleleft y$ and $\mathbf{R}_x(y) = y \triangleright x$, is called the *multiplication* group or the *permutation group* or the *Yang-Baxter group* of $(X, \triangleleft, \triangleright)$.

Let $\pi: G_X \to \mathrm{Mlt}(X)$ send x to L_x . This mapping extends to a homomorphism of groups since $L_x L_y = L_{x \lhd y} L_{x \rhd y}$. λ_x restricted to X is equal to L_x .

 $\lambda_{x_1 \circ x_2 \circ \cdots \circ x_k}$ restricted to X is equal to $L_{x_1} L_{x_2} \cdots L_{x_k}$.

Definition

Let (X, r) be an involutive birack. The group

$$Mlt(X) = \langle L_x \mid x \in X \rangle = \langle L_x, \mathbf{R}_x \mid x \in X \rangle,$$

where $L_x(y) = x \triangleleft y$ and $\mathbf{R}_x(y) = y \triangleright x$, is called the *multiplication* group or the *permutation group* or the *Yang-Baxter group* of $(X, \triangleleft, \triangleright)$.

Let $\pi: G_X \to \mathrm{Mlt}(X)$ send x to L_x . This mapping extends to a homomorphism of groups since $L_x L_y = L_{x \lhd y} L_{x \rhd y}$.

 λ_X restricted to X is equal to L_X .

 $\lambda_{x_1 \circ x_2 \circ \cdots \circ x_k}$ restricted to X is equal to $L_{x_1} L_{x_2} \cdots L_{x_k}$.

 λ_a restricted to X is equal to $\pi(a)$.

Definition

Let (X, r) be an involutive birack. The group

$$Mlt(X) = \langle L_x \mid x \in X \rangle = \langle L_x, \mathbf{R}_x \mid x \in X \rangle,$$

where $L_x(y) = x \triangleleft y$ and $\mathbf{R}_x(y) = y \triangleright x$, is called the *multiplication* group or the *permutation group* or the *Yang-Baxter group* of $(X, \triangleleft, \triangleright)$.

Let $\pi: G_X \to \mathrm{Mlt}(X)$ send x to L_x . This mapping extends to a homomorphism of groups since $L_x L_y = L_{x \triangleleft y} L_{x \triangleright y}$.

 λ_X restricted to *X* is equal to L_X .

 $\lambda_{x_1 \circ x_2 \circ \cdots \circ x_k}$ restricted to X is equal to $L_{x_1} L_{x_2} \cdots L_{x_k}$.

 λ_a restricted to *X* is equal to $\pi(a)$.

Definition

Braces and biracks

Let (X, r) be an involutive birack. The group

$$Mlt(X) = \langle L_x \mid x \in X \rangle = \langle L_x, \mathbf{R}_x \mid x \in X \rangle,$$

where $L_x(y) = x \triangleleft y$ and $\mathbf{R}_x(y) = y \triangleright x$, is called the *multiplication* group or the *permutation group* or the *Yang-Baxter group* of $(X, \triangleleft, \triangleright)$.

Let $\pi: G_X \to \mathrm{Mlt}(X)$ send x to L_x . This mapping extends to a homomorphism of groups since $L_x L_y = L_{x \lhd y} L_{x \rhd y}$.

 λ_X restricted to *X* is equal to L_X .

 $\lambda_{x_1 \circ x_2 \circ \cdots \circ x_k}$ restricted to X is equal to $L_{x_1} L_{x_2} \cdots L_{x_k}$.

 λ_a restricted to *X* is equal to $\pi(a)$.



Multiplication left brace

Definition

The *multiplication left brace* is the quotient left brace $G_X/Soc(G_X)$.

Observation

Since $Soc(G_X) = Ker \lambda$, the quotient can be viewed as the projection π of G_X onto Mlt(X). Hence it is usual to consider $G_X/Soc(G_X) \cong Mlt(X)$.

$$\pi(x) = L_x$$

Since $\lambda_x(y) = L_x(y)$, we have $\pi(\lambda_x(y)) = \pi(L_x(y)) = L_{L_x(y)}$.
Since λ is a homomorphism we have $\pi(\lambda_a(y)) = L_{\pi(a)(y)}$.
Now $a + x = a \circ (a^{-1} \circ (a + x)) = a \circ \lambda_a^{-1}(x)$ and hence $\pi(a + x) = \pi(a)L_{\pi(a)^{-1}(x)}$.

Multiplication left brace

Definition

The *multiplication left brace* is the quotient left brace $G_X/Soc(G_X)$.

Observation

Since $Soc(G_X) = Ker \lambda$, the quotient can be viewed as the projection π of G_X onto Mlt(X). Hence it is usual to consider $G_X/Soc(G_X) \cong Mlt(X)$.

$$\pi(x) = L_x$$

Since $\lambda_x(y) = L_x(y)$, we have $\pi(\lambda_x(y)) = \pi(L_x(y)) = L_{L_x(y)}$.
Since λ is a homomorphism we have $\pi(\lambda_a(y)) = L_{\pi(a)(y)}$.
Now $a + x = a \circ (a^{-1} \circ (a + x)) = a \circ \lambda_a^{-1}(x)$ and hence $\pi(a + x) = \pi(a)L_{\pi(a)^{-1}(x)}$.

