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Diagonally Cyclic Latin Squares

A Latin square is diagonally cyclic if the symbols occur in cyclic order
along each broken diagonal parallel to the main diagonal.

0 2 5 1 6 4 3
4 1 3 6 2 0 5
6 5 2 4 0 3 1
2 0 6 3 5 1 4
5 3 1 0 4 6 2
3 6 4 2 1 5 0
1 4 0 5 3 2 6



A DCLS is determined by its first row.
But which first rows work?
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Diagonally Cyclic Latin Squares

0 1 2 3 4 · · ·
θ(0) θ(1) θ(2) θ(3) θ(4) · · ·

If I write down a permutation x 7→ θ(x) will it produce a DCLS?

a b

θ(a) θ(b)
. . .

θ(a) + b − a

The only problem is if θ(a) + b − a = θ(b) for some a and b.

So we want θ(a)− a 6= θ(b)− b for all a, b.



Diagonally Cyclic Latin Squares

0 1 2 3 4 · · ·
θ(0) θ(1) θ(2) θ(3) θ(4) · · ·

If I write down a permutation x 7→ θ(x) will it produce a DCLS?

a b

θ(a) θ(b)
. . .

θ(a) + b − a

The only problem is if θ(a) + b − a = θ(b) for some a and b.

So we want θ(a)− a 6= θ(b)− b for all a, b.



Diagonally Cyclic Latin Squares

0 1 2 3 4 · · ·
θ(0) θ(1) θ(2) θ(3) θ(4) · · ·

If I write down a permutation x 7→ θ(x) will it produce a DCLS?

a b

θ(a) θ(b)
. . .

θ(a) + b − a

The only problem is if θ(a) + b − a = θ(b) for some a and b.

So we want θ(a)− a 6= θ(b)− b for all a, b.



Diagonally Cyclic Latin Squares

0 1 2 3 4 · · ·
θ(0) θ(1) θ(2) θ(3) θ(4) · · ·

If I write down a permutation x 7→ θ(x) will it produce a DCLS?

a b

θ(a) θ(b)
. . .

θ(a) + b − a

The only problem is if θ(a) + b − a = θ(b) for some a and b.

So we want θ(a)− a 6= θ(b)− b for all a, b.



Diagonally Cyclic Latin Squares

0 1 2 3 4 · · ·
θ(0) θ(1) θ(2) θ(3) θ(4) · · ·

If I write down a permutation x 7→ θ(x) will it produce a DCLS?

a b

θ(a) θ(b)
. . .

θ(a) + b − a

The only problem is if θ(a) + b − a = θ(b) for some a and b.

So we want θ(a)− a 6= θ(b)− b for all a, b.



Orthomorphisms

An orthomorphism of an abelian group G is a permutation θ : G 7→ G
such that the map

x 7→ θ(x)− x

is also a permutation of G .

There is a DCLS with first row [θ(0), θ(1), . . . , θ(n−1)] iff θ is an
orthomorphism of Zn.
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Cyclotomic orthomorphisms

A cyclotomy class of index k is a coset of the subgroup of index k in the
multiplicative group F∗.

An orthomorphism θ is cyclotomic of index k if θ(0) = 0 and θ(x)/x is
constant on the cyclotomy classes of index k.

We use “linear”, “quadratic”, “cubic”, “quartic”, “quintic”, . . . to
describe cyclotomic orthomorphisms of index 1, 2, 3, 4, 5, . . .

Eg. in Z13:

x 0 1 2 3 4 5 6 7 8 9 10 11 12

θ(x) 0 2 10 6 8 12 4 9 1 5 7 3 11

So θ is a quadratic orthomorphism.
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Cyclotomic maps

Let γ be a primitive element of the finite field F. For 0 6 j 6 k − 1
define the cyclotomy class Cj = {γki+j : 0 6 i 6 m − 1} to be a coset of
the unique subgroup C0 of index k in F∗. A cyclotomic map
φ = φγ [a0, . . . , ak−1] of index k can then be defined by

φ(x) =

{
0 if x = 0,

aix if x ∈ Ci ,

where a0, . . . , ak−1 ∈ F.

Such φ will be a permutation iff Cj 7→ ajCj permutes the cyclotomy
classes.
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Quadratic quasigroups Qa,b

In general, a quadratic orthomorphism has the form

θ(x) =

{
ax if x is a square,

bx if x is a nonsquare,

From it, we can build a quasigroup (Qa,b, ∗) by

x ∗ y = x + θ(y − x)

for x , y ∈ Qa,b.

[We need odd characteristic, and both ab and (a− 1)(b − 1) to be
nonzero squares]
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Maximally non-associative quasigroups

Recall: A quasigroup is maximally non-associative if (xy)z = x(yz) only
when x = y = z . Such quasigroups apparently have some application in
cryptography for designing second pre-image resistant hash functions.