Multiplication left brace

Definition

The multiplication left brace is the quotient left brace $G_X/Soc(G_X)$.

Observation

Since $Soc(G_X) = Ker \lambda$, the quotient can be viewed as the projection π of G_X onto Mlt(X). Hence it is usual to consider $G_X/Soc(G_X) \cong Mlt(X)$.

$$\pi(x) = L_x$$

Since $\lambda_x(y) = L_x(y)$, we have $\pi(\lambda_x(y)) = \pi(L_x(y)) = L_{L_x(y)}$ Since λ is a homomorphism we have $\pi(\lambda_a(y)) = L_{\pi(a)(y)}$. Now $a + x = a \circ (a^{-1} \circ (a + x)) = a \circ \lambda_a^{-1}(x)$ and hence $\pi(a + x) = \pi(a)L_{\pi(a)^{-1}(x)}$.

Multiplication left brace

Definition

The multiplication left brace is the quotient left brace $G_X/Soc(G_X)$.

Observation

Since $Soc(G_X) = Ker \lambda$, the quotient can be viewed as the projection π of G_X onto Mlt(X). Hence it is usual to consider $G_X/Soc(G_X) \cong Mlt(X)$.

$$\pi(x) = L_x$$

Since $\lambda_x(y) = L_x(y)$, we have $\pi(\lambda_x(y)) = \pi(L_x(y)) = L_{L_x(y)}$.
Since λ is a homomorphism we have $\pi(\lambda_a(y)) = L_{\pi(a)(y)}$.
Now $a + x = a \circ (a^{-1} \circ (a + x)) = a \circ \lambda_a^{-1}(x)$ and hence $\pi(a + x) = \pi(a)L_{\pi(a)^{-1}(x)}$.

Definition

The *multiplication left brace* is the quotient left brace $G_X/Soc(G_X)$.

Observation

Since $Soc(G_X) = Ker \lambda$, the quotient can be viewed as the projection π of G_X onto Mlt(X). Hence it is usual to consider $G_X/Soc(G_X) \cong Mlt(X)$.

$$\pi(x) = L_x$$

Since $\lambda_x(y) = L_x(y)$, we have $\pi(\lambda_x(y)) = \pi(L_x(y)) = L_{L_x(y)}$.
Since λ is a homomorphism we have $\pi(\lambda_a(y)) = L_{\pi(a)(y)}$.
Now $a + x = a \circ (a^{-1} \circ (a + x)) = a \circ \lambda_a^{-1}(x)$ and hence $\pi(a + x) = \pi(a)L_{\pi(a)^{-1}(x)}$.

Multiplication left brace

Definition

The multiplication left brace is the quotient left brace $G_X/Soc(G_X)$.

Observation

Since $Soc(G_X) = Ker \lambda$, the quotient can be viewed as the projection π of G_X onto Mlt(X). Hence it is usual to consider $G_X/Soc(G_X) \cong Mlt(X)$.

$$\pi(x)=L_x$$

Since $\lambda_x(y)=L_x(y)$, we have $\pi(\lambda_x(y))=\pi(L_x(y))=L_{L_x(y)}$.
Since λ is a homomorphism we have $\pi(\lambda_a(y))=L_{\pi(a)(y)}$.
Now $a+x=a\circ(a^{-1}\circ(a+x))=a\circ\lambda_a^{-1}(x)$ and hence $\pi(a+x)=\pi(a)L_{\pi(a)^{-1}(x)}$.

Theorem

Let $(B, +, \circ)$ be a left brace and let $(B, \triangleleft, \triangleright)$ be its associated birack. Let X be a subset of B closed on λ that generates (B, +). Then $Ret(X) = \{x + Soc(B) \mid x \in X\} \subseteq B/Soc(B)$.

$$x \sim y \iff \lambda_x = \lambda_y \text{ on } X \iff \lambda_x = \lambda_y \text{ on } B \iff \lambda_x \lambda_y^{-1} = \text{id} \iff x \circ y^{-1} \in \text{Ker } \lambda \iff x \circ y^{-1} \in \text{Soc}(B)$$

$$[x]_{\sim} \triangleleft [y]_{\sim} = [\lambda_x(y)]_{\sim} = \lambda_x(y) + \operatorname{Soc}(B)$$

$$[x']_{\sim} \triangleleft [y']_{\sim} = [\lambda_{x'}(y')]_{\sim} = \lambda_{x'}(y') + \operatorname{Soc}(B) = \lambda_{x}(y+s) + \operatorname{Soc}(B) = \lambda_{x}(y) + \lambda_{x}(s) + \operatorname{Soc}(B) = \lambda_{x}(y) + \operatorname{Soc}(B) \quad \Box$$

Theorem

Let $(B, +, \circ)$ be a left brace and let $(B, \triangleleft, \triangleright)$ be its associated birack. Let X be a subset of B closed on λ that generates (B, +). Then $Ret(X) = \{x + Soc(B) \mid x \in X\} \subseteq B/Soc(B)$.

$$x \sim y \iff \lambda_x = \lambda_y \text{ on } X \iff \lambda_x = \lambda_y \text{ on } B \iff \lambda_x \lambda_y^{-1} = \mathrm{id} \iff x \circ y^{-1} \in \mathrm{Soc}(B)$$

$$[x]_{\sim} \triangleleft [y]_{\sim} = [\lambda_x(y)]_{\sim} = \lambda_x(y) + \operatorname{Soc}(B)$$

$$[x']_{\sim} \triangleleft [y']_{\sim} = [\lambda_{x'}(y')]_{\sim} = \lambda_{x'}(y') + \operatorname{Soc}(B) = \lambda_{x}(y+s) + \operatorname{Soc}(B) = \lambda_{x}(y) + \lambda_{x}(s) + \operatorname{Soc}(B) = \lambda_{x}(y) + \operatorname{Soc}(B) = 0$$

Theorem

Let $(B, +, \circ)$ be a left brace and let $(B, \triangleleft, \triangleright)$ be its associated birack. Let X be a subset of B closed on λ that generates (B, +). Then $Ret(X) = \{x + Soc(B) \mid x \in X\} \subseteq B/Soc(B)$.

$$x \sim y \iff \lambda_x = \lambda_y \text{ on } X \iff \lambda_x = \lambda_y \text{ on } B \iff \lambda_x \lambda_y^{-1} = \mathrm{id} \iff x \circ y^{-1} \in \mathrm{Soc}(B)$$

$$[x]_{\sim} \triangleleft [y]_{\sim} = [\lambda_x(y)]_{\sim} = \lambda_x(y) + \operatorname{Soc}(B)$$

$$[x']_{\sim} \triangleleft [y']_{\sim} = [\lambda_{x'}(y')]_{\sim} = \lambda_{x'}(y') + \operatorname{Soc}(B) = \lambda_{x}(y+s) + \operatorname{Soc}(B) = \lambda_{x}(y) + \lambda_{x}(s) + \operatorname{Soc}(B) = \lambda_{x}(y) + \operatorname{Soc}(B) = 0$$

Theorem

Let $(B, +, \circ)$ be a left brace and let $(B, \triangleleft, \triangleright)$ be its associated birack. Let X be a subset of B closed on λ that generates (B, +). Then $Ret(X) = \{x + Soc(B) \mid x \in X\} \subseteq B/Soc(B)$.

$$x \sim y \iff \lambda_x = \lambda_y \text{ on } X \iff \lambda_x = \lambda_y \text{ on } B \iff \lambda_x \lambda_y^{-1} = \mathrm{id} \iff x \circ y^{-1} \in \mathrm{Soc}(B)$$

$$[x]_{\sim} \triangleleft [y]_{\sim} = [\lambda_x(y)]_{\sim} = \lambda_x(y) + \operatorname{Soc}(B)$$

$$[x']_{\sim} \triangleleft [y']_{\sim} = [\lambda_{x'}(y')]_{\sim} = \lambda_{x'}(y') + \operatorname{Soc}(B) = \lambda_{x}(y+s) + \operatorname{Soc}(B) = \lambda_{x}(y) + \lambda_{x}(s) + \operatorname{Soc}(B) = \lambda_{x}(y) + \operatorname{Soc}(B) \quad \Box$$

Corollary

~ is a congruence for every finite involutive birack.

Proof.

Since X embeds into G_X , Ret(X) embeds into Mlt(X).

Corollary

If X is finite and Mlt(X) is abelian then X is multipermutation.

Proof

Corollary

~ is a congruence for every finite involutive birack.

Proof.

Since X embeds into G_X , Ret(X) embeds into Mlt(X).

Corollary

If X is finite and Mlt(X) is abelian then X is multipermutation.

Proof

Corollary

~ is a congruence for every finite involutive birack.

Proof.

Since X embeds into G_X , Ret(X) embeds into Mlt(X).

Corollary

If X is finite and Mlt(X) is abelian then X is multipermutation.

Proof

Corollary

~ is a congruence for every finite involutive birack.

Proof.

Since X embeds into G_X , Ret(X) embeds into Mlt(X).

Corollary

If X is finite and Mlt(X) is abelian then X is multipermutation.

Proof.

Indecomposable involutive biracks

Definition

We say that an involutive birack $(X, \triangleleft, \triangleright)$ is *indecomposable* if the group Mlt(X) is transitive.

Theorem (W. Rump, reformulated by M. Castelli)

Let $(B, +, \circ)$ and let $g \in B$ be such that the orbit of g under the action λ generates the left brace B. If we define

$$a \triangleleft b = \lambda_a(g) \circ b$$

then $(B, \triangleleft, \triangleright)$ is an indecomposable involutive birack with its mutiplication left brace isomorphic to B.

Moreover, every indecomposable involutive birack can be obtained this way.

Invariants of isomorphisms

Theorem (W. Rump)

Let k be a power of prime and let $(B, +, \circ)$ be a left brace of size k with (B, \circ) cyclic. Then (B, +) is cyclic if and only if $k \neq 4$.

Theorem (P. J., A. P., A. Z.-D.)