Q2,5

∗ 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 2 10 6 8 12 4 9 1 5 7 3 11
1 12 1 3 11 7 9 0 5 10 2 6 8 4
2 5 0 2 4 12 8 10 1 6 11 3 7 9
3 10 6 1 3 5 0 9 11 2 7 12 4 8
4 9 11 7 2 4 6 1 10 12 3 8 0 5
5 6 10 12 8 3 5 7 2 11 0 4 9 1
6 2 7 11 0 9 4 6 8 3 12 1 5 10
7 11 3 8 12 1 10 5 7 9 4 0 2 6
8 7 12 4 9 0 2 11 6 8 10 5 1 3
9 4 8 0 5 10 1 3 12 7 9 11 6 2

10 3 5 9 1 6 11 2 4 0 8 10 12 7
11 8 4 6 10 2 7 12 3 5 1 9 11 0
12 1 9 5 7 11 3 8 0 4 6 2 10 12

is the smallest MNQ built from a quadratic orthomorphism.
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Characterisation of quadratic MNQs

Qa,b is an MNQ iff

(1) a2 6= b or a 6= 2b − b2,

(2) at least one of −1, a− 1 or a is nonsquare,

(3) at least one of b, (1− a)(a2 − b) or σ(a− 1) is square,

(4) at least one of aν, 1− b or aτ is square,

(5) −1 is nonsquare or σa(b − 1) is square or τa(b − 1) is square,

(6) −1 is square or b − 1 is nonsquare or (ab − a + b)b is nonsquare,

(7) (b − a2)µ is square or bµ(ab − 2a + 1) is nonsquare or
(a− 1)(ab − a + b)µ is square,

(8) −1 is square or a− 1 is square or b is nonsquare,

(9) at least one of −1, a or (ab − 2a + 1)(b − 1) is square, and

(10) conditions (1)− (9) all apply when a and b are interchanged.

Here µ = b2 − 2b + a, ν = a2 − 2a + b, σ = a2b − a2 − ab + b, and
τ = a2b − ab − a + b.



How many quadratic orthomorphisms give MNQs?

Using Weil bounds we were able to show that these conditions are
satisfied in all large fields (of odd characteristic).

We also found MNQs from orthomorphisms of these groups:

Z21,Z33,Z35,Z55,

Z2 × Z8,Z2 × Z10,Z2 × Z12,Z2 × Z14,Z2 × Z2 × Z2 × Z4.

Theorem: MNQ exist for n > 9, with the possible exception of
n ∈ {11, 12, 15, 40, 42, 44, 56, 66, 77, 88, 90, 110}
and orders of the form n = 2p1 or n = 2p1p2
for odd primes p1, p2 with p1 6 p2 < 2p1.
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How many quadratic orthomorphisms give MNQs?

Theorem: For odd prime powers q the asymptotic proportion of
quadratic orthomorphisms which produce MNQs is

953
215
≈ 0.02908 for q ≡ 1 mod 4,

825
216
≈ 0.01259 for q ≡ 3 mod 4.

Hence it is viable to find large MNQs “randomly”.

We currently do not have a corresponding density result for the near-field
construction that Aleš talked about yesterday. Drápal and Lisonek
conjecture an asymptotic density of ≈ 0.29.
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Orthomorphisms of higher index

Applications of orthomorphisms of higher index to the construction of
maximally nonassociative quasigroups have not been developed;

...with
one exception:

Drápal and Hora [2020] built a loop of order 20 by prolonging a cubic
quasigroup of order 19. Their loop had 1160 = 3n2 − 2n associative
triples, which is the fewest possible for involutory loops.
For all primes p > 13 except p = 19 they had been able to find an
involutory loop of order n = p + 1 with only 3n2 − 2n associative triples
by prolonging a quadratic quasigroup.
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Automorphisms of quadratic quasigroups

Theorem: Let Qa,b and Qc,d be quadratic quasigroups over F. Then
Qa,b is isomorphic to Qc,d if and only if there exists α ∈ aut(F) such
that {a, b} = {α(c), α(d)}.

Open question: The corresponding result with “isotopic” in place of
“isomorphic”.

Theorem: Let Q = Qa,b be a quadratic quasigroup over F with a 6= b.
Denote by K the least subfield of F that contains {a, b}. The
automorphism group of Q consists of all affine semilinear mappings
x 7→ λα(x) + µ, where λ is a square in F∗, µ ∈ F and α ∈ Gal(F | K),
except:

(i) If b = aγ and γ2 = |K|, then we also have automorphisms
x 7→ λα(xγ) + µ, where λ is a nonsquare.