A complete set of invariants for finite indecomposable involutive biracks with cyclic multiplication groups are

- \bullet $k \in \mathbb{N}$,
- $n \in \mathbb{N}$ such that,
 - n divides k,
 - every prime p divides n whenever p divides k,
 - if 8 divides k then 4 divides n,
- $g \in \{1, \dots, \gcd(n, k/n)\}$ coprime to k.

Invariants of isomorphisms

Theorem (W. Rump)

Let k be a power of prime and let $(B, +, \circ)$ be a left brace of size k with (B, \circ) cyclic. Then (B, +) is cyclic if and only if $k \neq 4$.

Theorem (P. J., A. P., A. Z.-D.)

A complete set of invariants for finite indecomposable involutive biracks with cyclic multiplication groups are

- $k \in \mathbb{N}$,
- $n \in \mathbb{N}$ such that,
 - n divides k,
 - every prime p divides n whenever p divides k,
 - if 8 divides k then 4 divides n,
- $g \in \{1, \ldots, \gcd(n, k/n)\}$ coprime to k.

Skew left braces

Definition (L. Guarnieri, L. Vendramin)

A set B equipped with operations + and \circ is called a *skew left brace* if

- (B, +) is a group;
- (B, \circ) is a group;
- for all $a, b, c \in B$, we have $a \circ (b + c) = a \circ b a + a \circ c$.

Example

Let (B, +) be a group. Then $(B, +, +_{op})$ is a skew left brace

Skew left braces

Definition (L. Guarnieri, L. Vendramin)

A set B equipped with operations + and \circ is called a *skew left brace* if

- (B, +) is a group;
- (B, \circ) is a group;
- for all $a, b, c \in B$, we have $a \circ (b + c) = a \circ b a + a \circ c$.

Example

Let (B, +) be a group. Then $(B, +, +_{op})$ is a skew left brace.

Biracks associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let $(B, +, \circ)$ be a skew left brace. The mapping $\lambda : B \to \mathfrak{S}_B$ defined by $\lambda_a(b) = -a + a \circ b$ is a homomorphism $B \to \operatorname{Aut}(B, +)$.

Proposition (D. Bachiller)

Let $(B, +, \circ)$ be a skew left brace. The mapping $\rho: B \to \mathfrak{S}_B$ defined by $\rho_b(a) = (\lambda_a(b))^{-1} \circ a \circ b$ is an anti-homomorphism, that means $\rho_{a \circ b} = \rho_b \rho_a$.

Proposition (L. Guarnieri, L. Vendramin

Let $(B, +, \circ)$ be a left brace. If we define

$$a \triangleleft b = \lambda_a(b), \qquad a \triangleright b = \rho_b(a)$$

then $(B, \triangleleft, \triangleright)$ is a birack.

Biracks associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let $(B, +, \circ)$ be a skew left brace. The mapping $\lambda : B \to \mathfrak{S}_B$ defined by $\lambda_a(b) = -a + a \circ b$ is a homomorphism $B \to \operatorname{Aut}(B, +)$.

Proposition (D. Bachiller)

Let $(B,+,\circ)$ be a skew left brace. The mapping $\rho: B \to \mathfrak{S}_B$ defined by $\rho_b(a) = (\lambda_a(b))^{-1} \circ a \circ b$ is an anti-homomorphism, that means $\rho_{a \circ b} = \rho_b \rho_a$.

Proposition (L. Guarnieri, L. Vendramin

Let $(B, +, \circ)$ be a left brace. If we define

$$a \triangleleft b = \lambda_a(b), \qquad a \triangleright b = \rho_b(a)$$

then $(B, \triangleleft, \triangleright)$ is a birack.

Biracks associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let $(B, +, \circ)$ be a skew left brace. The mapping $\lambda : B \to \mathfrak{S}_B$ defined by $\lambda_a(b) = -a + a \circ b$ is a homomorphism $B \to \operatorname{Aut}(B, +)$.

Proposition (D. Bachiller)

Let $(B,+,\circ)$ be a skew left brace. The mapping $\rho: B \to \mathfrak{S}_B$ defined by $\rho_b(a) = (\lambda_a(b))^{-1} \circ a \circ b$ is an anti-homomorphism, that means $\rho_{a \circ b} = \rho_b \rho_a$.

Proposition (L. Guarnieri, L. Vendramin)

Let $(B, +, \circ)$ be a left brace. If we define

$$a \triangleleft b = \lambda_a(b), \qquad a \triangleright b = \rho_b(a)$$

then $(B, \triangleleft, \triangleright)$ is a birack.

Holomorph

Definition

Let G be a group. The *holomorph* of a group is the group $G \rtimes \operatorname{Aut}(G)$ with the operation

$$(g, \alpha) \cdot (h, \beta) = (g\alpha(h), \alpha\beta).$$

A subgroup $H \leq \operatorname{Hol}(G)$ is called *regular* if, for each $g \in G$, there exists a unique $\varphi_g \in \operatorname{Aut}(G)$ such that $(g, \varphi_g) \in H$.

Theorem (L. Guarnieri, L. Vendramin)

There is a 1-1 correspondence between skew left braces and regular subgroups of holomorphs.

$$b, \lambda_b \iff (b, \phi_b)$$

Holomorph

Definition

Let G be a group. The *holomorph* of a group is the group $G \rtimes Aut(G)$ with the operation

$$(g, \alpha) \cdot (h, \beta) = (g\alpha(h), \alpha\beta).$$

A subgroup $H \leq \operatorname{Hol}(G)$ is called *regular* if, for each $g \in G$, there exists a unique $\varphi_g \in \operatorname{Aut}(G)$ such that $(g, \varphi_g) \in H$.

Theorem (L. Guarnieri, L. Vendramin)

There is a 1-1 correspondence between skew left braces and regular subgroups of holomorphs.

$$b, \lambda_b \iff (b, \phi_b)$$

Holomorph

Definition

Let G be a group. The *holomorph* of a group is the group $G \rtimes Aut(G)$ with the operation

$$(g, \alpha) \cdot (h, \beta) = (g\alpha(h), \alpha\beta).$$

A subgroup $H \leq \operatorname{Hol}(G)$ is called *regular* if, for each $g \in G$, there exists a unique $\varphi_g \in \operatorname{Aut}(G)$ such that $(g, \varphi_g) \in H$.

Theorem (L. Guarnieri, L. Vendramin)

There is a 1-1 correspondence between skew left braces and regular subgroups of holomorphs.

$$b, \lambda_b \iff (b, \phi_b)$$

Ideals in skew left braces

Definition

A subset I of a skew left brace $(B, +, \circ)$ is called an *ideal* if I is a normal subgroup of (B, +), I is a normal subgroup of (B, \circ) and $\lambda_{\alpha}(I) \subseteq I$, for each $\alpha \in B$.

Definition

The set

$$Soc(B) = \{ s \in B \mid \forall a \in B \ a + s = s + a = s \circ a \}$$

is an ideal of B called the socle.

Proposition (D. Bachiller)

 $Soc(B) = Ker \lambda \cap Ker \rho$

Ideals in skew left braces

Definition

A subset I of a skew left brace $(B, +, \circ)$ is called an *ideal* if I is a normal subgroup of (B, +), I is a normal subgroup of (B, \circ) and $\lambda_a(I) \subseteq I$, for each $a \in B$.

Definition

The set

$$Soc(B) = \{ s \in B \mid \forall a \in B \ a + s = s + a = s \circ a \}$$

is an ideal of B called the socle.

Proposition (D. Bachiller)

 $Soc(B) = Ker \lambda \cap Ker \rho$

Ideals in skew left braces

Definition

A subset I of a skew left brace $(B, +, \circ)$ is called an *ideal* if I is a normal subgroup of (B, +), I is a normal subgroup of (B, \circ) and $\lambda_a(I) \subseteq I$, for each $a \in B$.

Definition

The set

$$Soc(B) = \{ s \in B \mid \forall a \in B \ a + s = s + a = s \circ a \}$$

is an ideal of B called the socle.

Proposition (D. Bachiller)

$$Soc(B) = Ker \lambda \cap Ker \rho$$

Nilpotency of left braces

Definition

Let $(B, +, \circ)$ be a skew left brace. We define

- $B_0 = B$,
- $B_{i+1} = B_i/\operatorname{Soc}(B_i)$, for $i \geqslant 0$.

We say that *B* is *socle-nilpotent* of class *k* if *k* is the least integer such that $|B_k| = 1$.

Theorem (D. Bachiller

A skew left brace $(B, +, \circ)$ is socle-nilpotent of class k if and only if its associated birack has multipermutation level k.

Nilpotency of left braces

Definition

Let $(B, +, \circ)$ be a skew left brace. We define

- $B_0 = B$,
- $B_{i+1} = B_i / Soc(B_i)$, for $i \ge 0$.

We say that *B* is *socle-nilpotent* of class *k* if *k* is the least integer such that $|B_k| = 1$.

Theorem (D. Bachiller)

A skew left brace $(B, +, \circ)$ is socle-nilpotent of class k if and only if its associated birack has multipermutation level k.

Central nilpotency

Definition (I. Colazzo, F. Catino, P. Stefanelli)

The annihilator or the center of a skew left brace is the ideal

$$\{c \in B \mid \forall a \in B \quad c+a=a+c=c \circ a=a \circ c\}$$

or simply $Z(B, +) \cap Z(B, \circ) \cap \operatorname{Ker} \lambda$.

Definitions (M. Bonatto, P. J.)

Upper central series:

$$Z_0(B) = 0$$
, $Z_n = \{c \in B \mid \forall a \in B \mid a * c, c * a, [a, c]_+ \in Z_{n-1}(B)\}$

Lower central series:

$$\Gamma_0(I) = I$$
, $\Gamma_n(I) = \langle \Gamma_{n-1}(I) * B, B * \Gamma_{n-1}(I), [\Gamma_{n-1}(I), B]_+ \rangle_+$,
where $x * y = -x + (x \circ y) - y$.

Central nilpotency

Definition (I. Colazzo, F. Catino, P. Stefanelli)

The annihilator or the center of a skew left brace is the ideal

$$\{c \in B \mid \forall a \in B \quad c + a = a + c = c \circ a = a \circ c\}$$

or simply $Z(B, +) \cap Z(B, \circ) \cap \operatorname{Ker} \lambda$.