(ii) If |F| = 7 and {a, b} = {3, 5}, then aut(Q) ∼= PSL2(7).
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Quadratic quasigroups in certain varieties

Theorem: Let Q = Qa,b be a quadratic quasigroup upon F. Then

(i) Q is medial (i.e. fulfils the law xy · uv = xu · yv) if and only if a = b;

(ii) Q is left distributive (i.e. fulfils the law x · yz = xy · xz) if and only
if a = b;

(iii) Q is right distributive (i.e. fulfils the law xy · z = xz · yz) if and only
if a = b;

(iv) Q is commutative if and only if a + b = 1 and either |F| ≡ 3 mod 4
or a = b.

(v) Q is flexible (i.e. fulfils the law x · yx = xy · x) if and only if a = b
or χ(a) = χ(1− a) = 1 or both a + b = 1 and |F| ≡ 3 mod 4;

(vi) Q is semisymmetric (i.e. fulfils the law xy · x = y) if and only if
a2 − a + 1 = 0 and either a = b or a + b = 1.

(vii) Q is a Steiner quasigroup (i.e. idempotent, commutative and
semisymmetric) if and only if either F has characteristic 3 and
a = b = −1, or F has characteristic > 3, a + b = ab = 1, and
χ(a) = χ(−1) = −1. In the latter case, a 6= b.

(viii) Q is isotopic to a group if and only if a = b.



Snow Design



Perfect 1-factorisations

A 1-factor of a graph is a set of edges covering every vertex exactly once.

A 1-factorisation is a decomposition of a graph into 1-factors.

= + + ++ + +

= + + ++ + +

A perfect 1-factorisation (P1F) is a 1-factorisation for which every pair
of 1-factors form a Hamiltonian cycle.

Today I will talk about P1Fs of the complete bipartite graph Kn,n (n odd
or n = 2).
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Row Cycles

Two rows of a LS define a permutation, which decomposes into cycles.

0 2 5 1 6 4 3
4 1 3 6 2 0 5
6 5 2 4 0 3 1

→ 2 0 6 3 5 1 4
→ 5 3 1 0 4 6 2

3 6 4 2 1 5 0
1 4 0 5 3 2 6

The rows marked with → form the permutation (254)(03)(61). Each of
these 3 cycles gives us a row cycle (one of which is shown in green).

Each row cycle corresponds to a cycle of the permutation Ly ◦ L−1
x where

Lx : Q → Q, Lx(z) = x · z .

Similarly, there are column cycles, corresponding to cycles of Ry ◦ R−1
x ,

where
Rx : Q → Q, Rx(z) = z · x .



Row Cycles

Two rows of a LS define a permutation, which decomposes into cycles.

0 2 5 1 6 4 3
4 1 3 6 2 0 5
6 5 2 4 0 3 1

→ 2 0 6 3 5 1 4
→ 5 3 1 0 4 6 2

3 6 4 2 1 5 0
1 4 0 5 3 2 6

The rows marked with → form the permutation (254)(03)(61). Each of
these 3 cycles gives us a row cycle (one of which is shown in green).

Each row cycle corresponds to a cycle of the permutation Ly ◦ L−1
x where

Lx : Q → Q, Lx(z) = x · z .

Similarly, there are column cycles, corresponding to cycles of Ry ◦ R−1
x ,

where
Rx : Q → Q, Rx(z) = z · x .



Row Cycles

Two rows of a LS define a permutation, which decomposes into cycles.

0 2 5 1 6 4 3
4 1 3 6 2 0 5
6 5 2 4 0 3 1

→ 2 0 6 3 5 1 4
→ 5 3 1 0 4 6 2

3 6 4 2 1 5 0
1 4 0 5 3 2 6

The rows marked with → form the permutation (254)(03)(61). Each of
these 3 cycles gives us a row cycle (one of which is shown in green).

Each row cycle corresponds to a cycle of the permutation Ly ◦ L−1
x where

Lx : Q → Q, Lx(z) = x · z .

Similarly, there are column cycles, corresponding to cycles of Ry ◦ R−1
x ,

where
Rx : Q → Q, Rx(z) = z · x .



Hamiltonian LS

A LS is row-Hamiltonian if every pair of rows forms a single cycle.

Let ν(L) denote the number of parastrophes of L which are
row-Hamiltonian.

It’s easy to see that ν(L) ∈ {0, 2, 4, 6}.

All previously known families of row-Hamiltonian LS have ν(L) ∈ {2, 6}.

We call L atomic if ν(L) = 6.