Definitions (M. Bonatto, P. J.)

Upper central series:

$$Z_0(B) = 0$$
, $Z_n = \{c \in B \mid \forall a \in B \mid a * c, c * a, [a, c]_+ \in Z_{n-1}(B)\}$,

Lower central series:

$$\Gamma_0(I)=I, \quad \Gamma_n(I)=\langle \Gamma_{n-1}(I)*B,B*\Gamma_{n-1}(I),[\Gamma_{n-1}(I),B]_+ \rangle_+,$$
 where $x*y=-x+(x\circ y)-y.$

Commutator in skew braces

Theorem (D. Bourn, A. Facchini, M. Pompili)

The commutator of two ideals I and J in a skew brace $(B, +, \circ)$ is the smallest ideal generated by $[I, J]_+$, $[I, J]_\circ$ and I * J.

$$Z_n(B)/Z_{n-1}(B) = Z(B/Z_{n-1}(B))$$

$$\Gamma_n(I) = [\Gamma_{n-1}(I), B]$$

Commutator in skew braces

Theorem (D. Bourn, A. Facchini, M. Pompili)

The commutator of two ideals I and J in a skew brace $(B, +, \circ)$ is the smallest ideal generated by $[I, J]_+$, $[I, J]_\circ$ and I * J.

$$Z_n(B)/Z_{n-1}(B) = Z(B/Z_{n-1}(B))$$

 $\Gamma_n(I) = [\Gamma_{n-1}(I), B]$

Proposition

Let $(B, \triangleleft, \triangleright)$ be a birack and let $r(x,y) = (x \triangleleft y, x \triangleright y)$. Then $r^{-1}: (x,y) \mapsto (x \triangleleft y, x \triangleright y)$ is a birack.

Definition (A. Koch, P. J. Truman)

Let $(B, +, \circ)$ be a skew left brace. Then $(B, +_{op}, \circ)$ is a skew left brace called the *opposite* skew left brace.

Theorem (A. Koch, P. J. Truman)

The birack associated to $(B, +_{op}, \circ)$ is inverse to the birack associated to $(B, +, \circ)$.

$$\hat{\lambda}_a(b) = (a \circ b) - a, \qquad \hat{\rho}_b(a) = (\hat{\lambda}_a(b))^{-1} \circ a \circ b.$$

Proposition

Let $(B, \triangleleft, \triangleright)$ be a birack and let $r(x,y) = (x \triangleleft y, x \triangleright y)$. Then $r^{-1}: (x,y) \mapsto (x \triangleleft y, x \triangleright y)$ is a birack.

Definition (A. Koch, P. J. Truman)

Let $(B, +, \circ)$ be a skew left brace. Then $(B, +_{op}, \circ)$ is a skew left brace called the *opposite* skew left brace.

Theorem (A. Koch, P. J. Truman)

The birack associated to $(B, +_{op}, \circ)$ is inverse to the birack associated to $(B, +, \circ)$.

$$\hat{\lambda}_a(b) = (a \circ b) - a,$$
 $\hat{\rho}_b(a) = (\hat{\lambda}_a(b))^{-1} \circ a \circ b.$

Proposition

Let $(B, \triangleleft, \triangleright)$ be a birack and let $r(x,y) = (x \triangleleft y, x \triangleright y)$. Then $r^{-1}: (x,y) \mapsto (x \triangleleft y, x \triangleright y)$ is a birack.

Definition (A. Koch, P. J. Truman)

Let $(B, +, \circ)$ be a skew left brace. Then $(B, +_{op}, \circ)$ is a skew left brace called the *opposite* skew left brace.

Theorem (A. Koch, P. J. Truman)

The birack associated to $(B, +_{op}, \circ)$ is inverse to the birack associated to $(B, +, \circ)$.

$$\hat{\lambda}_a(b) = (a \circ b) - a, \qquad \hat{\rho}_b(a) = (\hat{\lambda}_a(b))^{-1} \circ a \circ b.$$

Proposition

Let $(B, \triangleleft, \triangleright)$ be a birack and let $r(x,y) = (x \triangleleft y, x \triangleright y)$. Then $r^{-1}: (x,y) \mapsto (x \triangleleft y, x \triangleright y)$ is a birack.

Definition (A. Koch, P. J. Truman)

Let $(B, +, \circ)$ be a skew left brace. Then $(B, +_{op}, \circ)$ is a skew left brace called the *opposite* skew left brace.

Theorem (A. Koch, P. J. Truman)

The birack associated to $(B, +_{op}, \circ)$ is inverse to the birack associated to $(B, +, \circ)$.

$$\hat{\lambda}_a(b) = (a \circ b) - a, \qquad \hat{\rho}_b(a) = (\hat{\lambda}_a(b))^{-1} \circ a \circ b.$$

Structure group

Definition

Let $(X, \triangleleft, \triangleright)$ be a finite birack. The infinite group with the presentation

$$G_X = \langle X \mid x \circ y = (x \triangleleft y) \circ (x \triangleright y) \rangle$$

is called the *structure* group of the birack *X*.

Theorem

Let $(X, \triangleleft, \triangleright)$ be a birack. Let

$$A_X = \langle X \mid x + y = y + (y \triangleleft (y \setminus x)) \rangle$$

Then there exists a bijection $\phi: A_X \to G_X$ such that $\phi(x) = x$ and $\phi(a) \circ \phi(b+c) = \phi(\phi^{-1}(\phi(a) \circ \phi(b)) - a + \phi^{-1}(\phi(a) \circ \phi(c)))$.

Structure group

Definition

Let $(X, \triangleleft, \triangleright)$ be a finite birack. The infinite group with the presentation

$$G_X = \langle X \mid x \circ y = (x \triangleleft y) \circ (x \triangleright y) \rangle$$

is called the *structure group* of the birack *X*.

Theorem

Let $(X, \triangleleft, \triangleright)$ be a birack. Let

$$A_X = \langle X \mid x + y = y + (y \triangleleft (y \setminus x)) \rangle.$$

Then there exists a bijection $\phi: A_X \to G_X$ such that $\phi(x) = x$ and

$$\phi(a) \circ \phi(b+c) = \phi(\phi^{-1}(\phi(a) \circ \phi(b)) - a + \phi^{-1}(\phi(a) \circ \phi(c))).$$

Theorem

Let $(X, \triangleleft, \triangleright)$ be a birack and let G_X be its structure group. If we define

$$\iota:(X,\triangleleft,\triangleright)\to(G_X,\triangleleft,\triangleright),\qquad x\mapsto x,$$

then ι is a homomorphism of biracks.

Corollary

Suppose $\iota(x) = \iota(y)$ then $x \sim y$.

Definitior

We say that a birack is *injective* if ι is injective.

Observation

Every involutive birack is injective.

Theorem

Let $(X, \triangleleft, \triangleright)$ be a birack and let G_X be its structure group. If we define

$$\iota:(X,\triangleleft,\triangleright)\to(G_X,\triangleleft,\triangleright), \qquad x\mapsto x,$$

then ι is a homomorphism of biracks.

Corollary

Suppose $\iota(x) = \iota(y)$ then $x \sim y$.

Definition

We say that a birack is *injective* if ι is injective.

Observatior

Every involutive birack is injective

Theorem

Let $(X, \triangleleft, \triangleright)$ be a birack and let G_X be its structure group. If we define

$$\iota:(X,\triangleleft,\triangleright)\to(G_X,\triangleleft,\triangleright), \qquad x\mapsto x,$$

then ι is a homomorphism of biracks.

Corollary

Suppose $\iota(x) = \iota(y)$ then $x \sim y$.

Definition

We say that a birack is *injective* if ι is injective.

Observation

Every involutive birack is injective

Theorem

Let $(X, \triangleleft, \triangleright)$ be a birack and let G_X be its structure group. If we define

$$\iota:(X,\triangleleft,\triangleright)\to(G_X,\triangleleft,\triangleright), \qquad x\mapsto x,$$

then ι is a homomorphism of biracks.

Corollary

Suppose $\iota(x) = \iota(y)$ then $x \sim y$.

Definition

We say that a birack is *injective* if ι is injective.

Observation

Every involutive birack is injective.

Bi-skew left braces

Definition (L. Childs)

A skew left brace $(B, +, \circ)$ is called a bi-skew left brace if $(B, \circ, +)$ is a skew left brace as well.

Theorem (A. Caranti)

A skew left brace $(B, +, \circ)$ is a bi-skew left brace if and only if λ is an anti-homomorphism of (B, +), i.e. $\lambda_{a+b} = \lambda_b \lambda_a$.

Theorem (L. Stefanello, S. Trappeniers)

Let $(B, +, \circ)$ be a skew left brace. Then B is a bi-skew left brace if and only if

$$\lambda_{\hat{\lambda}_a(b)} = \lambda_b,$$

for each $a, b \in B$

Bi-skew left braces

Definition (L. Childs)

A skew left brace $(B, +, \circ)$ is called a bi-skew left brace if $(B, \circ, +)$ is a skew left brace as well.

Theorem (A. Caranti)

A skew left brace $(B, +, \circ)$ is a bi-skew left brace if and only if λ is an anti-homomorphism of (B, +), i.e. $\lambda_{a+b} = \lambda_b \lambda_a$.

Theorem (L. Stefanello, S. Trappeniers)

Let $(B, +, \circ)$ be a skew left brace. Then B is a bi-skew left brace if and only if

$$\lambda_{\hat{\lambda}_a(b)} = \lambda_b,$$

for each $a, b \in B$.

Bi-skew left braces

Definition (L. Childs)

A skew left brace $(B, +, \circ)$ is called a bi-skew left brace if $(B, \circ, +)$ is a skew left brace as well.

Theorem (A. Caranti)

A skew left brace $(B, +, \circ)$ is a bi-skew left brace if and only if λ is an anti-homomorphism of (B, +), i.e. $\lambda_{a+b} = \lambda_b \lambda_a$.

Theorem (L. Stefanello, S. Trappeniers)

Let $(B, +, \circ)$ be a skew left brace. Then B is a bi-skew left brace if and only if

$$\lambda_{\hat{\lambda}_a(b)} = \lambda_b$$
,

for each $a, b \in B$.