We have 5 families of atomic Latin squares but all are for prime orders
only. There are some sporadic orders up to 39601 known, but they are
all for prime power orders.
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1-factorisations from Latin squares

1 2 4 0 3
3 1 0 2 4
4 3 2 1 0
0 4 1 3 2
2 0 3 4 1

c0 c1 c2 c3 c4

s0 s1 s2 s3 s4
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Enumeration

n All 1F of Kn,n P1F

2 1 1
3 1 1
4 2 -
5 2 1
6 17 -
7 324 2
8 842227 -
9 57810418543 37

10 104452188344901572 -
11 6108088657705958932053657

Counted by

6 Clausen 1842??, Tarry 1900
9 W. 1999

10 McKay/Meynert/Myrvold 2007

11 Hulpke/Kaski/Österg̊ard 2011



Use a quadratic orthomorphism!

You don’t need to check much to see if Qa,b is row-Hamiltonian,
since it has such a large automorphism group.

If p ≡ 3 mod 4 there is a single orbit on unordered pairs of rows.

If p ≡ 1 mod 4 there are two orbits on unordered pairs of rows.

Let p be a prime where p ≡ 1, 3 mod 8 and let Lp = Q−1, 1
2
.

I conjectured in 2010 that Lp is row-Hamiltonian. Then in 2021 my
student Jack Allsop found Beck’s Theorem, which allows you to show a
permutation consists of a single cycle by showing that a certain matrix is
non-singular over Z2.

Theorem: Lp is row-Hamiltonian for all p ≡ 1, 3 mod 8.
It has no Hamiltonian column cycles unless p ∈ {3, 19}.
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Example p = 11



1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 1
2 0 0 1 1 0 1 1 1 1 1
3 0 1 0 0 0 1 1 1 0 1
4 0 1 0 0 0 1 1 1 1 1
5 0 0 0 0 0 1 1 1 1 1
6 0 1 1 1 1 0 1 1 0 1
7 0 1 1 1 1 1 0 1 0 1
8 0 1 1 1 1 1 1 0 0 1
9 0 1 0 1 1 0 0 0 0 1

10 1 1 1 1 1 1 1 1 1 0
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Phase 2


1 5 9 10

1 0 0 0 1
5 0 0 1 1
9 0 1 0 1

10 1 1 1 0





Phase 3


1 5 9 10

1 0 0 0 1
5 0 0 1 1
9 0 1 0 1

10 1 1 1 0





Phase 3


1 5 9 10

1 0 0 0 1
5 0 0 1 1
9 0 1 0 1

10 1 1 1 0





The end game

(
0 1
1 0

)



Not atomic

Lp has a autoparastrophy mapping its rows to symbols, so ν(Lp) > 4.

If there exists x ∈ Zp such that

x , x + 1, x +
1

2
∈ � and − x

2
− 3

4
,

1

4
− x

2
/∈ �

then Lp has a column cycle of length 3.

Such an x exists for all large p by Weil’s theorem, and all small p can be
checked by computer.

Lp is atomic for p ∈ {3, 19}, but otherwise ν(Lp) = 4.
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Varieties

Let E be a set of identities. The loop variety defined by E is the set of
loops satisfying all identities in E .

e.g. The loop variety defined by the associative identity,

x · (y · z) = (x · y) · z ,

is the set of groups.

We call a variety anti-associative if the only group it contains is the
trivial group.

We call a loop variety isotopically-closed if it is closed under taking loop
isotopes.

Question: [Falconer’70] Does there exist a non-trivial, anti-associative,
isotopically-closed loop variety?
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Solving Falconer’s problem

Recall
Lx : Q → Q, Lx(z) = x · z ,

Rx : Q → Q, Rx(z) = z · x .

Consider the variety defined by

(Ly ◦ L−1
x )p(z) = z , (1)

(Ry ◦ R−1
x )lcm(1,2,...,p−1)(z) = z . (2)

(1) ↔ row-Hamiltonian ↔ every element of every loop isotope has left
order dividing p.

(2) ↔ no column cycle a p-cycle ↔ every element of every loop isotope
has right order coprime to p.

Theorem: There are infinitely many Falconer varieties.
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order dividing p.

(2) ↔ no column cycle a p-cycle ↔ every element of every loop isotope
has right order coprime to p.

Theorem: There are infinitely many Falconer varieties.



Loose ends

Question: When is Qa,b isotopic to Qc,d?

Question: What is the asymptotic proportion of MNQ built via the
nearfield construction?

Question: Do there exist MNQs for all sufficiently large orders?

Question: Do there exist atomic LS of orders that aren’t prime powers?

Question: Do there exist infinitely many atomic LS of composite
order?

Question: For which (a, b, n) do there exist quasigroups of order n in
which every row cycle has length a and every column cycle has length b?
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That’s all. Any questions?
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