Distributive biracks

Theorem (P. J., A. Pilitowska)

Let (X, σ, τ) be a birack. TFAE:

- $L_{\hat{L}_{\mathbf{r}}(\mathbf{y})} = L_{\mathbf{y}}$
- $L_{\mathbf{R}_{x}(y)} = L_{y}$
- $L_x L_y = L_{L_x(y)} L_x$,
- $\hat{L}_x = L_x^{-1}$,
- $L_x \in \operatorname{Aut}(X)$,

for all $x, y \in X$.

Corollary

Let $(B, +, \circ)$ be a skew left brace. TFAE:

- B is a bi-skew left brace,
- $\bullet \ \lambda_{a+b} = \lambda_b \lambda_a,$
- $\bullet \ \lambda_{\hat{\lambda}_a(b)} = \lambda_b,$
- $\lambda_{\rho_a(b)} = \lambda_b$,
- $\lambda_a \lambda_b = \lambda_{\lambda_a(b)} \lambda_a$,
- $\hat{\rho}_a = \lambda_a^{-1},$
- $\lambda_a \in \operatorname{Aut}(B)$,

for all $a, b \in B$.

Distributive biracks

Theorem (P. J., A. Pilitowska)

Let (X, σ, τ) be a birack. TFAE:

- $\bullet \ L_{\hat{L}_x(y)} = L_y,$
- $\bullet L_{\mathbf{R}_{x}(y)} = L_{y},$
- $\bullet L_{x}L_{y} = L_{L_{x}(y)}L_{x},$
- $\hat{L}_x = L_x^{-1}$,
- $L_x \in \operatorname{Aut}(X)$,

for all $x, y \in X$.

Corollary

Let $(B, +, \circ)$ be a skew left brace. TFAE:

- B is a bi-skew left brace,
- $\bullet \ \lambda_{a+b} = \lambda_b \lambda_a,$
- $\bullet \ \lambda_{\hat{\lambda}_a(b)} = \lambda_b,$
- $\lambda_{\rho_a(b)} = \lambda_b$,
- $\lambda_a \lambda_b = \lambda_{\lambda_a(b)} \lambda_a$,
- $\bullet \hat{\rho}_a = \lambda_a^{-1},$
- $\lambda_a \in \operatorname{Aut}(B)$,

for all $a, b \in B$.

Equations of 2-reductivity and skew braces

Proposition (P. J., A. Pilitowska)

Let $(B, +, \circ)$ be a skew left brace. Then

- $\lambda_{\lambda_a(b)} = \lambda_b$ if and only if λ is a homomorphism $(B,+) \to \operatorname{Aut}(B,\circ)$, that means $\lambda_{a+b} = \lambda_a \lambda_b$;
- $\lambda_{\rho_a(b)} = \lambda_b$ if and only if λ is an anti-homomorphism $(B, +) \to \operatorname{Aut}(B, \circ)$, that means $\lambda_{a+b} = \lambda_b \lambda_a$;
- $\rho_{\rho_a(b)} = \rho_b$ if and only if ρ is a homomorphism $(B, +) \to \mathfrak{S}_X$, that means $\rho_{a+b} = \rho_a \rho_b$;
- $\rho_{\lambda_a(b)} = \rho_b$ if and only if ρ is an anti-homomorphism $(B, +) \to \operatorname{Aut}(B, \circ)$, that means $\rho_{a+b} = \rho_b \rho_a$.

Skew left braces and 2-reductivity

Theorem (P. J., A. Pilitowska)

Let $(B, +, \circ)$ be a skew left brace. TFAE

- the birack $(B, \triangleleft, \triangleright)$ is 2-reductive,
- $\lambda_{a+b} = \lambda_{b+a} = \lambda_a \lambda_b$ and $\rho_{a+b} = \rho_{b+a} = \rho_a \rho_b$,
- $(B, \triangleleft, \triangleright)$ has multipermutation level at most 2,
- $(B, +, \circ)$ is socle-nilpotent of degree at most 2,
- $(B, +_{op}, \circ)$ is socle-nilpotent of degree at most 2.

Proposition (P. J., A. Pilitowska

Let $(X, \triangleleft, \triangleright)$ be 2-reductive. Then G_X is socle-nilpotent of degree at most 2.

Skew left braces and 2-reductivity

Theorem (P. J., A. Pilitowska)

Let $(B, +, \circ)$ be a skew left brace. TFAE

- the birack $(B, \triangleleft, \triangleright)$ is 2-reductive,
- $\lambda_{a+b} = \lambda_{b+a} = \lambda_a \lambda_b$ and $\rho_{a+b} = \rho_{b+a} = \rho_a \rho_b$,
- $(B, \triangleleft, \triangleright)$ has multipermutation level at most 2,
- $(B, +, \circ)$ is socle-nilpotent of degree at most 2,
- $(B, +_{op}, \circ)$ is socle-nilpotent of degree at most 2.

Proposition (P. J., A. Pilitowska)

Let $(X, \triangleleft, \triangleright)$ be 2-reductive. Then G_X is socle-nilpotent of degree at most 2.